1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-14 13:30:48 +03:00

Compare commits

...

4 Commits

Author SHA1 Message Date
aml
79168b6678 0027299: Incorrect result of the normal projection algorithm
Curve splitting is added to handle seam passing by initial curve.
test cases are added.

Minor corrections.

0026044: Optimize math_GlobOptMin class to enter options for solutions of some specified problems

Possibility to search single optimum added.

Additional backporting to improve performance.
2016-04-07 11:10:58 +03:00
mkv
eb58d64102 Small corrections for issue CR27133_v690 2016-02-09 14:52:28 +03:00
aml
dac92a59aa test case backporting. 2016-02-08 14:16:48 +03:00
aml
134f1e8d5f 0027133: Incorrect result of the normal projection algorithm
Topological tolerances changed to geometric tolerances.
Test case added.
2016-02-08 13:37:44 +03:00
14 changed files with 654 additions and 149 deletions

View File

@@ -131,6 +131,15 @@ is
Ut11, Ut12, Ut21, Ut22: Real)
is static protected;
GetSingleSolutionFlag (me) returns Boolean
---Purpose: Returns single solution flag value.
is static;
SetSingleSolutionFlag (me: in out;
theFlag: Boolean)
---Purpose: Sets single solution flag value.
is static;
@@ -139,6 +148,7 @@ fields
myECC: ECC from Extrema;
myDone: Boolean;
myIsPar: Boolean;
myIsFindSingleSolution: Boolean;
mypoints: SequenceOfPOnCurv from Extrema;
mySqDist: SequenceOfReal from TColStd;
mynbext: Integer;

View File

@@ -45,15 +45,14 @@
#include <Adaptor3d_Curve.hxx>
#include <Extrema_CurveTool.hxx>
//=======================================================================
//function : Extrema_ExtCC
//purpose :
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC (const Standard_Real TolC1,
const Standard_Real TolC2) :
myDone (Standard_False)
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myDone (Standard_False)
{
myC[0] = 0; myC[1] = 0;
myTol[0] = TolC1; myTol[1] = TolC2;
@@ -64,15 +63,16 @@ Extrema_ExtCC::Extrema_ExtCC (const Standard_Real TolC1,
//purpose :
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
const Adaptor3d_Curve& C2,
const Standard_Real U1,
const Standard_Real U2,
const Standard_Real V1,
const Standard_Real V2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myECC(C1, C2, U1, U2, V1, V2),
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
const Adaptor3d_Curve& C2,
const Standard_Real U1,
const Standard_Real U2,
const Standard_Real V1,
const Standard_Real V2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myECC(C1, C2, U1, U2, V1, V2),
myDone (Standard_False)
{
SetCurve (1, C1, U1, U2);
@@ -89,10 +89,11 @@ Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
//=======================================================================
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
const Adaptor3d_Curve& C2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myECC(C1, C2),
const Adaptor3d_Curve& C2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False),
myECC(C1, C2),
myDone (Standard_False)
{
SetCurve (1, C1, C1.FirstParameter(), C1.LastParameter());
@@ -164,6 +165,7 @@ void Extrema_ExtCC::Perform()
myECC.SetParams(*((Adaptor3d_Curve*)myC[0]),
*((Adaptor3d_Curve*)myC[1]), myInf[0], mySup[0], myInf[1], mySup[1]);
myECC.SetTolerance(Min(myTol[0], myTol[1]));
myECC.SetSingleSolutionFlag(GetSingleSolutionFlag());
myDone = Standard_False;
mypoints.Clear();
mySqDist.Clear();
@@ -725,3 +727,21 @@ void Extrema_ExtCC::Results(const Extrema_ECC& AlgExt,
}
}
}
//=======================================================================
//function : SetSingleSolutionFlag
//purpose :
//=======================================================================
void Extrema_ExtCC::SetSingleSolutionFlag(const Standard_Boolean theFlag)
{
myIsFindSingleSolution = theFlag;
}
//=======================================================================
//function : GetSingleSolutionFlag
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtCC::GetSingleSolutionFlag() const
{
return myIsFindSingleSolution;
}

View File

@@ -131,11 +131,21 @@ is
Period2 : Real from Standard = 0.0)
is static protected;
GetSingleSolutionFlag (me) returns Boolean
---Purpose: Returns single solution flag value.
is static;
SetSingleSolutionFlag (me: in out;
theFlag: Boolean)
---Purpose: Sets single solution flag value.
is static;
fields
myDone: Boolean;
myIsPar: Boolean;
myIsFindSingleSolution: Boolean;
mypoints: SequenceOfPOnCurv2d from Extrema;
mySqDist: SequenceOfReal from TColStd;
mynbext: Integer;

