1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

Compare commits

..

102 Commits

Author SHA1 Message Date
sshutina
a516227511 0031354: Visualization - Dump improvement for V3d, Graphic3d, Aspect
- do not dump light in view as it's dumped in the viewer
2020-09-04 18:14:24 +03:00
mzernova
f0da497005 0031733: Visualization, Prs3d_ToolQuadric - create indexed arrays
Prs3d_ToolQuadric has been modified to return an indexed triangulation.
Added methods Prs3d_ToolQuadric::CreateTriangulation() and Prs3d_ToolQuadric::CreateTriangulation()
as more straightforward API returning generated triangulation.
Added missing const to constant methods.

Confusing method Prs3d_ToolQuadric::FillArray() filling both
Graphic3d_ArrayOfTriangles and Poly_Triangulation at once has been marked deprecated.

V3d_Trihedron, AIS_ViewCube and AIS_Manipulator
now set Closed flag to groups with shaded sphere and arrows.
2020-09-04 18:14:23 +03:00
emv
ba8175dd5d 0027973: Result of Common operation contains a face with an open wire
Integrating test case only as the problem is not reproduced anymore.
2020-09-04 18:14:22 +03:00
emv
129d6e8cc4 0026534: Boolean Cut returns empty result
Integrating test case only as the problem is not reproduced anymore.
2020-09-04 18:14:21 +03:00
mpv
59af6f852a 0029838: Application Framework - TObj.msg defines unused messages 2020-09-04 18:14:21 +03:00
mpv
8f34d47e21 0031340: LDOM fails to read XML file starting with BOM
Added support of BOM (byte order mask) characters at the start of an XML stream or file and provided information about found BOM in LDOMParser.
2020-09-04 18:14:20 +03:00
emv
b3df3dcd82 0026452: Infinite loop in Edge/Edge intersection.
Integrating test case only as the problem is not reproduced anymore.
2020-09-03 20:02:44 +03:00
akaftasev
992876e98f 0030795: BRepOffsetAPI_MakePipeShell: hangs on the attached model and produces infinite rails
Added new condition to catch bad shape
2020-09-03 20:00:47 +03:00
kgv
eca6e7c547 0031744: Configuration - add batch files to build OCCT for Android target
Added script adm/scripts/android_build.bat and template android_custom.bat.template
intended for automating building routines targeting Android platform.

OpenCASCADEConfig.cmake has been extended to detect "$INSTALL_DIR/libs/$CMAKE_ANDROID_ARCH_ABI/cmake/opencascade" location.
2020-09-03 19:56:25 +03:00
msv
a75f5cdd86 0031742: Configuration - Add batch files for cmake build
The scripts cmake_gen.bat and cmake_gen.sh have been added to facilitate batch building of OCCT correspondingly on Windows and Linux platforms.

The files build.bat and install.bat are copied to the build directory by cmake configure procedure to enable batch building and installation on Windows platform.
2020-09-02 19:58:07 +03:00
osa
b3da9c3ede 0031737: Configuration - Add batch files to build OCCT with Emscripten
The scripts occ_build_wasm.bat and occ_build_wasm.sh have been added
to simplify batch building of OCCT with Emscripten (Web Assembly packages) correspondingly on Windows and Linux platforms.
These scripts are configurable through calling files with custom environment wasm_custom_env.bat and wasm_custom_env.sh.
2020-09-02 19:51:56 +03:00
mpv
17a5b56767 0031320: TObj - method TObj_Object::GetFatherObject() is not protected against deleted object 2020-09-02 19:42:39 +03:00
kgv
f5e758d239 0031728: Visualization, Font_FontMgr - provide function to register fallback fonts in application level
Added public method Font_FontMgr::AddFontAlias() for registering custom aliases and fallback fonts.
vfont command has been extended with arguments -aliases, -addAlias, -removeAlias, -clearAlias and -clearAliases.
2020-09-02 19:38:48 +03:00
ifv
cdddd079cc 0026088: Modeling Algorithms - Exception in pipe algorithm
GeomFill_Sweep.cxx: treatment KPart for sphere is improved
bug26088: test case is corrected - TODO is removed
2020-09-02 19:37:14 +03:00
abv
fba34cf8ba 0031740: Configuration - recover support of Yacc and Lex generation
Scripts adm/cmake/bison.cmake and adm/cmake/flex.cmake are refactored to enable actual search for bison and flex.
Apart of standard locations, also sub-folders of 3RDPARTY_DIR whose names contain "bison" and "flex", respectively, are added to search.
Cache variables 3RDPARTY_BISON_EXECUTABLE and 3RDPARTY_FLEX_EXECUTABLE are removed to avoid confusion (they duplicated similar variables without "3RDPARTY_" prefix).

Lex and Yacc files are corrected to match changes made manually in generated files during last years:
- StepFile/step.yacc: correction missing from #22972
- StepFile/step.lex: corrected for compilation (broken by #31060)
- MSVC-specific code is synchronized between StepFile/step.lex and ExprIntrp/ExprIntrp.lex
- Old commented code and duplicate code blocks removed

Commands for execution of Flex and Bison tools in CMake scripts are tweaked to avoid embedding line numbers (with local paths) in generated files.

Scanners and parsers are regenerated from updated source files with modified options.
Note that lex.ExprIntrp.c is regenerated with multiple differences because option -f (fast scanner) was used for generation of previous version (by WOK).
2020-09-02 19:25:24 +03:00
kgv
dda9303c69 0031743: Draw Harness - fix misprint in Draw_Interpretor::SetToColorize() 2020-09-02 18:54:31 +03:00
kgv
7d47ebdbcd 0030617: Coding - using reinterpret_cast instead of static_cast for downcast
Several reinterpret_cast have been replaced by static_cast when applicable.
2020-09-02 18:48:56 +03:00
kgv
d6c489212b 0028990: Coding Rules - deprecate redundant class Prs3d_Root
Prs3d_Root usage has been replaced by direct calls to Prs3d_Presentation methods.
2020-08-30 19:04:53 +03:00
kgv
68a2329305 0031369: Foundation Classes, Standard_ReadBuffer - access violation on second ::ReadChunk() call after read failure
Standard_ReadBuffer::readRawDataChunk() - do not increment NULL pointer and return invalid address.
2020-08-28 18:13:36 +03:00
kgv
90bc1adb77 0031086: Coding Rules - STEPCAFControl_Reader has virtual functions, but no virtual destructor
Added missing virtual destructor.
2020-08-28 18:11:58 +03:00
kgv
af7fa1438e 0031706: Data Exchange, RWGltf_CafReader - imports model with incorrect transformation
RWGltf_GltfJsonParser::bindNamedShape() - shape location is now multiplied not just overridden.
2020-08-28 18:00:22 +03:00
emv
6f04cbb1fb 0031734: Modeling Algorithms - Incorrect result of offset operation in mode "Complete" join type "Intersection"
BRepOffset_MakeOffset_1::IntersectFaces - Build intersection pairs for rebuilding process basing on the intersection results and removed faces.
2020-08-28 17:53:40 +03:00
kgv
d99f0355e3 0031731: Draw Harness - colorize errors and exception messages
Draw_Interpretor, CommandCmd() - catched exceptions and messages put into Tcl string result
before throwing a Tcl exception (return 1) are now print in intense red (using Message::SendFail()).
Duplication of exception message in std::cout and Tcl output has been removed.

Draw Harness plugins have been updated to use either Message::SendFail() or theDI instead of std::cout/std::cerr
for printing colored error message before throwing a Tcl exception.
2020-08-25 09:44:15 +03:00
kgv
1d99a2baaa 0031720: Visualization, Font_FontMgr - register one more CJK fallback font available on newer Android devices 2020-08-22 12:13:14 +03:00
kgv
4c99a1f80a 0031727: Samples, JNI Sample - JNI DETECTED ERROR on calling OcctJniRenderer.postMessage()
Use CallVoidMethod() instead of CallObjectMethod().
2020-08-22 12:13:13 +03:00
osa
fe3dbc63fc 0031715: Visualization - add access to proxy shader program 2020-08-22 12:13:12 +03:00
kgv
8e16477b50 0031582: Configuration, CMake - OCCT fails to build with VTK 9.0
Handle "VTK::" prefix instead of "vtk" used by previous VTK versions for targets.
Corrected unexpected location of endif() and broken indentation.
Obsolete $VTK_USE_FILE is no more included (basing on VTK version check).

Standard_WarningsDisable.hxx/Standard_WarningsRestore.hxx pair is now used to suppress VTK warnings instead of partial disabling.
2020-08-22 12:13:11 +03:00
ifv
ce9aefc8aa 0026568: Modeling Algorithms - Exception when creating pipe
BRepFill_Pipe.cxx:  protection against wrong shape type is added
GeomFill_Sweep.cxx:  protection against using 0-vector to create Direction is added

bug26568: test script is corrected: "TODO ..." is removed
2020-08-22 12:13:10 +03:00
age
f3269ef5f1 0031716: Visualization, Select3D_SensitiveSet::matches() - avoid building BVH in case of full overlapping by the volume 2020-08-22 12:13:10 +03:00
kgv
63e5cfcaab 0031714: Draw Harness - print command name with intense within help output
Added command "dputs" similar to "puts" but with extra arguments modifying text color/intensity.
Command "help" now prints the name of command with intense style.
2020-08-22 12:13:09 +03:00
mpv
0fb210edbf 0031681: Foundation Classes - Shared Libraries Cannot Be Loaded
Standard_ErrorHandler now accesses global mutex via proxy function
instead of a global variable to avoid initialization order issues.
2020-08-22 12:13:08 +03:00
kgv
4254e74196 0031324: Data Exchange - Cannot read BinOcaf document with colour
BinMDataXtd_PresentationDriver and XmlMDataXtd_PresentationDriver have been corrected
to convert old (OCCT 7.4.0) Quantity_NameOfColor enumeration values to new ones.
2020-08-22 12:13:08 +03:00
kgv
12e6d49993 0031713: Draw Harness, IVtkDraw - add commands ivtksetcolor, ivtkaxo, ivtkclose, ivtksettransparency
Added missing NULL checks before accessing GetInteractor().
Errors are now reported using Message::SendFail().
Not found actor names are now reported as syntax error instead of silently skipping them.

ivtkinit now accepts aguments -srgb and -msaa for overriding defaults.
Default MSAA settings have been changed from 8 to 0 to match vinit behavior.
Added command ivtkclose closing a Vtk view.

Added commands ivtkaxo, ivtkfront, ivtkback, ivtkleft, ivtkright,
ivtktop and ivtkbottom assigning view projection similar to sonamed commands in ViewerTest.

Added commands ivtksetcolor and ivtksettransparency assigning
color properties to shaded presentation.
2020-08-14 13:30:05 +03:00
kgv
dae2a92241 0031709: Draw Harness - move methods ViewerTest::ParseOnOff()/ParseColor() to package Draw
Methods ParseOnOff()/ParseColor() have been moved from package ViewerTest to Draw.
Command "vlight -color" now accepts RGB values, not only name.
Implementation of pload command has been cleaned up.
2020-08-14 13:30:04 +03:00
kgv
76fada6839 0031702: Visualization, TKOpenGl - hatching interior is ignored in second View within the Viewer
Current state variables have been moved out from OpenGl_LineAttributes to OpenGl_Context.
2020-08-14 12:46:34 +03:00
szy
5980a9fb23 0031049: OCAF - Error message during Ascii file (std) opening. 2020-08-14 12:44:54 +03:00
ifv
1bf23e5bb6 0031697: Foundation Classes - Expr_GeneralExpression::Derivative does not seem to work (691 & 720)
Expr_NamedUnknown.cxx - wrong comparing of named unknown is fixed

QABugs_20.cxx - new QAcommand is created
QABugs_11.cxx - wrong command is corrected
bug902 - wrong test is corrected
bug31697 - new test is added
2020-08-07 18:49:38 +03:00
kgv
e0b2443737 0031698: Visualization, Graphic3d_Aspects - provide stipple line factor parameter
Added Graphic3d_Aspects::LineStippleFactor() property.
Adjusted help for vaspects command suggesting a shorter syntax.
2020-08-07 15:17:53 +03:00
kgv
148820b2a9 0031689: Coding Rules - including STEPCAFControl_Writer.hxx produces compilation error
Added missing #include <NCollection_Vector.hxx>.
2020-08-07 15:08:55 +03:00
ifv
9c4214b416 0030944: [Regression to 7.0.0] Modeling Algorithms - Intersection curves between pair of faces are not found
IntPatch_ImpPrmIntersection.cxx: treatment of coinciding lines is improved
IntWalk_IWalking_1.gxx: bug correction
bug30944 : test case added
2020-08-03 10:52:59 +03:00
kgv
4c7a3faef5 0031687: Draw Harness, ViewerTest - extend command vrenderparams with option updating viewer defaults
SelectMgr_ViewerSelector3d::ClearSensitive() - fixed crash on removing presentations (via command vsensera).

Added new parameters -sync and -reset to vrenderparams command synchronizing parameters across Views.
Parameters -raster and -rayTrace now accept optional on|off values.
Improved command description.
2020-07-24 19:20:33 +03:00
kgv
9f013fee98 0031682: Visualization - Prs3d_ShadingAspect::SetTransparency() has no effect with Graphic3d_TOSM_UNLIT shading model
Prs3d_ShadingAspect::SetTransparency() now sets transparency also to interior color.
AIS_RubberBand now uses Graphic3d_TOSM_UNLIT.
2020-07-23 16:14:57 +03:00
akaftasev
6d8f9f4a49 0031353: TDocStd_Application does not have api to set progress indicator
Add support of Message_ProgressIndicator in BinTools classes.

Add support of Message_ProgressIndicator with possibility of user break in methods of opening and saving TDocStd_Application.

Add tests of ProgressIndicator in TDocStd_Applacation.
2020-07-23 16:08:23 +03:00
Benjamin Bihler
d27293d9bf 0031677: Configuration - Allow Optimization Level O3 When Compiling With G++
Removed suppression of optimization level O3 with using Mingw64.
2020-07-23 16:08:22 +03:00
mkrylova
b011420f28 0031618: Data Exchange, RWGltf_CafWriter - exporting some models produces glTF files not passing validation
Added a check for non-empty mesh and new warning
that notifies about skipping an empty node
2020-07-23 16:08:22 +03:00
mkrylova
d533dafb56 0031035: Coding - uninitialized class fields reported by Visual Studio Code Analysis
Added initialization of fields that had not initialization
Added default constructors to classes without constructors
2020-07-23 16:08:20 +03:00
dpasukhi
078f916446 0028345: Data Exchange - Reading STEP model using STEPCAF crashes
# Add test to verify import
* Note: Each layer contains a valid name, but only one contains a link to the shape, so .step file contains only one valid Layer.
2020-07-23 16:08:19 +03:00
jgv
c28d4a89d4 0031617: Export STEP in nonmanifold mode corrupts the shape
Modify method XSControl_TransferWriter::TransferWriteShape: add removal of locations before writing the shape.
2020-07-23 16:08:19 +03:00
Benjamin Bihler
6531dfeacd 0031680: Configuration - Compilation Fails With G++ 10.1, LD 2.34 and Link-Time Optimization
Added a non-inline empty virtual destructor to LDOM_OSStream to force vtable generation in one
translation unit only.
2020-07-23 16:08:18 +03:00
kgv
dbc8becff4 0031673: Draw Harness, ViewerTest - command vlocation applies transformation in opposite order
gp_Trsf::SetRotationPart() - added method replacing rotation matrix without reseting other components,
similar to existing SetTraslationPart() and SetScaleFactor().

Transformation multiplication order has been fixed
for vlocation arguments -rotate, -translate, -mirror and -scale.
Added -prerotate, -pretranslate, -premirror and -prescale options following previous behavior.

vlocation -setRotation now uses new method gp_Trsf::SetRotationPart()
for consistency with methods -setLocation and -setScale.
2020-07-23 16:08:17 +03:00
kgv
99ee8f1a83 0031671: Coding Rules - eliminate warnings issued by clang 11
Fixed -Wdeprecated-copy warning by removing trivial operator=.
Fixed formatting issues in places producing -Wmisleading-indentation warning.
2020-07-23 16:08:17 +03:00
kgv
7465bfa65e 0031668: Visualization - WebGL sample doesn't work on Emscripten 1.39
OpenGl_Context now skips loading functions related to mapping buffer,
which are required by OpenGL ES 3.0 specs but not provided by WebGL 2.0.
Message_PrinterSystemLog does not use a broken emscripten_log() anymore, which corrupted UNICODE strings.

WasmOcctView::initWindow() - callbacks now set using EMSCRIPTEN_EVENT_TARGET_WINDOW
instead of 0 used by older Emscripten API.

Mouse callbacks now track canvas element and use
EmscriptenMouseEvent::targetX/targetY instead of ::canvasX/canvasY
as the latter was broken.

Added emscripten_set_main_loop() setup to shut up eglSwapInterval() error message.
Fixed missing \0 at the end of string converted by toUtf8Array().
2020-07-22 19:24:38 +03:00
azv
b939a13923 0031016: Projection of an ellipse is a B-spline in some cases
Improve projection of ellipse and circle on a plane in case of the same parametrization of the original curve and the projected one is not necessary. Now the projection is a canonical curve instead of B-spline.
2020-07-20 16:57:29 +03:00
emv
41ccce129d 0031662: Modeling Algorithms - Incomplete result of section operation
Integrating test case for the issue as the problem is not reproduced.
2020-07-11 11:35:18 +03:00
emv
529444be92 0031655: Modeling Algorithms - Invalid result of General Fuse operation
IntTools_BeanFaceIntersector: Perform exact intersection range search in case there are few intersection points.
2020-07-11 11:26:31 +03:00
mkrylova
210914d562 0030277: Coding Rules - avoid extremely long class names in STEP packages
Has changed the names of classes that are too long
and fixed names in files where these classes are used
2020-07-11 11:26:30 +03:00
akaftasev
3e85dfc5e5 0026555: Modeling Algorithms - Exception-safe status reporting in BRepOffset_MakeOffset
Set safe exit status for:
Standard_NullObject exception,
Standard_NullObject: BRep_Tool:: TopoDS_Vertex hasn't gp_Pnt,
BRep_Tool: no parameter on edge,
BRepOffset_MakeOffset::TrimEdge no projection
2020-07-11 11:26:29 +03:00
kgv
453103d191 0031637: Documentation - minor clean-up of User Guide for Visualization module
Fixed a couple of misprints, usage of changed classes / methods.
Added references to other supported 3d displays.
Added reference to PBR metallic-roughness material properties in addition to Common.

Cosmetics: removed numerous trailing spaces, double spaces.
Added missing {.cpp} language qualifier to code quotations.
Sentences within paragraphs have been split into multiple lines in source file.
2020-07-10 15:22:15 +03:00
akaftasev
3f54cc41a8 0027909: Modeling Algorithms - Exception during offset computation
Added function ChFi3d::IsTangentFaces for more accurate definition of connection type.
Test cases have been changed according to the current behavior.
2020-07-08 16:03:42 +03:00
ifv
e8e8b273bb 0029839: Modeling Algorithms - Unexpected Circle to BSpline surface extrema behavior
Extrema_ExtCS.cxx: treatment of small line segments is added;
Extrema_GenExtCS.cxx: treatment of particular cases curve-quadric and conic-surface are added
Extrema_GlobOptFuncCQuadric, Extrema_GlobOptFuncConicS: new distance functions for particular cases are added

BOPAlgo_PaveFiller_5.cxx : treatment of large common parts edge-face is improved
ElSLib.cxx : method TorusParameters(...) is modified to avoid divide by zero
math_PSOParticlesPool.cxx : initialization of array is added
2020-07-08 16:03:10 +03:00
emv
2a6b7c2306 0031604: Wrong result of Boolean Operation Cut
BOPAlgo_WireSplitter::Path - continue building the next loop with the last edge not included into found loop.
2020-07-08 16:03:10 +03:00
kgv
cdc54fb017 0031649: Visualization, TKOpenGL - broken skybox in VR output
OpenGl_ShaderManager::GetBgCubeMapProgram() and OpenGl_BackgroundArray::createCubeMapArray()
have been corrected to draw cube in straightforward way instead of a screen-quad.

Graphic3d_Camera::SetCustomStereoProjection() now recieves decomposed projection + head-to-eye matrices.
Added method Graphic3d_Camera::StereoProjection() returning projection matrix without translation part.
OpenGl_BackgroundArray::Render() now applies stereoscopic projection matrix in case of VR output,
but keeps using mono projection matrix in case of common 3D displays.
2020-07-08 15:53:32 +03:00
kgv
6d1d35e4b8 0031652: Visualization - crash on highlighting HLR Computed presentation displayed with Shaded display mode
PrsMgr_PresentationManager::displayImmediate() now uses proper ZLayer for a shadow presentation
of computed presentation (fixes dynamic highlighting on mouse move).
Graphic3d_CView::SetComputedMode() - added invalidation of bounding box on turning OFF compute mode.
AIS_ViewController::contextLazyMoveTo() now ignores MoveTo() while rotating
view with temporary disabled compute mode (leading to undefined results and crashes).

Graphic3d_Structure::Graphic3d_Structure() - do not copy Graphic3d_TOS_COMPUTED visual
from linked structure, as Graphic3d_CView::SetComputedMode() does not compute such structures.
2020-07-08 15:53:31 +03:00
kgv
72e9e86732 0031650: Visualization - invalid picking of object with local transformation and per-object clipping plane
SelectMgr_SelectingVolumeManager::SetViewClipping() now updates clipping range
using picking ray in world coordinates, as clipping planes are always defined in world space.
2020-07-06 18:31:14 +03:00
mzernova
3e9c1d1e5a 0029993: Visualization - AIS_TextLabel computes selection primitive only for attachment point
The text label is selected as a rectangle (adds a sensitive object - Select3D_SensitiveFace).
The bounding box has been resized to fit the sensitive rectangle.
Transform persistent has been added to AIS_TextLabel to correctly position the sensitive rectangle.
The findConnectedObject function has also been changed to correctly set transform persistence.
2020-07-06 18:31:13 +03:00
kgv
8f5760bc16 0031588: Visualization, TKOpenGl - display immediate updates in brackets within frame stats 2020-07-03 17:34:54 +03:00
kgv
6bd5d0a26d 0031647: Samples - do not enable floating point exceptions in MFC samples 2020-07-03 11:03:09 +03:00
emv
bea1065693 0031639: Modeling Algorithms - Offset algorithm incorrectly fills one of the holes
Check if unclassified edge may be added as neutral (invalid in one split, valid in other) by checking the SD faces in which the edge was classified.
2020-07-03 11:03:08 +03:00
kgv
8b742dc132 0031635: Documentation - minor clean-up of User Guide for Foundation Classes module
Changes in Technical Overview:
Corrected reference of "Mesh" as dedicated module, which is actually a Toolkit within "Modeling Algorithms" module.
Reduced references to "Configurable optimized memory manager",
which has not been updated for a long time and no more encouraged to be used as replacement of standard memory allocator of C library.
VRML/STL converters have been moved from section Mesh to Data Exchange.
Visualization chapter has been slightly reworded and reordered;
added references to PBR metallic-roughness material model.
Data Exchange chapter - reworded sentence "The exchanges run smoothly regardless of the quality of external data..."
to "This module handles various problems of interoperability between CAD systems...";
added AP242 to the list of STEP capabilities.

Changes in User Guide for Foundation Classes:
Removed references to "physical quantities" in package Quanity, deprecated since #0028799 and not actually used anywhere.
Adjusted description of string classes to avoid duplicated statements.
Collections section has been refactored to replace obsolete TCollection references by NCollection.
Remove obsolete statement "furthermore *catch()* statement does not allow passing exception object as argument".

Fixed broken nested enumeration in a couple of places.
Fixed usage of inappropriate quote symbols in code snippets.
Fixed references to non-existing classes like ZeroDivide instead of Standard_DivideByZero.
Removed suggested usage of Standard_Failure::Raise() instead of "throw Standard_Failure()" following #0026937.
Code snippets now suggest "catch(const Standard_Failure& )" instead of "catch(Standard_Failure )" (#0026937).
Fixed broken code snippets with lost symbols like <<.