View File

@@ -39,27 +39,30 @@
Extrema_ExtCC2d::Extrema_ExtCC2d()
: myIsFindSingleSolution(Standard_False)
{
}
Extrema_ExtCC2d::Extrema_ExtCC2d(const Adaptor2d_Curve2d& C1,
const Adaptor2d_Curve2d& C2,
const Standard_Real TolC1,
const Standard_Real TolC2)
Extrema_ExtCC2d::Extrema_ExtCC2d(const Adaptor2d_Curve2d& C1,
const Adaptor2d_Curve2d& C2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False)
{
Initialize(C2, Extrema_Curve2dTool::FirstParameter(C2), Extrema_Curve2dTool::LastParameter(C2), TolC1, TolC2);
Perform(C1, Extrema_Curve2dTool::FirstParameter(C1), Extrema_Curve2dTool::LastParameter(C1));
}
Extrema_ExtCC2d::Extrema_ExtCC2d(const Adaptor2d_Curve2d& C1,
const Adaptor2d_Curve2d& C2,
const Standard_Real U1,
const Standard_Real U2,
const Standard_Real V1,
const Standard_Real V2,
const Standard_Real TolC1,
const Standard_Real TolC2)
const Adaptor2d_Curve2d& C2,
const Standard_Real U1,
const Standard_Real U2,
const Standard_Real V1,
const Standard_Real V2,
const Standard_Real TolC1,
const Standard_Real TolC2)
: myIsFindSingleSolution(Standard_False)
{
Initialize(C2, V1, V2, TolC1, TolC2);
Perform(C1, U1, U2);
@@ -135,11 +138,12 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
case GeomAbs_BezierCurve:
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, 2*M_PI,Period2);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(aParamSolver, U11, U12, U21, U22, 2*M_PI,Period2);
}
break;
case GeomAbs_Line: {
@@ -164,35 +168,39 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
Results(Xtrem, U11, U12, U21, U22, 2*M_PI, 2*M_PI);
}
break;
case GeomAbs_Ellipse: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22,2*M_PI, 2*M_PI);
case GeomAbs_Ellipse:
{
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22,2*M_PI, 2*M_PI);
}
break;
case GeomAbs_Parabola: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 2*M_PI, 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 2*M_PI, 0.);
}
break;
case GeomAbs_Hyperbola: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 2*M_PI, 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 2*M_PI, 0.);
}
break;
case GeomAbs_BezierCurve:
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, 2*M_PI,Period2);
Results(aParamSolver, U11, U12, U21, U22, 2*M_PI,Period2);
}
break;
case GeomAbs_Line: {
@@ -220,34 +228,38 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
case GeomAbs_Ellipse: {
//inverse = Standard_True;
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Parabola(C1));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 2*M_PI);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 2*M_PI);
}
break;
case GeomAbs_Parabola: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Parabola(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 0.);
}
break;
case GeomAbs_Hyperbola: {
//inverse = Standard_True;
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Parabola(C1));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 0.);
}
break;
case GeomAbs_BezierCurve:
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
Results(aParamSolver, U11, U12, U21, U22, 0., Period2);
}
break;
case GeomAbs_Line: {
@@ -275,33 +287,37 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
case GeomAbs_Ellipse: {
//inverse = Standard_True;
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Hyperbola(C1));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 2*M_PI );
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 2*M_PI );
}
break;
case GeomAbs_Parabola: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 0.);
}
break;
case GeomAbs_Hyperbola: {
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(C1), Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)));
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Results(aParamSolver, U11, U12, U21, U22, 0., 0.);
}
break;
case GeomAbs_OtherCurve:
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
Results(aParamSolver, U11, U12, U21, U22, 0., Period2);
}
break;
case GeomAbs_Line: {
@@ -320,13 +336,14 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
case GeomAbs_BezierCurve:
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period1 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(C1)) Period1 = Extrema_Curve2dTool::Period(C1);
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, Period1, Period2);
Results(aParamSolver, U11, U12, U21, U22, Period1, Period2);
}
break;
@@ -359,11 +376,12 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
case GeomAbs_BezierCurve:
case GeomAbs_OtherCurve:
case GeomAbs_BSplineCurve: {
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
Xtrem.Perform();
Extrema_ECC2d aParamSolver(C1, *((Adaptor2d_Curve2d*)myC));
aParamSolver.SetSingleSolutionFlag(GetSingleSolutionFlag());
aParamSolver.Perform();
Standard_Real Period2 = 0.;
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
Results(aParamSolver, U11, U12, U21, U22, 0., Period2);
}
break;
case GeomAbs_Line: {
@@ -555,3 +573,21 @@ Standard_Boolean Extrema_ExtCC2d::IsParallel() const
if (!myDone) StdFail_NotDone::Raise();
return myIsPar;
}
//=======================================================================
//function : SetSingleSolutionFlag
//purpose :
//=======================================================================
void Extrema_ExtCC2d::SetSingleSolutionFlag(const Standard_Boolean theFlag)
{
myIsFindSingleSolution = theFlag;
}
//=======================================================================
//function : GetSingleSolutionFlag
//purpose :
//=======================================================================
Standard_Boolean Extrema_ExtCC2d::GetSingleSolutionFlag() const
{
return myIsFindSingleSolution;
}

View File

@@ -94,8 +94,18 @@ is
OutOfRange
-- if N < 1 or N > NbExt(me)
is static;
GetSingleSolutionFlag (me) returns Boolean
---Purpose: Returns single solution flag value.
is static;
SetSingleSolutionFlag (me: in out;
theFlag: Boolean)
---Purpose: Sets single solution flag value.
is static;
fields
myIsFindSingleSolution: Boolean;
myCurveMinTol : Real from Standard;
myLowBorder : Vector from math;
myUppBorder : Vector from math;
@@ -103,5 +113,6 @@ fields
myPoints2 : SequenceOfReal from TColStd;
myC : Address from Standard [2];
myDone : Boolean;
end GenExtCC;