Cosmetics: removed numerous trailing spaces, double spaces.
Added missing {.cpp} language qualifier to code quotations.
Sentences within paragraphs have been split into multiple lines in source file.
2020-07-03 11:03:07 +03:00
kgv
dad7fede39 0031642: Visualization - crash in Graphic3d_Structure::SetVisual() on redisplaying edge in AIS_Shape
Fixed unexpected calling of PrsMgr_Presentation::Erase() from Graphic3d_Structure::SetVisual().
2020-07-03 11:03:07 +03:00
kgv
7e251883e1 0031643: Visualization - Graphic3d_Camera::Copy() raises exception on copying ZNear < 0.0
Graphic3d_Camera::CopyMappingData() now copies ProjectionType at first.
2020-07-03 11:03:06 +03:00
kgv
d6fbb2aba4 0031632: Draw Harness - handle 3d mouse Raw HID input on Windows
WNT_HIDSpaceMouse - added auxiliary class for processing 3d mouse Raw HID input.
AIS_ViewController::Update3dMouse() - added default processor for 3d mouse input event.
ViewerTest now redirects WM_INPUT to AIS_ViewController::Update3dMouse().
Aspect_VKey enumeration has been extended by 3D view buttons.
WNT_Window::RegisterRawInputDevices() has beend added as a small wrapper
over WinAPI RegisterRawInputDevices() for common HID input devices.

AIS_ViewCube now stores animation duration within AIS_AnimationCamera instead of dedicated duplicating class property.
2020-07-03 11:03:05 +03:00
ifv
79e9ba31d2 0031616: Modeling algorithm - Section between two shells returns wire with gaps (720)
Adaptor3d_TopolTool.cxx, IntTools_TopolTool.cxx:

Anisotropy of BSpline surface along U and V direction is taken in account for calculation of numbers of sample points;

bug31616: test case added
2020-07-01 17:50:56 +03:00
mzernova
832a6f4412 0031279: Visualization, TKOpenGl - environment background is misplaced within Ray-Tracing
Fixed problem with misplacing background texture in Ray-Tracing.

An environment background is always drawn using a perspective matrix.
2020-06-26 15:07:40 +03:00
iko
4e8371cb1f 0031370: Documentation - provide information about PBR implementation
PBR documentation (math) has been added as developer guide.
2020-06-25 19:25:52 +03:00
kgv
d22962e4e0 0031621: Draw Harness - handle navigation keys
AIS_ViewController::handleNavigationKeys() - added an interface for processing navigation keys.
ViewerTest_EventManager now maps WASD+Arrows navigation keys.
Axonometric view hotkey A has been replaced by Backspace.
Shaded/Wireframe are now mapped with hotkeys W+Ctrl/S+Ctrl.
Hotkey D (reset view to undefined default state) has been removed.
2020-06-25 19:24:58 +03:00
mzernova
2ff1d580f1 0031412: Visualization - entity behind is returned as topmost at the edges
SelectMgr_RectangularFrustum now handles degenerated triangle as a segment or a point.
Triangle orthogonal to view direction is now handled as a segment.
myViewRayDir field is now defined as normalized vector to avoid confusing math.

For the case when the segment and myViewRayDir are almost parallel,
the segmentSegmentDistance function may set the depth to zero, although this will not
be the correct value, therefore it is better to pass a segment that will not
be parallel to myViewRayDir as an argument to the function.

vpoint command has been extended by arguments -2d and -nosel
for displaying picking mouse position as on-screen point in pixels.
Fixed double-binding-map error in case of displaying point with already used name.

bugs/vis/bug31412: test case added.
2020-06-25 19:09:04 +03:00
kgv
64f128c111 0031622: Samples - update MFC Animation sample with proper frame updates
Animation sample has been updated to:
- use reuse AIS_ViewController for general viewer manipulations;
- update animation using elapsed time;
- do not block camera manipilations;
- get rid of redundant controls.
2020-06-25 19:09:03 +03:00
kgv
08b7a39f75 0030939: Draw Harness, ViewerTest - AIS_ViewCube animation does not work on Linux and macOS
ViewerTest_EventManager::handleViewRedraw() now starts ViewerTest_ContinuousRedrawer
working thread to workaround Tcl event loop invalidation issue.
2020-06-25 19:09:02 +03:00
kgv
ceddb5ca9a 0031620: Samples - update Android JNI sample to use AIS_ViewController
Multi-touch input is now redirected to AIS_ViewController.
GLSurfaceView.RENDERMODE_WHEN_DIRTY is now used by 3D Viewer.
AIS_ViewCube is now displayed instead of trihedron.
2020-06-22 11:53:57 +03:00
kgv
bbe85f2b40 0031619: Samples - update JNI sample to use Android Studio
Project structure and project files have been updated to use Android Studio 4.0, gradle and CMake.
Redundant OcctJni_Window has been replaced by Aspect_NeutralWindow.
SD Card permissions are not dynamically requested for compatibility with Android API level 26+.
2020-06-22 09:19:06 +03:00
mpv
ef779ae0da 0031075: Application Framework - reading STEP file into TDocStd_Document leads to memory leaks
In the TDocStd_Owner keep simple pointer to TDocStd_Document instead of Handle. This causes automatic destruction of the document without explicit call of Close.
In Standard_Type added a static variable theType that initializes theRegistry map earlier. Otherwise exit from Draw interpreter crashes in many test-cases because not-closed transactions are aborted on document handle release from Draw theVariables map.

Corrected method for test OCC159bug due to the fact that Owner does not add a ref count now
Close the document in the end of bugs xde bug22776 otherwise double remove of visualization objects (on library exit and on visualization attributes remove from the document) causes crash on exit from draw
Added a new test bugs caf bug31075
2020-06-19 19:08:46 +03:00
ifv
003c363cf4 0031615: Coding - New warnings after integration fix for 0031552 2020-06-18 20:00:39 +03:00
ifv
dccf867561 0031602: [Regression vs 7.0.0] Modeling Algorithms - Invalid result of boolean operation
IntPatch/IntPatch_ImpImpIntersection_4.gxx : adding tolerance in comparison surface range and surface period
bug31602: test case added
2020-06-18 19:59:49 +03:00
ifv
5d904c3454 0031611: Modeling Algorithms - BRepOffsetAPI_NormalProjection - can't build wire in 720 but it was possible in 691
BRepLib_MakeWire.cxx:
in method BRepLib_BndBoxVertexSelector::Accept() accepting tolerance criterion is changed

BRepLib_MakeWire.hxx:
correctionof class field name

bug31611: test case added
2020-06-18 19:57:46 +03:00
mzernova
9a31c01064 0030922: Visualization - OpenGl_Text wrong local transformation if text has not own attach point
bugs/vis/bug30922: test case added
2020-06-16 14:29:41 +03:00
kgv
32b723d5c6 0031606: Configuration, CMake - build fails with Android NDK + CLang compiler + MinGW Makefiles
CLang is now checked before MINGW within occt_defs_flags.cmake.
Added "-Wl,-s" linker flag when using CLang for stripping symbols consistently to GCC builds.
2020-06-13 17:17:53 +03:00
jgv
36cc58f85d 0031485: Data Exchange - Export STEP in nonmanifold mode looses all faces except one
Small correction in STEPControl_ActorWrite::TransferCompound - take into account the case when a subshape has type TopAbs_FACE.
2020-06-10 20:41:40 +03:00
emv
09543c2d99 0031587: Modeling Data - add BRepTools::RemoveInternals() removing internal sub-shapes from the shape 2020-06-09 20:01:06 +03:00
kgv
a7400019ce 0031599: Visualization - when using AIS_Manipulator, the scene rotates at the same time
AIS_ViewController::HandleViewEvents() - reverted order of handleMoveTo() and handleCameraActions() events.
2020-06-09 19:53:08 +03:00
akaftasev
1fc1a207b0 0031504: Data Exchange - Wrong output of progress indicator when writing to stl
Added new condition for first indicated element at Draw_ProgressIndicator::Show(),
because it’s more logical that at start progress starts at 0
Changed usage of Next() to Next(step) for increment progress to IND_THRESHOLD in RWStl::writeASCII() and RWStl::writeBinary()
Changed condition for continuation of writing and add interrupt to this function
Added possibility to use Progress indicator in writestl
Changed paremeter in constructor Message_ProgressSentry aPS() IND_THRESHOLD to 1
Changed test
2020-06-09 19:53:08 +03:00
kgv
59ec2ccec9 0031596: Visualization, OpenGl_Context - take GL_OES_texture_float extension into account for arbTexFloat flag 2020-06-09 19:53:07 +03:00
kgv
d4cefcc0da 0031477: Visualization, TKOpenGl - fetch/wrap getBufferSubData() function from WebGL 2.0
Added OpenGl_Context::GetBufferSubData() implementing getBufferSubData() based on capabilities of various APIs.
Added OpenGl_VertexBuffer::GetSubData() similar to OpenGl_VertexBuffer::SubData().
2020-05-29 19:40:57 +03:00
kgv
872f98d9ef 0031583: Visualization, OpenGl_Context - load OpenGL ES 3.0 functions
OpenGl_Context now retrieves complete functions sets of OpenGL ES 3.0, 3.1 and 3.2.
2020-05-28 10:24:35 +03:00
vsv
2ba1172b73 0031573: Visualization - Do not show seam edge for shading presentation with boundary edges in VTK 2020-05-28 10:22:54 +03:00
kgv
e4e3254a35 0031580: Visualization, TKOpenGl - cubemap initialization error on OpenGL ES 2.0
OpenGl_Texture::InitCubeMap() now avoids using sized internal format in case of GLES2.
OpenGl_Sampler::applySamplerParams() now checks OpenGL version before setting GL_TEXTURE_WRAP_R.
2020-05-28 10:21:03 +03:00
mkrylova
04c5a696e4 0029917: Foundation Classes - OSD_FileNode AccessMoment and CreationMoment return the same date on Windows
fAccess in CreationMoment() function for Windows has been modified from TRUE to FALSE
2020-05-28 10:18:56 +03:00
ika
ae58f70718 0031568: Data Exchange - invalid model produced after STEP import
Add protection against reference to reference in STEP import.
2020-05-22 19:32:21 +03:00
kgv
faff37677c 0031478: Visualization, TKOpenGl - allow uploading Cubemap in compressed DDS format when supported by GPU
Graphic3d_TextureRoot::GetCompressedImage() - added new interface for fetching compressed texture image.
Default implementation detects DDS image files using Image_DDSParser parser.

Graphic3d_TextureRoot::GetImage() has been extended with new parameter
- the list of image formats supported by OpenGL driver.
Graphic3d_TextureRoot::convertToCompatible() implicitly converts
BGRA image to RGBA on OpenGL ES, which normally does not support BGR formats.

OpenGl_Caps::isTopDownTextureUV - new property defines how application defines
UV texture coordinates in primitive arrays.
OpenGl_Context::SetTextureMatrix() compares this flag with OpenGl_Texture::IsTopDown()
and automatically flips V coordinate in case of mismatch.

OpenGl_Texture now holds exact number of mipmap levels
instead of Boolean flag indicating that they are defined.
This allows loading DDS files with incomplete mipmap level set
by setting GL_TEXTURE_MAX_LEVEL to appropriate value instead of default 1000
(causing black textures in case if mipmap levels are not defined till 1x1).

Fixed order of texture coordinates transformation within GLSL program to match FFP matrix:
Rotate -> Translate -> Scale (previously Rotation was applied afterwards).
2020-05-22 11:08:34 +03:00
Igor Khozhanov
691711cd3e 0031550: Data Exchange, STEP Import - surface transparency is ignored (SURFACE_STYLE_TRANSPARENT)
Implemented reading and writing transparency to/from step files
2020-05-22 11:07:37 +03:00
ifv
8189cc72d0 0028229: BRep_Builder::Transfert must not raise exception if the input edge is Locked
BRep/BRep_Builder.cxx : raising exception is removed
2020-05-22 11:07:36 +03:00
jgv
c6f14a5213 0031558: BRepOffsetAPI_MakeFilling algorithm makes turned inside out face
1. Modification in method BRepFill_Filling::Build - correction of building the wire.
2. Create new subgroup "filling" in the group "bugs".
2020-05-22 11:07:35 +03:00
1186 changed files with 26600 additions and 14172 deletions

View File

@@ -930,6 +930,9 @@ if (WIN32)
OCCT_CONFIGURE ("adm/templates/env.${SCRIPT_EXT}.in" "env.${SCRIPT_EXT}")
# install env script
install (FILES "${CMAKE_BINARY_DIR}/env.${SCRIPT_EXT}" DESTINATION "${INSTALL_DIR_SCRIPT}")
# copy build.bat and install.bat scripts to CMake binary folder
OCCT_COPY_FILE_OR_DIR ("adm/templates/build.bat" "${CMAKE_BINARY_DIR}")
OCCT_COPY_FILE_OR_DIR ("adm/templates/install.bat" "${CMAKE_BINARY_DIR}")
else()
set (SUB_ENV_NAME "env.${SCRIPT_EXT}")
set (SUB_ENV_BUILD_NAME "env.install.${SCRIPT_EXT}")

View File

@@ -2,19 +2,28 @@
# execute FindBISON script by "find_package (Bison)" is required to define BISON_TARGET macro
if (NOT DEFINED 3RDPARTY_BISON_EXECUTABLE)
set (3RDPARTY_BISON_EXECUTABLE "" CACHE FILEPATH "The path to the bison command")
# delete obsolete 3RDPARTY_BISON_EXECUTABLE cache variable (not used anymore)
unset (3RDPARTY_BISON_EXECUTABLE CACHE)
# delete BISON_EXECUTABLE cache variable if it is empty, otherwise find_package will fail
# without reasonable diagnostic
if (NOT BISON_EXECUTABLE)
unset (BISON_EXECUTABLE CACHE)
endif()
# BISON_EXECUTABLE is required by BISON_TARGET macro and should be defined
set (BISON_EXECUTABLE "${3RDPARTY_BISON_EXECUTABLE}" CACHE FILEPATH "path to the bison executable" FORCE)
find_package (BISON)
if (BISON_FOUND)
set (3RDPARTY_BISON_EXECUTABLE "${BISON_EXECUTABLE}" CACHE FILEPATH "The Path to the bison command" FORCE)
# Add paths to 3rdparty subfolders containing name "bison" to CMAKE_PROGRAM_PATH variable to make
# these paths searhed by find_package
if (3RDPARTY_DIR)
file (GLOB BISON_PATHS LIST_DIRECTORIES true "${3RDPARTY_DIR}/*bison*/")
foreach (candidate_path ${BISON_PATHS})
if (IS_DIRECTORY ${candidate_path})
list (APPEND CMAKE_PROGRAM_PATH ${candidate_path})
endif()
endforeach()
endif()
find_package (BISON 2.7)
if (NOT 3RDPARTY_BISON_EXECUTABLE OR NOT EXISTS "${3RDPARTY_BISON_EXECUTABLE}")
list (APPEND 3RDPARTY_NOT_INCLUDED 3RDPARTY_BISON_EXECUTABLE)
if (NOT BISON_FOUND OR NOT BISON_EXECUTABLE OR NOT EXISTS "${BISON_EXECUTABLE}")
list (APPEND 3RDPARTY_NOT_INCLUDED BISON_EXECUTABLE)
endif()

View File

@@ -2,19 +2,28 @@
# execute FindFLEX script by "find_package (Flex)" is required to define FLEX_TARGET macro
if (NOT DEFINED 3RDPARTY_FLEX_EXECUTABLE)
set (3RDPARTY_FLEX_EXECUTABLE "" CACHE FILEPATH "The Path to the flex command")
# delete obsolete 3RDPARTY_FLEX_EXECUTABLE cache variable (not used anymore)
unset (3RDPARTY_FLEX_EXECUTABLE CACHE)
# delete FLEX_EXECUTABLE cache variable if it is empty, otherwise find_package will fail
# without reasonable diagnostic
if (NOT FLEX_EXECUTABLE)
unset (FLEX_EXECUTABLE CACHE)
endif()
# FLEX_EXECUTABLE is required by FLEX_TARGET macro and should be defined
set (FLEX_EXECUTABLE "${3RDPARTY_FLEX_EXECUTABLE}" CACHE FILEPATH "path to the flex executable" FORCE)
find_package (FLEX)
if (FLEX_FOUND)
set (3RDPARTY_FLEX_EXECUTABLE "${FLEX_EXECUTABLE}" CACHE FILEPATH "The Path to the flex command" FORCE)
# Add paths to 3rdparty subfolders containing name "flex" to CMAKE_PROGRAM_PATH variable to make
# these paths searhed by find_package
if (3RDPARTY_DIR)
file (GLOB FLEX_PATHS LIST_DIRECTORIES true "${3RDPARTY_DIR}/*flex*")
foreach (candidate_path ${FLEX_PATHS})
if (IS_DIRECTORY ${candidate_path})
list (APPEND CMAKE_PROGRAM_PATH ${candidate_path})
endif()
endforeach()
endif()
find_package (FLEX 2.5.3)
if (NOT 3RDPARTY_FLEX_EXECUTABLE OR NOT EXISTS "${3RDPARTY_FLEX_EXECUTABLE}")
list (APPEND 3RDPARTY_NOT_INCLUDED 3RDPARTY_FLEX_EXECUTABLE)
if (NOT FLEX_FOUND OR NOT FLEX_EXECUTABLE OR NOT EXISTS "${FLEX_EXECUTABLE}")
list (APPEND 3RDPARTY_NOT_INCLUDED FLEX_EXECUTABLE)
endif()

View File

@@ -111,36 +111,31 @@ elseif (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR "${CMAKE_CXX_COMP
endif()
endif()
if(MINGW)
# Set default release optimization option to O2 instead of O3, since in
# some OCCT related examples, this gives significantly smaller binaries
# at comparable performace with MinGW-w64.
string (REGEX MATCH "-O3" IS_O3_CXX "${CMAKE_CXX_FLAGS_RELEASE}")
if (IS_O3_CXX)
string (REGEX REPLACE "-O3" "-O2" CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE}")
else()
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -O2")
endif()
set (CMAKE_CXX_FLAGS "-std=gnu++0x ${CMAKE_CXX_FLAGS}")
add_definitions(-D_WIN32_WINNT=0x0501)
# workaround bugs in mingw with vtable export
set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--export-all-symbols")
elseif ("x${CMAKE_CXX_COMPILER_ID}" STREQUAL "xClang")
if ("x${CMAKE_CXX_COMPILER_ID}" STREQUAL "xClang")
if (APPLE)
# CLang can be used with both libstdc++ and libc++, however on OS X libstdc++ is outdated.
set (CMAKE_CXX_FLAGS "-std=c++0x -stdlib=libc++ ${CMAKE_CXX_FLAGS}")
elseif(NOT WIN32)
# CLang for Windows (at least CLang 8.0 distributed with VS 2019)
# CLang for Windows (at least CLang 8.0 distributed with VS 2019)
# does not support option "-std=c++0x"
set (CMAKE_CXX_FLAGS "-std=c++0x ${CMAKE_CXX_FLAGS}")
endif()
elseif (DEFINED CMAKE_COMPILER_IS_GNUCXX)
set (CMAKE_CXX_FLAGS "-std=c++0x ${CMAKE_CXX_FLAGS}")
endif()
# Optimize size of binaries
set (CMAKE_SHARED_LINKER_FLAGS "-Wl,-s ${CMAKE_SHARED_LINKER_FLAGS}")
elseif(MINGW)
add_definitions(-D_WIN32_WINNT=0x0501)
# workaround bugs in mingw with vtable export
set (CMAKE_SHARED_LINKER_FLAGS "-Wl,--export-all-symbols")
# Optimize size of binaries
if (CMAKE_COMPILER_IS_GNUCC OR CMAKE_COMPILER_IS_GNUCXX OR MINGW)
# Require C++11
set (CMAKE_CXX_FLAGS "-std=gnu++0x ${CMAKE_CXX_FLAGS}")
# Optimize size of binaries
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -s")
set (CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -s")
elseif (DEFINED CMAKE_COMPILER_IS_GNUCXX)
# Require C++11
set (CMAKE_CXX_FLAGS "-std=c++0x ${CMAKE_CXX_FLAGS}")
# Optimize size of binaries
set (CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -s")
set (CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -s")
endif()