View File

@@ -27,7 +27,8 @@
//purpose :
//=======================================================================
Extrema_GenExtCC::Extrema_GenExtCC()
: myCurveMinTol(Precision::PConfusion()),
: myIsFindSingleSolution(Standard_False),
myCurveMinTol(Precision::PConfusion()),
myLowBorder(1,2),
myUppBorder(1,2),
myDone(Standard_False)
@@ -41,7 +42,8 @@ Extrema_GenExtCC::Extrema_GenExtCC()
//=======================================================================
Extrema_GenExtCC::Extrema_GenExtCC(const Curve1& C1,
const Curve2& C2)
: myCurveMinTol(Precision::PConfusion()),
: myIsFindSingleSolution(Standard_False),
myCurveMinTol(Precision::PConfusion()),
myLowBorder(1,2),
myUppBorder(1,2),
myDone(Standard_False)
@@ -64,7 +66,8 @@ Extrema_GenExtCC::Extrema_GenExtCC(const Curve1& C1,
const Standard_Real Usup,
const Standard_Real Vinf,
const Standard_Real Vsup)
: myCurveMinTol(Precision::PConfusion()),
: myIsFindSingleSolution(Standard_False),
myCurveMinTol(Precision::PConfusion()),
myLowBorder(1,2),
myUppBorder(1,2),
myDone(Standard_False)
@@ -117,15 +120,25 @@ void Extrema_GenExtCC::Perform()
Curve2 &C2 = *(Curve2*)myC[1];
Standard_Integer aNbInter[2];
aNbInter[0] = C1.NbIntervals(GeomAbs_C2);
aNbInter[1] = C2.NbIntervals(GeomAbs_C2);
GeomAbs_Shape aContinuity = GeomAbs_C2;
aNbInter[0] = C1.NbIntervals(aContinuity);
aNbInter[1] = C2.NbIntervals(aContinuity);
if (aNbInter[0] * aNbInter[1] > 100)
{
aContinuity = GeomAbs_C1;
aNbInter[0] = C1.NbIntervals(aContinuity);
aNbInter[1] = C2.NbIntervals(aContinuity);
}
TColStd_Array1OfReal anIntervals1(1, aNbInter[0] + 1);
TColStd_Array1OfReal anIntervals2(1, aNbInter[1] + 1);
C1.Intervals(anIntervals1, GeomAbs_C2);
C2.Intervals(anIntervals2, GeomAbs_C2);
C1.Intervals(anIntervals1, aContinuity);
C2.Intervals(anIntervals2, aContinuity);
Extrema_GlobOptFuncCCC2 aFunc (C1, C2);
math_GlobOptMin aFinder(&aFunc, myLowBorder, myUppBorder);
aFinder.SetContinuity(aContinuity == GeomAbs_C2 ? 2 : 1);
Standard_Real aDiscTol = 1.0e-2;
Standard_Real aValueTol = 1.0e-2;
Standard_Real aSameTol = myCurveMinTol / (aDiscTol);
@@ -149,7 +162,7 @@ void Extrema_GenExtCC::Perform()
aSecondBorderInterval(2) = anIntervals2(j + 1);
aFinder.SetLocalParams(aFirstBorderInterval, aSecondBorderInterval);
aFinder.Perform();
aFinder.Perform(GetSingleSolutionFlag());
// check that solution found on current interval is not worse than previous
aCurrF = aFinder.GetF();
@@ -242,4 +255,22 @@ void Extrema_GenExtCC::Points(const Standard_Integer N,
P1.SetValues(myPoints1(N), Tool1::Value(*((Curve1*)myC[0]), myPoints1(N)));
P2.SetValues(myPoints2(N), Tool2::Value(*((Curve2*)myC[1]), myPoints2(N)));
}
}
//=======================================================================
//function : SetSingleSolutionFlag
//purpose :
//=======================================================================
void Extrema_GenExtCC::SetSingleSolutionFlag(const Standard_Boolean theFlag)
{
myIsFindSingleSolution = theFlag;
}
//=======================================================================
//function : GetSingleSolutionFlag
//purpose :
//=======================================================================
Standard_Boolean Extrema_GenExtCC::GetSingleSolutionFlag() const
{
return myIsFindSingleSolution;
}