View File

@@ -57,117 +57,110 @@ foreach (OCCT_PACKAGE ${USED_PACKAGES})
set (OCCT_PACKAGE_NAME "${OCCT_PACKAGE}")
endif()
# TKService contains platform-dependent packages: Xw and WNT
if ((WIN32 AND "${OCCT_PACKAGE}" STREQUAL "Xw") OR (NOT WIN32 AND "${OCCT_PACKAGE}" STREQUAL "WNT"))
# do nothing
else()
if (WIN32)
list (APPEND PRECOMPILED_DEFS "-D__${OCCT_PACKAGE_NAME}_DLL")
endif()
set (SOURCE_FILES)
set (HEADER_FILES)
# Generate Flex and Bison files
if (${BUILD_YACCLEX})
# flex files
OCCT_ORIGIN_AND_PATCHED_FILES ("${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}" "*[.]lex" SOURCE_FILES_FLEX)
list (LENGTH SOURCE_FILES_FLEX SOURCE_FILES_FLEX_LEN)
# bison files
OCCT_ORIGIN_AND_PATCHED_FILES ("${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}" "*[.]yacc" SOURCE_FILES_BISON)
list (LENGTH SOURCE_FILES_BISON SOURCE_FILES_BISON_LEN)
if (${SOURCE_FILES_FLEX_LEN} EQUAL ${SOURCE_FILES_BISON_LEN} AND NOT ${SOURCE_FILES_FLEX_LEN} EQUAL 0)
list (SORT SOURCE_FILES_FLEX)
list (SORT SOURCE_FILES_BISON)
math (EXPR SOURCE_FILES_FLEX_LEN "${SOURCE_FILES_FLEX_LEN} - 1")
foreach (FLEX_FILE_INDEX RANGE ${SOURCE_FILES_FLEX_LEN})
list (GET SOURCE_FILES_FLEX ${FLEX_FILE_INDEX} CURRENT_FLEX_FILE)
get_filename_component (CURRENT_FLEX_FILE_NAME ${CURRENT_FLEX_FILE} NAME_WE)
list (GET SOURCE_FILES_BISON ${FLEX_FILE_INDEX} CURRENT_BISON_FILE)
get_filename_component (CURRENT_BISON_FILE_NAME ${CURRENT_BISON_FILE} NAME_WE)
string (COMPARE EQUAL ${CURRENT_FLEX_FILE_NAME} ${CURRENT_BISON_FILE_NAME} ARE_FILES_EQUAL)
if (EXISTS "${CURRENT_FLEX_FILE}" AND EXISTS "${CURRENT_BISON_FILE}" AND ${ARE_FILES_EQUAL})
set (BISON_OUTPUT_FILE ${CURRENT_BISON_FILE_NAME}.tab.c)
set (FLEX_OUTPUT_FILE lex.${CURRENT_FLEX_FILE_NAME}.c)
BISON_TARGET (Parser_${CURRENT_BISON_FILE_NAME} ${CURRENT_BISON_FILE} ${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${BISON_OUTPUT_FILE} COMPILE_FLAGS "-p ${CURRENT_BISON_FILE_NAME}")
FLEX_TARGET (Scanner_${CURRENT_FLEX_FILE_NAME} ${CURRENT_FLEX_FILE} ${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${FLEX_OUTPUT_FILE} COMPILE_FLAGS "-P${CURRENT_FLEX_FILE_NAME}")
ADD_FLEX_BISON_DEPENDENCY (Scanner_${CURRENT_FLEX_FILE_NAME} Parser_${CURRENT_BISON_FILE_NAME})
list (APPEND SOURCE_FILES ${BISON_OUTPUT_FILE} ${FLEX_OUTPUT_FILE})
endif()
endforeach()
endif()
endif()
# header files
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_M REGEX ".+[.]h")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_LXX REGEX ".+[.]lxx")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_GXX REGEX ".+[.]gxx")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_C REGEX ".+[.]c")
if(APPLE)
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_M REGEX ".+[.]mm")
endif()
else()
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_M REGEX ".+[.]h")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_LXX REGEX ".+[.]lxx")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_GXX REGEX ".+[.]gxx")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_C REGEX ".+[.]c")
if(APPLE)
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_M REGEX ".+[.]mm")
endif()
endif()
list (APPEND HEADER_FILES ${HEADER_FILES_M} ${HEADER_FILES_LXX} ${SOURCE_FILES_GXX})
list (APPEND SOURCE_FILES ${SOURCE_FILES_C})
if(APPLE)
list (APPEND SOURCE_FILES ${SOURCE_FILES_M})
endif()
foreach(HEADER_FILE ${HEADER_FILES})
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
message (STATUS "Info: consider patched file: ${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
list (APPEND USED_INCFILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
SOURCE_GROUP ("Header Files\\${OCCT_PACKAGE_NAME}" FILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
else()
list (APPEND USED_INCFILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
SOURCE_GROUP ("Header Files\\${OCCT_PACKAGE_NAME}" FILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
endif()
endforeach()
foreach(SOURCE_FILE ${SOURCE_FILES})
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
message (STATUS "Info: consider patched file: ${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
list (APPEND USED_SRCFILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
SOURCE_GROUP ("Source Files\\${OCCT_PACKAGE_NAME}" FILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
else()
list (APPEND USED_SRCFILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
SOURCE_GROUP ("Source Files\\${OCCT_PACKAGE_NAME}" FILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
endif()
endforeach()
if (USE_QT)
FIND_AND_INSTALL_QT_RESOURCES (${OCCT_PACKAGE} RESOURCE_FILES)
#message("Qt Resource files are: ${QT_RESOURCE_FILES} in ${OCCT_PACKAGE}")
endif(USE_QT)
#message("Resource files are: ${RESOURCE_FILES} in ${OCCT_PACKAGE}")
foreach(RESOURCE_FILE ${RESOURCE_FILES})
SOURCE_GROUP ("Resource Files\\${OCCT_PACKAGE_NAME}" FILES "${RESOURCE_FILE}")
endforeach()
if (WIN32)
list (APPEND PRECOMPILED_DEFS "-D__${OCCT_PACKAGE_NAME}_DLL")
endif()
set (SOURCE_FILES)
set (HEADER_FILES)
# Generate Flex and Bison files
if (${BUILD_YACCLEX})
# flex files
OCCT_ORIGIN_AND_PATCHED_FILES ("${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}" "*[.]lex" SOURCE_FILES_FLEX)
list (LENGTH SOURCE_FILES_FLEX SOURCE_FILES_FLEX_LEN)
# bison files
OCCT_ORIGIN_AND_PATCHED_FILES ("${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}" "*[.]yacc" SOURCE_FILES_BISON)
list (LENGTH SOURCE_FILES_BISON SOURCE_FILES_BISON_LEN)
if (${SOURCE_FILES_FLEX_LEN} EQUAL ${SOURCE_FILES_BISON_LEN} AND NOT ${SOURCE_FILES_FLEX_LEN} EQUAL 0)
list (SORT SOURCE_FILES_FLEX)
list (SORT SOURCE_FILES_BISON)
math (EXPR SOURCE_FILES_FLEX_LEN "${SOURCE_FILES_FLEX_LEN} - 1")
foreach (FLEX_FILE_INDEX RANGE ${SOURCE_FILES_FLEX_LEN})
list (GET SOURCE_FILES_FLEX ${FLEX_FILE_INDEX} CURRENT_FLEX_FILE)
get_filename_component (CURRENT_FLEX_FILE_NAME ${CURRENT_FLEX_FILE} NAME_WE)
list (GET SOURCE_FILES_BISON ${FLEX_FILE_INDEX} CURRENT_BISON_FILE)
get_filename_component (CURRENT_BISON_FILE_NAME ${CURRENT_BISON_FILE} NAME_WE)
string (COMPARE EQUAL ${CURRENT_FLEX_FILE_NAME} ${CURRENT_BISON_FILE_NAME} ARE_FILES_EQUAL)
if (EXISTS "${CURRENT_FLEX_FILE}" AND EXISTS "${CURRENT_BISON_FILE}" AND ${ARE_FILES_EQUAL})
set (BISON_OUTPUT_FILE ${CURRENT_BISON_FILE_NAME}.tab.c)
set (FLEX_OUTPUT_FILE lex.${CURRENT_FLEX_FILE_NAME}.c)
BISON_TARGET (Parser_${CURRENT_BISON_FILE_NAME} ${CURRENT_BISON_FILE} ${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${BISON_OUTPUT_FILE} COMPILE_FLAGS "-p ${CURRENT_BISON_FILE_NAME} -l")
FLEX_TARGET (Scanner_${CURRENT_FLEX_FILE_NAME} ${CURRENT_FLEX_FILE} ${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${FLEX_OUTPUT_FILE} COMPILE_FLAGS "-P${CURRENT_FLEX_FILE_NAME} -L")
ADD_FLEX_BISON_DEPENDENCY (Scanner_${CURRENT_FLEX_FILE_NAME} Parser_${CURRENT_BISON_FILE_NAME})
list (APPEND SOURCE_FILES ${BISON_OUTPUT_FILE} ${FLEX_OUTPUT_FILE})
endif()
endforeach()
endif()
endif()
# header files
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_M REGEX ".+[.]h")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_LXX REGEX ".+[.]lxx")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_GXX REGEX ".+[.]gxx")
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_C REGEX ".+[.]c")
if(APPLE)
file (STRINGS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_M REGEX ".+[.]mm")
endif()
else()
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_M REGEX ".+[.]h")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_LXX REGEX ".+[.]lxx")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" HEADER_FILES_GXX REGEX ".+[.]gxx")
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_C REGEX ".+[.]c")
if(APPLE)
file (STRINGS "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/FILES" SOURCE_FILES_M REGEX ".+[.]mm")
endif()
endif()
list (APPEND HEADER_FILES ${HEADER_FILES_M} ${HEADER_FILES_LXX} ${SOURCE_FILES_GXX})
list (APPEND SOURCE_FILES ${SOURCE_FILES_C})
if(APPLE)
list (APPEND SOURCE_FILES ${SOURCE_FILES_M})
endif()
foreach(HEADER_FILE ${HEADER_FILES})
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
message (STATUS "Info: consider patched file: ${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
list (APPEND USED_INCFILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
SOURCE_GROUP ("Header Files\\${OCCT_PACKAGE_NAME}" FILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
else()
list (APPEND USED_INCFILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
SOURCE_GROUP ("Header Files\\${OCCT_PACKAGE_NAME}" FILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${HEADER_FILE}")
endif()
endforeach()
foreach(SOURCE_FILE ${SOURCE_FILES})
if (BUILD_PATCH AND EXISTS "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
message (STATUS "Info: consider patched file: ${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
list (APPEND USED_SRCFILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
SOURCE_GROUP ("Source Files\\${OCCT_PACKAGE_NAME}" FILES "${BUILD_PATCH}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
else()
list (APPEND USED_SRCFILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
SOURCE_GROUP ("Source Files\\${OCCT_PACKAGE_NAME}" FILES "${CMAKE_SOURCE_DIR}/${RELATIVE_SOURCES_DIR}/${OCCT_PACKAGE}/${SOURCE_FILE}")
endif()
endforeach()
if (USE_QT)
FIND_AND_INSTALL_QT_RESOURCES (${OCCT_PACKAGE} RESOURCE_FILES)
#message("Qt Resource files are: ${QT_RESOURCE_FILES} in ${OCCT_PACKAGE}")
endif(USE_QT)
#message("Resource files are: ${RESOURCE_FILES} in ${OCCT_PACKAGE}")
foreach(RESOURCE_FILE ${RESOURCE_FILES})
SOURCE_GROUP ("Resource Files\\${OCCT_PACKAGE_NAME}" FILES "${RESOURCE_FILE}")
endforeach()
endforeach()
string (REGEX REPLACE ";" " " PRECOMPILED_DEFS "${PRECOMPILED_DEFS}")
@@ -330,7 +323,7 @@ endif()
# Update list of used VTK libraries if OpenGL2 Rendering BackEnd is used.
# Add VTK_OPENGL2_BACKEND definition.
if("${VTK_RENDERING_BACKEND}" STREQUAL "OpenGL2")
if("${VTK_RENDERING_BACKEND}" STREQUAL "OpenGL2" OR IS_VTK_9XX)
add_definitions(-DVTK_OPENGL2_BACKEND)
foreach (VTK_EXCLUDE_LIBRARY vtkRenderingOpenGL vtkRenderingFreeTypeOpenGL)
list (FIND USED_TOOLKITS_BY_CURRENT_PROJECT "${VTK_EXCLUDE_LIBRARY}" IS_VTK_OPENGL_FOUND)
@@ -354,6 +347,9 @@ else()
endif()
if (BUILD_SHARED_LIBS)
if(IS_VTK_9XX)
string (REGEX REPLACE "vtk" "VTK::" USED_TOOLKITS_BY_CURRENT_PROJECT "${USED_TOOLKITS_BY_CURRENT_PROJECT}")
endif()
target_link_libraries (${PROJECT_NAME} ${USED_TOOLKITS_BY_CURRENT_PROJECT} ${USED_EXTERNAL_LIBS_BY_CURRENT_PROJECT})
endif()