View File

@@ -14,9 +14,15 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <algorithm>
#include <ProjLib_CompProjectedCurve.ixx>
#include <ProjLib_HCompProjectedCurve.hxx>
#include <gp_XY.hxx>
#include <Adaptor2d_HCurve2d.hxx>
#include <Adaptor3d_HCurve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <gp_Mat2d.hxx>
#include <Extrema_ExtPS.hxx>
#include <Precision.hxx>
@@ -28,6 +34,11 @@
#include <ProjLib_PrjResolve.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomLib.hxx>
#include <Adaptor3d_CurveOnSurface.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Extrema_ExtCC.hxx>
#include <NCollection_Vector.hxx>
#define FuncTol 1.e-10
@@ -54,6 +65,59 @@ static void ResultChron( OSD_Chronometer & ch, Standard_Real & time)
}
#endif
// Structure to perform splits computation.
// This structure is not thread-safe since operations under mySplits should be performed in a critical section.
// myPeriodicDir - 0 for U periodicity and 1 for V periodicity.
struct SplitDS
{
SplitDS(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
NCollection_Vector<Standard_Real> &theSplits)
: myCurve(theCurve),
mySurface(theSurface),
mySplits(theSplits)
{ }
// Assignment operator is forbidden.
void operator=(const SplitDS &theSplitDS);
const Handle(Adaptor3d_HCurve) myCurve;
const Handle(Adaptor3d_HSurface) mySurface;
NCollection_Vector<Standard_Real> &mySplits;
Standard_Real myPerMinParam;
Standard_Real myPerMaxParam;
Standard_Integer myPeriodicDir;
Extrema_ExtCC *myExtCC;
Extrema_ExtPS *myExtPS;
};
//! Compute split points in the parameter space of the curve.
static void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
const Standard_Real theTolU,
const Standard_Real theTolV,
NCollection_Vector<Standard_Real> &theSplits);
//! Perform splitting on a specified direction. Sub-method in BuildCurveSplits.
static void SplitOnDirection(SplitDS & theSplitDS);
//! Perform recursive search of the split points.
static void FindSplitPoint(SplitDS & theSplitDS,
const Standard_Real theMinParam,
const Standard_Real theMaxParam);
//=======================================================================
//function : Comparator
//purpose : used in sort algorithm
//=======================================================================
inline Standard_Boolean Comparator(const Standard_Real theA,
const Standard_Real theB)
{
return theA < theB;
}
//=======================================================================
//function : d1
@@ -554,34 +618,36 @@ ProjLib_CompProjectedCurve::ProjLib_CompProjectedCurve
void ProjLib_CompProjectedCurve::Init()
{
myTabInt.Nullify();
NCollection_Vector<Standard_Real> aSplits;
Standard_Real Tol;// Tolerance for ExactBound
Standard_Integer i, Nend = 0;
Standard_Boolean FromLastU=Standard_False;
Standard_Integer i, Nend = 0, aSplitIdx = 0;
Standard_Boolean FromLastU = Standard_False,
isSplitsComputed = Standard_False;
//new part (to discard far solutions)
Standard_Real TolC = Precision::Confusion(), TolS = Precision::Confusion();
Extrema_ExtCS CExt(myCurve->Curve(),
mySurface->Surface(),
TolC,
TolS);
if (CExt.IsDone() && CExt.NbExt())
const Standard_Real aTol3D = Precision::Confusion();
Extrema_ExtCS CExt(myCurve->Curve(), mySurface->Surface(), aTol3D, aTol3D);
if (CExt.IsDone() && CExt.NbExt())
{
// Search for the minimum solution
Nend = CExt.NbExt();
// Search for the minimum solution.
// Avoid usage of extrema result that can be wrong for extrusion.
if(myMaxDist > 0 &&
// Avoid usage of extrema result that can be wrong for extrusion
mySurface->GetType() != GeomAbs_SurfaceOfExtrusion)
{
Standard_Real min_val2;
min_val2 = CExt.SquareDistance(1);
Nend = CExt.NbExt();
for(i = 2; i <= Nend; i++)
if (CExt.SquareDistance(i) < min_val2) min_val2 = CExt.SquareDistance(i);
{
if (CExt.SquareDistance(i) < min_val2)
min_val2 = CExt.SquareDistance(i);
}
if (min_val2 > myMaxDist * myMaxDist)
return;
return; // No near solution -> exit.
}
}
// end of new part
Standard_Real FirstU, LastU, Step, SearchStep, WalkStep, t;
@@ -595,12 +661,9 @@ void ProjLib_CompProjectedCurve::Init()
SearchStep = 10*MinStep;
Step = SearchStep;
//Initialization of aPrjPS
Standard_Real Uinf = mySurface->FirstUParameter();
Standard_Real Usup = mySurface->LastUParameter();
Standard_Real Vinf = mySurface->FirstVParameter();
Standard_Real Vsup = mySurface->LastVParameter();
gp_Pnt2d aLowBorder(mySurface->FirstUParameter(),mySurface->FirstVParameter());
gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter());
gp_Pnt2d aTol(myTolU, myTolV);
ProjLib_PrjResolve aPrjPS(myCurve->Curve(), mySurface->Surface(), 1);
t = FirstU;
@@ -611,7 +674,7 @@ void ProjLib_CompProjectedCurve::Init()
gp_Pnt Triple, prevTriple;
//Basic loop
//Basic loop
while(t <= LastU)
{
//Search for the begining a new continuous part
@@ -638,10 +701,8 @@ void ProjLib_CompProjectedCurve::Init()
ParT=P1.Parameter();
P2.Parameter(ParU, ParV);
aPrjPS.Perform(ParT, ParU, ParV, gp_Pnt2d(myTolU, myTolV),
gp_Pnt2d(mySurface->FirstUParameter(),mySurface->FirstVParameter()),
gp_Pnt2d(mySurface->LastUParameter(), mySurface->LastVParameter()),
FuncTol, Standard_True);
aPrjPS.Perform(ParT, ParU, ParV, aTol, aLowBorder, aUppBorder, FuncTol, Standard_True);
if ( aPrjPS.IsDone() && P1.Parameter() > Max(FirstU,t-Step+Precision::PConfusion())
&& P1.Parameter() <= t)
{
@@ -655,12 +716,13 @@ void ProjLib_CompProjectedCurve::Init()
}
}
if (!initpoint)
{
{
myCurve->D0(t,CPoint);
#ifdef OCCT_DEBUG_CHRONO
InitChron(chr_init_point);
#endif
initpoint=InitialPoint(CPoint, t,myCurve,mySurface, myTolU, myTolV, U, V);
// PConfusion - use geometric tolerances in extrema / optimization.
initpoint=InitialPoint(CPoint, t,myCurve,mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V);
#ifdef OCCT_DEBUG_CHRONO
ResultChron(chr_init_point,t_init_point);
init_point_count++;
@@ -673,38 +735,37 @@ void ProjLib_CompProjectedCurve::Init()
gp_Vec2d D;
if ((mySurface->IsUPeriodic() &&
Abs(Usup - Uinf - mySurface->UPeriod()) < Precision::Confusion()) ||
Abs(aUppBorder.X() - aLowBorder.X() - mySurface->UPeriod()) < Precision::Confusion()) ||
(mySurface->IsVPeriodic() &&
Abs(Vsup - Vinf - mySurface->VPeriod()) < Precision::Confusion()))
Abs(aUppBorder.Y() - aLowBorder.Y() - mySurface->VPeriod()) < Precision::Confusion()))
{
if((Abs(U - Uinf) < mySurface->UResolution(Precision::PConfusion())) &&
if((Abs(U - aLowBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
mySurface->IsUPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.X() < 0 ) U = Usup;
if (D.X() < 0 ) U = aUppBorder.X();
}
else if((Abs(U - Usup) < mySurface->UResolution(Precision::PConfusion())) &&
else if((Abs(U - aUppBorder.X()) < mySurface->UResolution(Precision::PConfusion())) &&
mySurface->IsUPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.X() > 0) U = Uinf;
if (D.X() > 0) U = aLowBorder.X();
}
if((Abs(V - Vinf) < mySurface->VResolution(Precision::PConfusion())) &&
if((Abs(V - aLowBorder.Y()) < mySurface->VResolution(Precision::PConfusion())) &&
mySurface->IsVPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.Y() < 0) V = Vsup;
if (D.Y() < 0) V = aUppBorder.Y();
}
else if((Abs(V - Vsup) <= mySurface->VResolution(Precision::PConfusion())) &&
else if((Abs(V - aUppBorder.Y()) <= mySurface->VResolution(Precision::PConfusion())) &&
mySurface->IsVPeriodic())
{
d1(t, U, V, D, myCurve, mySurface);
if (D.Y() > 0) V = Vinf;
if (D.Y() > 0) V = aLowBorder.Y();
}
}
if (myMaxDist > 0)
{
// Here we are going to stop if the distance between projection and
@@ -754,7 +815,6 @@ void ProjLib_CompProjectedCurve::Init()
}
if (!new_part) break;
//We have found a new continuous part
Handle(TColgp_HSequenceOfPnt) hSeq = new TColgp_HSequenceOfPnt();
mySequence->Append(hSeq);
@@ -779,9 +839,7 @@ void ProjLib_CompProjectedCurve::Init()
if (t > LastU) t = LastU;
Standard_Real prevStep = Step;
Standard_Real U0, V0;
gp_Pnt2d aLowBorder(mySurface->FirstUParameter(),mySurface->FirstVParameter());
gp_Pnt2d aUppBorder(mySurface->LastUParameter(), mySurface->LastVParameter());
gp_Pnt2d aTol(myTolU, myTolV);
//Here we are trying to prolong continuous part
while (t <= LastU && new_part)
{
@@ -855,10 +913,10 @@ void ProjLib_CompProjectedCurve::Init()
(Abs (Triple.Z() - mySurface->FirstVParameter()) < Precision::Confusion() ||
Abs (Triple.Z() - mySurface->LastVParameter() ) < Precision::Confusion() ))
{
// Go out from possible attraktor.
// Go out from possible attractor.
Standard_Real U,V;
InitialPoint(myCurve->Value(t), t, myCurve, mySurface, myTolU, myTolV, U, V);
// PConfusion - use geometric tolerances in extrema / optimization.
InitialPoint(myCurve->Value(t), t, myCurve, mySurface, Precision::PConfusion(), Precision::PConfusion(), U, V);
if (Abs (Abs(U - Triple.Y()) - mySurface->UPeriod()) < Precision::Confusion())
{
// Handle period jump.
@@ -868,6 +926,33 @@ void ProjLib_CompProjectedCurve::Init()
Triple.SetZ(V);
}
// Protection from case when the whole curve lies on a seam.
if (!isSplitsComputed)
{
Standard_Boolean isUPossible = Standard_False;
if (mySurface->IsUPeriodic() &&
(Abs(Triple.Y() - mySurface->FirstUParameter() ) > Precision::PConfusion() &&
Abs(Triple.Y() - mySurface->LastUParameter() ) > Precision::PConfusion()))
{
isUPossible = Standard_True;
}
Standard_Boolean isVPossible = Standard_False;
if (mySurface->IsVPeriodic() &&
(Abs(Triple.Z() - mySurface->FirstVParameter() ) > Precision::PConfusion() &&
Abs(Triple.Z() - mySurface->LastVParameter() ) > Precision::PConfusion()))
{
isVPossible = Standard_True;
}
if (isUPossible || isVPossible)
{
// When point is good conditioned.
BuildCurveSplits(myCurve, mySurface, myTolU, myTolV, aSplits);
isSplitsComputed = Standard_True;
}
}
if((Triple.X() - mySequence->Value(myNbCurves)->Value(mySequence->Value(myNbCurves)->Length()).X()) > 1.e-10)
mySequence->Value(myNbCurves)->Append(Triple);
if (t == LastU) {t = LastU + 1; break;}//return;
@@ -881,15 +966,38 @@ void ProjLib_CompProjectedCurve::Init()
Step = WalkStep;
t += Step;
if (t > (LastU-MinStep/2) )
if (t > (LastU-MinStep/2))
{
Step =Step+LastU-t;
Step = Step + LastU - t;
t = LastU;
}
}
// We assume at least one point of cache inside of a split.
const Standard_Integer aSize = aSplits.Size();
for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
{
const Standard_Real aParam = aSplits(anIdx);
if (Abs(aParam - Triple.X() ) < Precision::PConfusion())
{
// The current point is equal to a split point.
new_part = Standard_False;
// Move split index to avoid check of the whole list.
++aSplitIdx;
break;
}
else if (aParam < t + Precision::PConfusion() )
{
// The next point crosses the split point.
t = aParam;
Step = t - prevTriple.X();
}
} // for(Standard_Integer anIdx = aSplitIdx; anIdx < aSize; ++anIdx)
}
}
}
// Sequence postproceeding
// Sequence post-proceeding.
Standard_Integer j;
// 1. Removing poor parts
@@ -1612,3 +1720,161 @@ GeomAbs_CurveType ProjLib_CompProjectedCurve::GetType() const