View File

@@ -66,10 +66,15 @@ if (3RDPARTY_VTK_DIR AND EXISTS "${3RDPARTY_VTK_DIR}")
set (ENV{VTK_DIR} ${CACHED_VTK_DIR})
endif()
unset (IS_VTK_9XX)
if (VTK_FOUND)
# add compiler flags, preprocessor definitions, include and link dirs
include (${VTK_USE_FILE})
message ("VTK version (${VTK_VERSION})")
if(VTK_MAJOR_VERSION EQUAL 8 AND VTK_MINOR_VERSION GREATER 9 OR VTK_MAJOR_VERSION GREATER 8)
set (IS_VTK_9XX 1)
else()
# add compiler flags, preprocessor definitions, include and link dirs
include (${VTK_USE_FILE})
endif()
if (VTK_LIBRARIES)
@@ -81,79 +86,83 @@ if (VTK_FOUND)
# endif()
foreach (VTK_LIBRARY ${VTK_LIBRARIES})
string (REGEX MATCH "^vtk" IS_VTK_LIBRARY ${VTK_LIBRARY})
if (IS_VTK_LIBRARY AND TARGET ${VTK_LIBRARY})
# get paths from corresponding variables
if (${VTK_LIBRARY}_INCLUDE_DIRS AND EXISTS "${${VTK_LIBRARY}_INCLUDE_DIRS}")
list (APPEND 3RDPARTY_VTK_INCLUDE_DIRS "${${VTK_LIBRARY}_INCLUDE_DIRS}")
if (IS_VTK_9XX)
string (REGEX MATCH "^VTK::" IS_VTK_LIBRARY ${VTK_LIBRARY})
else()
string (REGEX MATCH "^vtk" IS_VTK_LIBRARY ${VTK_LIBRARY})
endif()
if (NOT IS_VTK_LIBRARY OR NOT TARGET ${VTK_LIBRARY})
continue()
endif()
# get paths from corresponding variables
if (${VTK_LIBRARY}_INCLUDE_DIRS AND EXISTS "${${VTK_LIBRARY}_INCLUDE_DIRS}")
list (APPEND 3RDPARTY_VTK_INCLUDE_DIRS "${${VTK_LIBRARY}_INCLUDE_DIRS}")
endif()
if (${VTK_LIBRARY}_LIBRARY_DIRS AND EXISTS "${${VTK_LIBRARY}_LIBRARY_DIRS}")
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${${VTK_LIBRARY}_LIBRARY_DIRS}")
endif()
if (${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS AND EXISTS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
list (APPEND 3RDPARTY_VTK_DLL_DIRS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
if (NOT WIN32)
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
endif()
endif()
# get paths from corresponding properties
get_target_property (TARGET_VTK_IMPORT_CONFS ${VTK_LIBRARY} IMPORTED_CONFIGURATIONS)
if (TARGET_VTK_IMPORT_CONFS)
list (GET TARGET_VTK_IMPORT_CONFS 0 CHOSEN_IMPORT_CONF)
# todo: choose configuration in connection with the build type
#if (CMAKE_BUILD_TYPE)
# foreach (IMPORT_CONF ${TARGET_VTK_IMPORT_CONFS})
# endforeach()
#endif()
# Work-around against link failure in case if VTK contains dependency
# on DirectX: its run-time is always present on Windows, but SDK can
# be absent on current workstation, while not actually needed for
# OCCT linking.
# VTK 6.1 for VC 10
get_target_property (TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${VTK_LIBRARY} IMPORTED_LINK_INTERFACE_LIBRARIES_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES)
string (REGEX MATCH "[^;]*d3d[0-9]+[.]lib" HARDCODED_D3D9_LIB "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
if (HARDCODED_D3D9_LIB)
message (STATUS "Warning: ${HARDCODED_D3D9_LIB} has been removed from imported dependencies of ${VTK_LIBRARY}")
list (REMOVE_ITEM TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${HARDCODED_D3D9_LIB})
set_target_properties (${VTK_LIBRARY} PROPERTIES IMPORTED_LINK_INTERFACE_LIBRARIES_${CHOSEN_IMPORT_CONF} "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
endif()
endif()
# VTK 6.1 for VC 12, 14
get_target_property (TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${VTK_LIBRARY} INTERFACE_LINK_LIBRARIES)
if(TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES)
string (REGEX MATCH "[^;]*d3d[0-9]+[.]lib" HARDCODED_D3D9_LIB "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
if (HARDCODED_D3D9_LIB)
message (STATUS "Warning: ${HARDCODED_D3D9_LIB} has been removed from imported dependencies of ${VTK_LIBRARY}")
list (REMOVE_ITEM TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${HARDCODED_D3D9_LIB})
set_target_properties (${VTK_LIBRARY} PROPERTIES INTERFACE_LINK_LIBRARIES "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
endif()
endif()
if (${VTK_LIBRARY}_LIBRARY_DIRS AND EXISTS "${${VTK_LIBRARY}_LIBRARY_DIRS}")
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${${VTK_LIBRARY}_LIBRARY_DIRS}")
endif()
get_target_property (TARGET_PROPERTY_IMP_PATH ${VTK_LIBRARY} IMPORTED_IMPLIB_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_IMP_PATH AND EXISTS "${TARGET_PROPERTY_IMP_PATH}")
get_filename_component (TARGET_PROPERTY_IMP_DIR "${TARGET_PROPERTY_IMP_PATH}" PATH)
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${TARGET_PROPERTY_IMP_DIR}")
endif()
if (${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS AND EXISTS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
list (APPEND 3RDPARTY_VTK_DLL_DIRS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
if (NOT WIN32)
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${${VTK_LIBRARY}_RUNTIME_LIBRARY_DIRS}")
endif()
endif()
get_target_property (TARGET_PROPERTY_LOCATION_PATH ${VTK_LIBRARY} IMPORTED_LOCATION_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_LOCATION_PATH AND EXISTS "${TARGET_PROPERTY_LOCATION_PATH}")
get_filename_component (TARGET_PROPERTY_LOCATION_DIR "${TARGET_PROPERTY_LOCATION_PATH}" PATH)
# get paths from corresponding properties
get_target_property (TARGET_VTK_IMPORT_CONFS ${VTK_LIBRARY} IMPORTED_CONFIGURATIONS)
if (TARGET_VTK_IMPORT_CONFS)
list (GET TARGET_VTK_IMPORT_CONFS 0 CHOSEN_IMPORT_CONF)
# todo: choose configuration in connection with the build type
#if (CMAKE_BUILD_TYPE)
# foreach (IMPORT_CONF ${TARGET_VTK_IMPORT_CONFS})
# endforeach()
#endif()
# Work-around against link failure in case if VTK contains dependency
# on DirectX: its run-time is always present on Windows, but SDK can
# be absent on current workstation, while not actually needed for
# OCCT linking.
# VTK 6.1 for VC 10
get_target_property (TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${VTK_LIBRARY} IMPORTED_LINK_INTERFACE_LIBRARIES_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES)
string (REGEX MATCH "[^;]*d3d[0-9]+[.]lib" HARDCODED_D3D9_LIB "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
if (HARDCODED_D3D9_LIB)
message (STATUS "Warning: ${HARDCODED_D3D9_LIB} has been removed from imported dependencies of ${VTK_LIBRARY}")
list (REMOVE_ITEM TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${HARDCODED_D3D9_LIB})
set_target_properties (${VTK_LIBRARY} PROPERTIES IMPORTED_LINK_INTERFACE_LIBRARIES_${CHOSEN_IMPORT_CONF} "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
endif()
endif()
# VTK 6.1 for VC 12, 14
get_target_property (TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${VTK_LIBRARY} INTERFACE_LINK_LIBRARIES)
if(TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES)
string (REGEX MATCH "[^;]*d3d[0-9]+[.]lib" HARDCODED_D3D9_LIB "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
if (HARDCODED_D3D9_LIB)
message (STATUS "Warning: ${HARDCODED_D3D9_LIB} has been removed from imported dependencies of ${VTK_LIBRARY}")
list (REMOVE_ITEM TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES ${HARDCODED_D3D9_LIB})
set_target_properties (${VTK_LIBRARY} PROPERTIES INTERFACE_LINK_LIBRARIES "${TARGET_PROPERTY_IMP_LINK_INTERFACE_LIBRARIES}")
endif()
endif()
get_target_property (TARGET_PROPERTY_IMP_PATH ${VTK_LIBRARY} IMPORTED_IMPLIB_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_IMP_PATH AND EXISTS "${TARGET_PROPERTY_IMP_PATH}")
get_filename_component (TARGET_PROPERTY_IMP_DIR "${TARGET_PROPERTY_IMP_PATH}" PATH)
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${TARGET_PROPERTY_IMP_DIR}")
endif()
get_target_property (TARGET_PROPERTY_LOCATION_PATH ${VTK_LIBRARY} IMPORTED_LOCATION_${CHOSEN_IMPORT_CONF})
if(TARGET_PROPERTY_LOCATION_PATH AND EXISTS "${TARGET_PROPERTY_LOCATION_PATH}")
get_filename_component (TARGET_PROPERTY_LOCATION_DIR "${TARGET_PROPERTY_LOCATION_PATH}" PATH)
if (WIN32)
list (APPEND 3RDPARTY_VTK_DLL_DIRS "${TARGET_PROPERTY_LOCATION_DIR}")
else()
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${TARGET_PROPERTY_LOCATION_DIR}")
endif()
endif()
if (WIN32)
list (APPEND 3RDPARTY_VTK_DLL_DIRS "${TARGET_PROPERTY_LOCATION_DIR}")
else()
list (APPEND 3RDPARTY_VTK_LIBRARY_DIRS "${TARGET_PROPERTY_LOCATION_DIR}")
endif()
endif()
endif()
@@ -187,6 +196,7 @@ if (VTK_FOUND)
endif()
endif()
# endif()
endif()
if (3RDPARTY_VTK_INCLUDE_DIR AND EXISTS "${3RDPARTY_VTK_INCLUDE_DIR}")
list (APPEND 3RDPARTY_INCLUDE_DIRS ${3RDPARTY_VTK_INCLUDE_DIR})

View File

@@ -1596,11 +1596,6 @@ proc osutils:tk:units { tkloc theSrcDir } {
return $l
}
proc osutils:justwnt { listloc } {
set goaway [list Xw]
return [osutils:juststation $goaway $listloc]
}
# remove from listloc OpenCascade units indesirables on NT
proc osutils:juststation {goaway listloc} {
global path
@@ -2267,17 +2262,6 @@ proc wokUtils:FILES:mkdir { d } {
}
}
# remove from listloc OpenCascade units indesirables on Unix
proc osutils:justunix { listloc } {
if { "$::tcl_platform(os)" == "Darwin" } {
set goaway [list Xw WNT]
} else {
set goaway [list WNT]
}
return [osutils:juststation $goaway $listloc]
}
####### CODEBLOCK ###################################################################
# Function to generate Code Blocks workspace and project files
proc OS:MKCBP { theOutDir theModules theAllSolution thePlatform theCmpl } {
@@ -2333,13 +2317,8 @@ proc osutils:cbptk { theCmpl theOutDir theToolKit thePlatform} {
set listloc $theToolKit
}
if { $thePlatform == "wnt" || $thePlatform == "uwp" } {
set resultloc [osutils:justwnt $listloc]
} else {
set resultloc [osutils:justunix $listloc]
}
if [array exists written] { unset written }
foreach fxlo $resultloc {
foreach fxlo $listloc {
set xlo $fxlo
set aSrcFiles [osutils:tk:cxxfiles $xlo $thePlatform "src"]
foreach aSrcFile [lsort $aSrcFiles] {
@@ -2928,9 +2907,8 @@ proc osutils:xcdtk:sources {theToolKit theTargetType theSrcFileRefSection theGro
upvar $theIncPaths anIncPaths
set listloc [osutils:tk:units $theToolKit "src"]
set resultloc [osutils:justunix $listloc]
set aBuildFileSection ""
set aPackages [lsort -nocase $resultloc]
set aPackages [lsort -nocase $listloc]
if { "$theTargetType" == "executable" } {
set aPackages [list "$theToolKit"]
}

2
adm/scripts/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
*custom.bat
*custom.sh