{
return GeomAbs_OtherCurve;
}
//=======================================================================
//function : BuildCurveSplits
//purpose :
//=======================================================================
void BuildCurveSplits(const Handle(Adaptor3d_HCurve) &theCurve,
const Handle(Adaptor3d_HSurface) &theSurface,
const Standard_Real theTolU,
const Standard_Real theTolV,
NCollection_Vector<Standard_Real> &theSplits)
{
SplitDS aDS(theCurve, theSurface, theSplits);
Extrema_ExtPS anExtPS;
anExtPS.Initialize(theSurface->Surface(),
theSurface->FirstUParameter(), theSurface->LastUParameter(),
theSurface->FirstVParameter(), theSurface->LastVParameter(),
theTolU, theTolV);
aDS.myExtPS = &anExtPS;
if (theSurface->IsUPeriodic())
{
aDS.myPeriodicDir = 0;
SplitOnDirection(aDS);
}
if (theSurface->IsVPeriodic())
{
aDS.myPeriodicDir = 1;
SplitOnDirection(aDS);
}
std::sort(aDS.mySplits.begin(), aDS.mySplits.end(), Comparator);
}
//=======================================================================
//function : SplitOnDirection
//purpose : This method compute points in the parameter space of the curve
// on which curve should be split since period jump is happen.
//=======================================================================
void SplitOnDirection(SplitDS & theSplitDS)
{
// Algorithm:
// Create 3D curve which is correspond to the periodic bound in 2d space.
// Run curve / curve extrema and run extrema point / surface to check that
// the point will be projected to the periodic bound.
// In this method assumed that the points cannot be closer to each other that 1% of the parameter space.
gp_Pnt2d aStartPnt(theSplitDS.mySurface->FirstUParameter(), theSplitDS.mySurface->FirstVParameter());
gp_Dir2d aDir(theSplitDS.myPeriodicDir, (Standard_Integer)!theSplitDS.myPeriodicDir);
theSplitDS.myPerMinParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->FirstUParameter():
theSplitDS.mySurface->FirstVParameter();
theSplitDS.myPerMaxParam = !theSplitDS.myPeriodicDir ? theSplitDS.mySurface->LastUParameter():
theSplitDS.mySurface->LastVParameter();
Standard_Real aLast2DParam = theSplitDS.myPeriodicDir ?
theSplitDS.mySurface->LastUParameter() - theSplitDS.mySurface->FirstUParameter():
theSplitDS.mySurface->LastVParameter() - theSplitDS.mySurface->FirstVParameter();
// Create line which is represent periodic border.
Handle(Geom2d_Curve) aC2GC = new Geom2d_Line(aStartPnt, aDir);
Handle(Geom2dAdaptor_HCurve) aC = new Geom2dAdaptor_HCurve(aC2GC, 0, aLast2DParam);
Adaptor3d_CurveOnSurface aCOnS(aC, theSplitDS.mySurface);
Extrema_ExtCC anExtCC;
anExtCC.SetCurve(1, aCOnS);
anExtCC.SetCurve(2, theSplitDS.myCurve->Curve());
anExtCC.SetRange(1, 0, aLast2DParam);
anExtCC.SetSingleSolutionFlag(Standard_True);
theSplitDS.myExtCC = &anExtCC;
FindSplitPoint(theSplitDS,
theSplitDS.myCurve->FirstParameter(), // Initial curve range.
theSplitDS.myCurve->LastParameter());
}
//=======================================================================
//function : FindSplitPoint
//purpose :
//=======================================================================
void FindSplitPoint(SplitDS &theSplitDS,
const Standard_Real theMinParam,
const Standard_Real theMaxParam)
{
// Make extrema copy to avoid dependencies between different levels of the recursion.
Extrema_ExtCC anExtCC(*theSplitDS.myExtCC);
anExtCC.SetRange(2, theMinParam, theMaxParam);
anExtCC.Perform();
if (anExtCC.IsDone())
{
const Standard_Integer aNbExt = anExtCC.NbExt();
for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
{
Extrema_POnCurv aPOnC1, aPOnC2;
anExtCC.Points(anIdx, aPOnC1, aPOnC2);
theSplitDS.myExtPS->Perform(aPOnC2.Value());
if (!theSplitDS.myExtPS->IsDone())
return;
// Find point with the minimal Euclidean distance to avoid
// false positive points detection.
Standard_Integer aMinIdx = -1;
Standard_Real aMinSqDist = RealLast();
const Standard_Integer aNbPext = theSplitDS.myExtPS->NbExt();
for(Standard_Integer aPIdx = 1; aPIdx <= aNbPext; ++aPIdx)
{
const Standard_Real aCurrSqDist = theSplitDS.myExtPS->SquareDistance(aPIdx);
if (aCurrSqDist < aMinSqDist)
{
aMinSqDist = aCurrSqDist;
aMinIdx = aPIdx;
}
}
// Check that is point will be projected to the periodic border.
const Extrema_POnSurf &aPOnS = theSplitDS.myExtPS->Point(aMinIdx);
Standard_Real U, V, aProjParam;
aPOnS.Parameter(U, V);
aProjParam = theSplitDS.myPeriodicDir ? V : U;
if (Abs(aProjParam - theSplitDS.myPerMinParam) < Precision::PConfusion() ||
Abs(aProjParam - theSplitDS.myPerMaxParam) < Precision::PConfusion() )
{
const Standard_Real aParam = aPOnC2.Parameter();
const Standard_Real aCFParam = theSplitDS.myCurve->FirstParameter();
const Standard_Real aCLParam = theSplitDS.myCurve->LastParameter();
if (aParam > aCFParam + Precision::PConfusion() &&
aParam < aCLParam - Precision::PConfusion() )
{
// Add only inner points.
theSplitDS.mySplits.Append(aParam);
}
const Standard_Real aDeltaCoeff = 0.01;
const Standard_Real aDelta = (theMaxParam - theMinParam +
aCLParam - aCFParam) * aDeltaCoeff;
if (aParam - aDelta > theMinParam + Precision::PConfusion())
{
FindSplitPoint(theSplitDS,
theMinParam, aParam - aDelta); // Curve parameters.
}
if (aParam + aDelta < theMaxParam - Precision::PConfusion())
{
FindSplitPoint(theSplitDS,
aParam + aDelta, theMaxParam); // Curve parameters.
}
}
} // for (Standard_Integer anIdx = 1; anIdx <= aNbExt; ++anIdx)
}
}

View File

@@ -45,12 +45,14 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
myTmp(1, myN),
myV(1, myN),
myMaxV(1, myN),
myExpandCoeff(1, myN)
myExpandCoeff(1, myN),
myCont(2)
{
Standard_Integer i;
myFunc = theFunc;
myC = theC;
myIsFindSingleSolution = Standard_False;
myZ = -1;
mySolCount = 0;
@@ -191,7 +193,7 @@ math_GlobOptMin::~math_GlobOptMin()
//purpose : Compute Global extremum point
//=======================================================================
// In this algo indexes started from 1, not from 0.
void math_GlobOptMin::Perform()
void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
{
Standard_Integer i;
@@ -221,10 +223,21 @@ void math_GlobOptMin::Perform()
myE1 = minLength * myTol;
myE2 = maxLength * myTol;
if (myC > 1.0)
myE3 = - maxLength * myTol / 4.0;
myIsFindSingleSolution = isFindSingleSolution;
if (isFindSingleSolution)
{
// Run local optimization
// if current value better than optimal.
myE3 = 0.0;
}
else
myE3 = - maxLength * myTol * myC / 4.0;
{
if (myC > 1.0)
myE3 = - maxLength * myTol / 4.0;
else
myE3 = - maxLength * myTol * myC / 4.0;
}
computeGlobalExtremum(myN);
@@ -242,7 +255,8 @@ Standard_Boolean math_GlobOptMin::computeLocalExtremum(const math_Vector& thePnt
Standard_Integer i;
//Newton method
if (dynamic_cast<math_MultipleVarFunctionWithHessian*>(myFunc))
if (myCont >= 2 &&
dynamic_cast<math_MultipleVarFunctionWithHessian*>(myFunc))
{
math_MultipleVarFunctionWithHessian* myTmp =
dynamic_cast<math_MultipleVarFunctionWithHessian*> (myFunc);
@@ -259,7 +273,8 @@ Standard_Boolean math_GlobOptMin::computeLocalExtremum(const math_Vector& thePnt
} else
// BFGS method used.
if (dynamic_cast<math_MultipleVarFunctionWithGradient*>(myFunc))
if (myCont >= 1 &&
dynamic_cast<math_MultipleVarFunctionWithGradient*>(myFunc))
{
math_MultipleVarFunctionWithGradient* myTmp =
dynamic_cast<math_MultipleVarFunctionWithGradient*> (myFunc);
@@ -404,8 +419,10 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
aStepBestValue = (isInside && (val < d))? val : d;
aStepBestPoint = (isInside && (val < d))? myTmp : myX;
// Solutions are close to each other.
if (Abs(aStepBestValue - myF) < mySameTol * 0.01)
// Solutions are close to each other
// and it is allowed to have more than one solution.
if (Abs(aStepBestValue - myF) < mySameTol * 0.01 &&
!myIsFindSingleSolution)
{
if (!isStored(aStepBestPoint))
{
@@ -417,8 +434,12 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
}
}
// New best solution.
if ((aStepBestValue - myF) * myZ > mySameTol * 0.01)
// New best solution:
// new point is out of (mySameTol * 0.01) surrounding or
// new point is better than old + single point search.
Standard_Real aFunctionalDelta = (aStepBestValue - myF) * myZ;
if (aFunctionalDelta > mySameTol * 0.01 ||
(aFunctionalDelta > 0.0 && myIsFindSingleSolution))
{
mySolCount = 0;
myF = aStepBestValue;