View File

@@ -0,0 +1,234 @@
@echo OFF
rem Auxiliary script for semi-automated building of OCCT for Android platform.
rem android_custom.bat should be configured with paths
rem to CMake, 3rd-parties, Android NDK and MinGW make tool.
set "aCasSrc=%~dp0..\.."
set "aBuildRoot=%aCasSrc%\work"
set aNbJobs=%NUMBER_OF_PROCESSORS%
rem Paths to 3rd-party tools and libraries
set "anNdkPath="
set "aFreeType="
set "aRapidJson="
rem Build stages to perform
set "toCMake=1"
set "toClean=0"
set "toMake=1"
set "toInstall=1"
set "toPack=1"
set "isStatic=0"
rem Minimal Android platform and CPU architectures
set "anNdkApiLevel=21"
set "anNdkAbiList=armeabi-v7a x86 arm64-v8a x86_64"
rem OCCT Modules to build
set "BUILD_ModelingData=ON"
set "BUILD_ModelingAlgorithms=ON"
set "BUILD_Visualization=ON"
set "BUILD_ApplicationFramework=ON"
set "BUILD_DataExchange=ON"
rem Optional 3rd-party libraries to enable
set USE_RAPIDJSON=OFF
rem Archive tool
set "THE_7Z_PARAMS=-t7z -m0=lzma -mx=9 -mfb=64 -md=32m -ms=on"
set "THE_7Z_PATH=%ProgramW6432%\7-Zip\7z.exe"
rem Configuration file
if exist "%~dp0android_custom.bat" call "%~dp0android_custom.bat"
set "aCompiler=gcc"
set "aCppLib=gnustl_shared"
if not exist "%anNdkPath%/sources/cxx-stl/gnu-libstdc++" (
if exist "%anNdkPath%/sources/cxx-stl/llvm-libc++" (
set "aCompiler=clang"
set "aCppLib=c++_shared"
)
)
set "aLibType=Shared"
if ["%isStatic%"] == ["1"] set "aLibType=Static"
set "aDestDir=%aBuildRoot%\android-%aCompiler%"
set "anOcctVerSuffix="
set "anOcctVersion=0.0.0"
set "aGitBranch="
for /f tokens^=2^ delims^=^" %%i in ('findstr /b /c:"#define OCC_VERSION_DEVELOPMENT" "%aCasSrc%\src\Standard\Standard_Version.hxx"') do ( set "anOcctVerSuffix=%%i" )
for /f tokens^=2^ delims^=^" %%i in ('findstr /b /c:"#define OCC_VERSION_COMPLETE" "%aCasSrc%\src\Standard\Standard_Version.hxx"') do ( set "anOcctVersion=%%i" )
for /f %%i in ('git symbolic-ref --short HEAD') do ( set "aGitBranch=%%i" )
for %%s in (%anNdkAbiList%) do (
call :cmakeGenerate "%anNdkApiLevel%" "%%s"
)
for /F "skip=1 delims=" %%F in ('
wmic PATH Win32_LocalTime GET Day^,Month^,Year /FORMAT:TABLE
') do (
for /F "tokens=1-3" %%L in ("%%F") do (
set DAY00=0%%L
set MONTH00=0%%M
set YEAR=%%N
)
)
set DAY00=%DAY00:~-2%
set MONTH00=%MONTH00:~-2%
set "aRevision=-%YEAR%-%MONTH00%-%DAY00%"
rem set "aRevision=-%aGitBranch%"
set "anArchName=occt-%anOcctVersion%%anOcctVerSuffix%%aRevision%-android"
set "aTarget=%aBuildRoot%\%anArchName%"
if ["%toPack%"] == ["1"] (
echo Creating archive %anArchName%.7z
rmdir /S /Q "%aTarget%"
if not exist "%aTarget%" ( mkdir "%aTarget%" )
if exist "%aBuildRoot%/%anArchName%.7z" del "%aBuildRoot%/%anArchName%.7z"
xcopy /S /Y "%aDestDir%\*" "%aTarget%\"
"%THE_7Z_PATH%" a -r %THE_7Z_PARAMS% "%aBuildRoot%/%anArchName%.7z" "%aTarget%"
)
if not ["%1"] == ["-nopause"] (
pause
)
goto :eof
:cmakeGenerate
set "anApi=%~1"
set "anAbi=%~2"
set "aPlatformAndCompiler=android-%anAbi%-%aCompiler%"
set "aWorkDir=%aBuildRoot%\%aPlatformAndCompiler%-make"
set "aLogFile=%aBuildRoot%\build-%aPlatformAndCompiler%.log"
if not exist "%aWorkDir%" ( mkdir "%aWorkDir%" )
if exist "%aLogFile%" ( del "%aLogFile%" )
rem include some information about OCCT into archive
echo ^<pre^>> "%aWorkDir%\VERSION.html"
git status >> "%aWorkDir%\VERSION.html"
git log -n 100 >> "%aWorkDir%\VERSION.html"
echo ^</pre^>>> "%aWorkDir%\VERSION.html"
echo Start building OCCT for %aPlatformAndCompiler%
echo Start building OCCT for %aPlatformAndCompiler%>> %aLogFile%
pushd "%aWorkDir%"
set "aTimeZERO=%TIME%"
if ["%toCMake%"] == ["1"] (
echo Configuring OCCT for Android %anAbi%, API level %anApi%...
cmake -G "MinGW Makefiles" ^
-D CMAKE_SYSTEM_NAME:STRING="Android" ^
-D CMAKE_ANDROID_NDK="%anNdkPath%" ^
-D CMAKE_BUILD_TYPE:STRING="Release" ^
-D CMAKE_ANDROID_ARCH_ABI:STRING="%anAbi%" ^
-D CMAKE_SYSTEM_VERSION:STRING="%anApi%" ^
-D CMAKE_ANDROID_STL_TYPE="%aCppLib%" ^
-D BUILD_LIBRARY_TYPE:STRING="%aLibType%" ^
-D INSTALL_DIR:PATH="%aDestDir%" ^
-D INSTALL_DIR_INCLUDE:STRING="inc" ^
-D INSTALL_DIR_LIB:STRING="libs/%anAbi%" ^
-D INSTALL_DIR_CMAKE:STRING="libs/%anAbi%/cmake/opencascade" ^
-D INSTALL_DIR_RESOURCE:STRING="src" ^
-D BUILD_MODULE_FoundationClasses:BOOL="ON" ^
-D BUILD_MODULE_ModelingData:BOOL="%BUILD_ModelingData%" ^
-D BUILD_MODULE_ModelingAlgorithms:BOOL="%BUILD_ModelingAlgorithms%" ^
-D BUILD_MODULE_Visualization:BOOL="%BUILD_Visualization%" ^
-D BUILD_MODULE_ApplicationFramework:BOOL="%BUILD_ApplicationFramework%" ^
-D BUILD_MODULE_DataExchange:BOOL="%BUILD_DataExchange%" ^
-D BUILD_MODULE_Draw:BOOL="OFF" ^
-D BUILD_DOC_Overview:BOOL="OFF" ^
-D 3RDPARTY_FREETYPE_DIR:PATH="%aFreeType%" ^
-D 3RDPARTY_FREETYPE_INCLUDE_DIR_freetype2:FILEPATH="%aFreeType%/include" ^
-D 3RDPARTY_FREETYPE_INCLUDE_DIR_ft2build:FILEPATH="%aFreeType%/include" ^
-D 3RDPARTY_FREETYPE_LIBRARY_DIR:PATH="%aFreeType%/libs/%anAbi%" ^
-D 3RDPARTY_FREETYPE_LIBRARY:FILEPATH="%aFreeType%/libs/%anAbi%/libfreetype.so" ^
-D USE_RAPIDJSON:BOOL="%USE_RAPIDJSON%" ^
-D 3RDPARTY_RAPIDJSON_DIR:PATH="%aRapidJson%" ^
-D 3RDPARTY_RAPIDJSON_INCLUDE_DIR:PATH="%aRapidJson%/include" ^
"%aCasSrc%"
if errorlevel 1 (
popd
exit /B 1
goto :eof
)
)
set aTimeGEN=%TIME%
call :computeDuration %aTimeZERO% %aTimeGEN%
if ["%toCMake%"] == ["1"] (
echo Generation time: %DURATION%
echo Generation time: %DURATION%>> "%aLogFile%"
)
if ["%toClean%"] == ["1"] (
mingw32-make clean
)
if ["%toMake%"] == ["1"] (
echo Building...
mingw32-make -j %aNbJobs% 2>> "%aLogFile%"
if errorlevel 1 (
type "%aLogFile%"
popd
exit /B 1
goto :eof
)
type "%aLogFile%"
)
set aTimeBUILD=%TIME%
call :computeDuration %aTimeGEN% %aTimeBUILD%
if ["%toMake%"] == ["1"] (
echo Building time: %DURATION%
echo Building time: %DURATION%>> "%aLogFile%"
)
call :computeDuration %aTimeZERO% %aTimeBUILD%
if ["%toMake%"] == ["1"] (
echo Total building time: %DURATION%
echo Total building time: %DURATION%>> "%aLogFile%"
)
if ["%toInstall%"] == ["1"] (
echo Installing into %aDestDir%...
mingw32-make install 2>> "%aLogFile%"
copy /Y "%aWorkDir%\VERSION.html" "%aDestDir%\VERSION.html"
)
set "aTimeINSTALL=%TIME%"
call :computeDuration "%aTimeBUILD%" "%aTimeINSTALL%"
if ["%toInstall%"] == ["1"] (
echo Install time: %DURATION%
echo Install time: %DURATION%>> "%aLogFile%"
)
call :computeDuration "%aTimeZERO%" "%aTimeINSTALL%"
echo Total time: %DURATION%
echo Total time: %DURATION%>> "%aLogFile%"
popd
goto :eof
:computeDuration
set "aTimeFrom=%~1"
set "aTimeEnd=%~2"
rem handle time before 10AM (win10 - remove empty space at the beginning)
if "%aTimeFrom:~0,1%"==" " set "aTimeFrom=%aTimeFrom:~1%"
if "%aTimeEnd:~0,1%"==" " set "aTimeEnd=%aTimeEnd:~1%"
rem handle time before 10AM (win7 - add 0 at the beginning)
if "%aTimeFrom:~1,1%"==":" set "aTimeFrom=0%aTimeFrom%"
if "%aTimeEnd:~1,1%"==":" set "aTimeEnd=0%aTimeEnd%"
rem convert hours:minutes:seconds:ms into duration
set /A aTimeFrom=(1%aTimeFrom:~0,2%-100)*360000 + (1%aTimeFrom:~3,2%-100)*6000 + (1%aTimeFrom:~6,2%-100)*100 + (1%aTimeFrom:~9,2%-100)
set /A aTimeEnd= (1%aTimeEnd:~0,2%-100)*360000 + (1%aTimeEnd:~3,2%-100)*6000 + (1%aTimeEnd:~6,2%-100)*100 + (1%aTimeEnd:~9,2%-100)
set /A aDurTotalSec=%aTimeEnd%-%aTimeFrom%
if %aTimeEnd% LSS %aTimeFrom% set set /A aDurTotalSec=%aTimeFrom%-%aTimeEnd%
set /A aDurHH=%aDurTotalSec% / 360000
set /A aDurMM=(%aDurTotalSec% - %aDurHH%*360000) / 6000
set /A aDurSS=(%aDurTotalSec% - %aDurHH%*360000 - %aDurMM%*6000) / 100
if %aDurHH% LSS 10 set aDurHH=0%aDurHH%
if %aDurMM% LSS 10 set aDurMM=0%aDurMM%
if %aDurSS% LSS 10 set aDurSS=0%aDurSS%
set "DURATION=%aDurHH%:%aDurMM%:%aDurSS%"
goto :eof

View File

@@ -0,0 +1,31 @@
rem Environment configuration template for android_build.bat (to be renamed as android_custom.bat)
rem Paths to 3rd-party tools and libraries
rem call c:\TDM-GCC-64\mingwvars.bat
rem set "PATH=c:\CMake\bin;%PATH%"
rem set "anNdkPath=c:/android-ndk-r12"
rem set "aFreeType=c:/freetype-2.7.1-android"
rem set "aRapidJson=c:/rapidjson-1.1.0"
rem Uncomment to customize building steps
rem set "aBuildRoot=%~dp0..\..\work"
rem set "toCMake=1"
rem set "toClean=0"
rem set "toMake=1"
rem set "toInstall=1"
rem set "toPack=1"
rem set "isStatic=0"
rem Minimal Android platform and CPU architectures
rem set "anNdkApiLevel=21"
rem set "anNdkAbiList=arm64-v8a x86_64"
rem OCCT Modules to build
rem set "BUILD_ModelingData=ON"
rem set "BUILD_ModelingAlgorithms=ON"
rem set "BUILD_Visualization=ON"
rem set "BUILD_ApplicationFramework=ON"
rem set "BUILD_DataExchange=ON"
rem Optional 3rd-party libraries to enable
rem set USE_RAPIDJSON=ON

View File

@@ -0,0 +1,46 @@
rem Environment configuration template for cmake_gen.bat (to be renamed as cmake_gen_custom.bat)
set "OCCT3RDPARTY=%SrcRoot%\..\3rdparty"
set VS=14
set VSDATA=2015
rem Leave VSPLATFORM empty to build for x86 platform
set VSPLATFORM=Win64
rem ------------------------------------
rem Uncomment to customize building steps
rem ------------------------------------
rem set "BUILD_DIR=build-vs%VS%-%VSPLATFORM%"
rem set "INSTALL_DIR=%SrcRoot%\install"
rem set BUILD_DOC_Overview=OFF
rem set BUILD_Inspector=OFF
rem set BUILD_LIBRARY_TYPE=Shared
rem set BUILD_RELEASE_DISABLE_EXCEPTIONS=ON
rem set BUILD_WITH_DEBUG=OFF
rem set BUILD_ENABLE_FPE_SIGNAL_HANDLER=ON
rem set BUILD_USE_PCH=OFF
rem Use semicolon-separated list of toolkits if you want to disable all modules
rem and build only some toolkits.
rem set BUILD_ADDITIONAL_TOOLKITS=
rem Set a directory recognized as a patch for OCCT.
rem set BUILD_PATCH=
rem set BUILD_MODULE_ApplicationFramework=ON
rem set BUILD_MODULE_DataExchange=ON
rem set BUILD_MODULE_Draw=ON
rem set BUILD_MODULE_ModelingAlgorithms=ON
rem set BUILD_MODULE_ModelingData=ON
rem set BUILD_MODULE_Visualization=ON
rem set USE_D3D=OFF
rem set USE_FFMPEG=OFF
rem set USE_FREEIMAGE=OFF
rem set USE_GLES2=OFF
rem set USE_RAPIDJSON=OFF
rem set USE_TBB=OFF
rem set USE_VTK=OFF