View File

@@ -53,7 +53,8 @@ public:
Standard_EXPORT ~math_GlobOptMin();
Standard_EXPORT void Perform();
//! @param isFindSingleSolution - defines whether to find single solution or all solutions.
Standard_EXPORT void Perform(const Standard_Boolean isFindSingleSolution = Standard_False);
//! Get best functional value.
Standard_EXPORT Standard_Real GetF();
@@ -66,6 +67,12 @@ public:
Standard_Boolean isDone();
//! Get continuity of local borders splits.
inline Standard_Integer GetContinuity() const { return myCont; }
//! Set continuity of local borders splits.
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
private:
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
@@ -99,6 +106,7 @@ private:
// function values |val1 - val2| * 0.01 < mySameTol is equal,
// default value is 1.0e-7.
Standard_Real myC; //Lipschitz constant, default 9
Standard_Boolean myIsFindSingleSolution; // Default value is false.
// Output.
Standard_Boolean myDone;
@@ -117,6 +125,9 @@ private:
math_Vector myMaxV; // Max Steps array.
math_Vector myExpandCoeff; // Define expand coefficient between neighboring indiced dimensions.
// Continuity of local borders.
Standard_Integer myCont;
Standard_Real myF; // Current value of Global optimum.
};

View File

@@ -0,0 +1,20 @@
puts "================"
puts "0027133"
puts "================"
puts ""
##############################################################
# Incorrect result of the normal projection algorithm
# Oscillation at the edge end
##############################################################
restore [locate_data_file bug27133_aE.brep] aE
restore [locate_data_file bug27133_aF.brep] aF
nproject result aE aF
# Visual check.
donly result
smallview
fit
display aE aF
xwd ${imagedir}/${test_image}.png

View File

@@ -0,0 +1,20 @@
puts "================"
puts "0027299"
puts "================"
puts ""
##############################################################
# Incorrect result of the normal projection algorithm
# Exception during the exectuion
##############################################################
restore [locate_data_file bug27299_1.brep] aShape
explode aShape
nproject result aShape_1 aShape_2
# Visual check.
donly result
smallview
fit
display aShape_2
xwd ${imagedir}/${test_image}.png

View File

@@ -0,0 +1,23 @@
puts "================"
puts "0027299"
puts "================"
puts ""
##############################################################
# Incorrect result of the normal projection algorithm
# Exception during the exectuion
##############################################################
restore [locate_data_file bug27299_1.brep] aShape
explode aShape
# To make task non-symmetry.
ttranslate aShape_1 0 0 135.123
nproject result aShape_1 aShape_2
# Visual check.
donly result
smallview
fit
display aShape_2
xwd ${imagedir}/${test_image}.png

View File

@@ -0,0 +1,20 @@
puts "================"
puts "0027299"
puts "================"
puts ""
##############################################################
# Incorrect result of the normal projection algorithm
# Exception during the exectuion
##############################################################
restore [locate_data_file bug27299_2.brep] aShape
explode aShape
nproject result aShape_1 aShape_2
# Visual check.
donly result
smallview
fit
display aShape_2
xwd ${imagedir}/${test_image}.png

View File

@@ -5,8 +5,14 @@ puts "=================================="
puts "Select3D_ISensitivePointSet: Crash when clearing selections (only with TBB)"
puts "=================================="
restore [locate_data_file crash_compound.brep]
restore [locate_data_file bug26146_crash_compound.brep] crash_compound
vinit
vdisplay crash_compound
vfit
vdump ${imagedir}/${casename}_1.png
vremove crash_compound ;# crashed here
vdump ${imagedir}/${casename}_2.png