View File

@@ -0,0 +1,42 @@
# Environment configuration template for cmake_gen.sh (to be renamed as cmake_gen_custom.sh)
OCCT3RDPARTY="$SrcRoot/../3rdparty"
FREETYPE_DIR="$OCCT3RDPARTY/freetype-2.7.1"
# ------------------------------------
# Uncomment to customize building steps
# ------------------------------------
#BUILD_DIR=build
#INSTALL_DIR="$SrcRoot/install"
#BUILD_DOC_Overview=OFF
#BUILD_Inspector=OFF
#BUILD_LIBRARY_TYPE=Shared
#BUILD_RELEASE_DISABLE_EXCEPTIONS=ON
#BUILD_WITH_DEBUG=OFF
#BUILD_ENABLE_FPE_SIGNAL_HANDLER=ON
# Use semicolon-separated list of toolkits if you want to disable all modules
# and build only some toolkits.
#BUILD_ADDITIONAL_TOOLKITS=
# Set a directory recognized as a patch for OCCT.
#BUILD_PATCH=
#BUILD_MODULE_ApplicationFramework=ON
#BUILD_MODULE_DataExchange=ON
#BUILD_MODULE_Draw=ON
#BUILD_MODULE_ModelingAlgorithms=ON
#BUILD_MODULE_ModelingData=ON
#BUILD_MODULE_Visualization=ON
#USE_FFMPEG=OFF
#USE_FREEIMAGE=OFF
#USE_GLES2=OFF
#USE_RAPIDJSON=OFF
#USE_TBB=OFF
#USE_VTK=OFF
# This is to add any additional arguments to cmake
#AUX_ARGS=

83
adm/scripts/cmake_gen.bat Normal file
View File

@@ -0,0 +1,83 @@
@echo off
rem Auxiliary script for semi-automated building of OCCT using cmake.
rem cmake_custom.bat should be configured with VS version and path to 3rd-parties.
rem OCCT3RDPARTY must be specified as mandatory dependency.
setlocal
set "SrcRoot=%~dp0..\.."
set VS=14
set VSDATA=2015
set VSPLATFORM=Win64
set "BUILD_DIR=build-vs%VS%-%VSPLATFORM%"
set "INSTALL_DIR=%SrcRoot%\install"
set BUILD_ADDITIONAL_TOOLKITS=
set BUILD_DOC_Overview=OFF
set BUILD_Inspector=OFF
set BUILD_LIBRARY_TYPE=Shared
set BUILD_PATCH=
set BUILD_RELEASE_DISABLE_EXCEPTIONS=ON
set BUILD_WITH_DEBUG=OFF
set BUILD_ENABLE_FPE_SIGNAL_HANDLER=ON
set BUILD_USE_PCH=OFF
set BUILD_MODULE_ApplicationFramework=ON
set BUILD_MODULE_DataExchange=ON
set BUILD_MODULE_Draw=ON
set BUILD_MODULE_ModelingAlgorithms=ON
set BUILD_MODULE_ModelingData=ON
set BUILD_MODULE_Visualization=ON
set USE_D3D=OFF
set USE_FFMPEG=OFF
set USE_FREEIMAGE=OFF
set USE_GLES2=OFF
set USE_RAPIDJSON=OFF
set USE_TBB=OFF
set USE_VTK=OFF
if exist "%~dp0cmake_custom.bat" call "%~dp0cmake_custom.bat"
if not "%VSPLATFORM%"=="" set "arch_compile=Visual Studio %VS% %VSDATA% %VSPLATFORM%"
if "%VSPLATFORM%"=="" set "arch_compile=Visual Studio %VS% %VSDATA%"
set "INSTALL_DIR=%INSTALL_DIR:\=/%"
set "OCCT3RDPARTY=%OCCT3RDPARTY:\=/%"
set "BUILD_DIR=%SrcRoot%\%BUILD_DIR%"
if not exist "%BUILD_DIR%" mkdir "%BUILD_DIR%"
pushd "%BUILD_DIR%"
cmake -G "%arch_compile%" ^
-D 3RDPARTY_DIR:STRING="%OCCT3RDPARTY%" ^
-D BUILD_ADDITIONAL_TOOLKITS:STRING="%BUILD_ADDITIONAL_TOOLKITS%" ^
-D BUILD_DOC_Overview:BOOL=%BUILD_DOC_Overview% ^
-D BUILD_Inspector:BOOL=%BUILD_Inspector% ^
-D BUILD_LIBRARY_TYPE:STRING=%BUILD_LIBRARY_TYPE% ^
-D BUILD_MODULE_ApplicationFramework:BOOL=%BUILD_MODULE_ApplicationFramework% ^
-D BUILD_MODULE_DataExchange:BOOL=%BUILD_MODULE_DataExchange% ^
-D BUILD_MODULE_Draw:BOOL=%BUILD_MODULE_Draw% ^
-D BUILD_MODULE_FoundationClasses:BOOL=ON ^
-D BUILD_MODULE_ModelingAlgorithms:BOOL=%BUILD_MODULE_ModelingAlgorithms% ^
-D BUILD_MODULE_ModelingData:BOOL=%BUILD_MODULE_ModelingData% ^
-D BUILD_MODULE_Visualization:BOOL=%BUILD_MODULE_Visualization% ^
-D BUILD_PATCH:PATH="%BUILD_PATCH%" ^
-D BUILD_RELEASE_DISABLE_EXCEPTIONS:BOOL=%BUILD_RELEASE_DISABLE_EXCEPTIONS% ^
-D BUILD_WITH_DEBUG:BOOL=%BUILD_WITH_DEBUG% ^
-D BUILD_ENABLE_FPE_SIGNAL_HANDLER:BOOL=%BUILD_ENABLE_FPE_SIGNAL_HANDLER% ^
-D BUILD_USE_PCH:BOOL=%BUILD_USE_PCH% ^
-D INSTALL_DIR:PATH="%INSTALL_DIR%" ^
-D USE_D3D:BOOL=%USE_D3D% ^
-D USE_FFMPEG:BOOL=%USE_FFMPEG% ^
-D USE_FREEIMAGE:BOOL=%USE_FREEIMAGE% ^
-D USE_GLES2:BOOL=%USE_GLES2% ^
-D USE_RAPIDJSON:BOOL=%USE_RAPIDJSON% ^
-D USE_TBB:BOOL=%USE_TBB% ^
-D USE_VTK:BOOL=%USE_VTK% ^
"%SrcRoot%"
popd
endlocal

86
adm/scripts/cmake_gen.sh Executable file
View File

@@ -0,0 +1,86 @@
#!/bin/bash
# Auxiliary script for semi-automated building of OCCT using cmake.
# cmake_custom.sh should be configured with path to 3rd-parties.
# OCCT3RDPARTY and FREETYPE_DIR must be specified as mandatory dependencies.
ScriptDir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
SrcRoot="${ScriptDir}/../.."
INSTALL_DIR="$SrcRoot/install"
BUILD_DIR=build
DEB=
CMAKE_BUILD_TYPE=Release
if [ "$1" = "-d" ]; then
DEB=d
BUILD_DIR=${BUILD_DIR}-deb
CMAKE_BUILD_TYPE=Debug
fi
INSTALL_DIR_BIN=lin64/gcc/bin$DEB
INSTALL_DIR_LIB=lin64/gcc/lib$DEB
BUILD_ADDITIONAL_TOOLKITS=
BUILD_DOC_Overview=OFF
BUILD_Inspector=OFF
BUILD_LIBRARY_TYPE=Shared
BUILD_PATCH=
BUILD_RELEASE_DISABLE_EXCEPTIONS=ON
BUILD_WITH_DEBUG=OFF
BUILD_ENABLE_FPE_SIGNAL_HANDLER=ON
BUILD_MODULE_ApplicationFramework=ON
BUILD_MODULE_DataExchange=ON
BUILD_MODULE_Draw=ON
BUILD_MODULE_ModelingAlgorithms=ON
BUILD_MODULE_ModelingData=ON
BUILD_MODULE_Visualization=ON
USE_FFMPEG=OFF
USE_FREEIMAGE=OFF
USE_GLES2=OFF
USE_RAPIDJSON=OFF
USE_TBB=OFF
USE_VTK=OFF
AUX_ARGS=
if [ -f "${ScriptDir}/cmake_custom.sh" ]; then
. "${ScriptDir}/cmake_custom.sh"
fi
BUILD_DIR="$SrcRoot/$BUILD_DIR"
if [ ! -d "$BUILD_DIR" ]; then mkdir -p "$BUILD_DIR"; fi
pushd "$BUILD_DIR"
cmake -G "Unix Makefiles" \
-D CMAKE_BUILD_TYPE=$CMAKE_BUILD_TYPE \
-D 3RDPARTY_DIR:PATH="$OCCT3RDPARTY" \
-D 3RDPARTY_FREETYPE_DIR:PATH="$FREETYPE_DIR" \
-D BUILD_ADDITIONAL_TOOLKITS:STRING="$BUILD_ADDITIONAL_TOOLKITS" \
-D BUILD_DOC_Overview:BOOL=$BUILD_DOC_Overview \
-D BUILD_Inspector:BOOL=$BUILD_Inspector \
-D BUILD_LIBRARY_TYPE:STRING=$BUILD_LIBRARY_TYPE \
-D BUILD_MODULE_ApplicationFramework:BOOL=$BUILD_MODULE_ApplicationFramework \
-D BUILD_MODULE_DataExchange:BOOL=$BUILD_MODULE_DataExchange \
-D BUILD_MODULE_Draw:BOOL=$BUILD_MODULE_Draw \
-D BUILD_MODULE_FoundationClasses:BOOL=ON \
-D BUILD_MODULE_ModelingAlgorithms:BOOL=$BUILD_MODULE_ModelingAlgorithms \
-D BUILD_MODULE_ModelingData:BOOL=$BUILD_MODULE_ModelingData \
-D BUILD_MODULE_Visualization:BOOL=$BUILD_MODULE_Visualization \
-D BUILD_PATCH:PATH="$BUILD_PATCH" \
-D BUILD_RELEASE_DISABLE_EXCEPTIONS:BOOL=$BUILD_RELEASE_DISABLE_EXCEPTIONS \
-D BUILD_WITH_DEBUG:BOOL=$BUILD_WITH_DEBUG \
-D BUILD_ENABLE_FPE_SIGNAL_HANDLER:BOOL=$BUILD_ENABLE_FPE_SIGNAL_HANDLER \
-D INSTALL_DIR:PATH="$INSTALL_DIR" \
-D INSTALL_DIR_LAYOUT:STRING=Windows \
-D INSTALL_DIR_BIN:STRING=$INSTALL_DIR_BIN \
-D INSTALL_DIR_LIB:STRING=$INSTALL_DIR_LIB \
-D USE_FFMPEG:BOOL=$USE_FFMPEG \
-D USE_FREEIMAGE:BOOL=$USE_FREEIMAGE \
-D USE_GLES2:BOOL=$USE_GLES2 \
-D USE_RAPIDJSON:BOOL=$USE_RAPIDJSON \
-D USE_TBB:BOOL=$USE_TBB \
-D USE_VTK:BOOL=$USE_VTK \
$AUX_ARGS "$SrcRoot"
popd

165
adm/scripts/wasm_build.bat Normal file
View File

@@ -0,0 +1,165 @@
@echo OFF
rem Auxiliary script for semi-automated building of OCCT for WASM platform.
rem wasm_custom.bat should be configured with paths to CMake, 3rd-parties and Emscripten SDK.
rem FreeType should be specified as mandatory dependency.
set "aSrcRoot=%~dp0..\.."
set "aBuildRoot=work"
set aNbJobs=%NUMBER_OF_PROCESSORS%
set "toCMake=1"
set "toClean=0"
set "toMake=1"
set "toInstall=1"
set "BUILD_ModelingData=ON"
set "BUILD_ModelingAlgorithms=ON"
set "BUILD_Visualization=ON"
set "BUILD_ApplicationFramework=ON"
set "BUILD_DataExchange=ON"
rem Configuration file
if exist "%~dp0wasm_custom.bat" call "%~dp0wasm_custom.bat"
call "%EMSDK_ROOT%\emsdk_env.bat"
set "aToolchain=%EMSDK%/upstream/emscripten/cmake/Modules/Platform/Emscripten.cmake"
set "anOcctVerSuffix="
set "anOcctVersion=0.0.0"
set "aGitBranch="
for /f tokens^=2^ delims^=^" %%i in ('findstr /b /c:"#define OCC_VERSION_DEVELOPMENT" "%aSrcRoot%\src\Standard\Standard_Version.hxx"') do ( set "anOcctVerSuffix=%%i" )
for /f tokens^=2^ delims^=^" %%i in ('findstr /b /c:"#define OCC_VERSION_COMPLETE" "%aSrcRoot%\src\Standard\Standard_Version.hxx"') do ( set "anOcctVersion=%%i" )
for /f %%i in ('git symbolic-ref --short HEAD') do ( set "aGitBranch=%%i" )
call :cmakeGenerate
if not ["%1"] == ["-nopause"] (
pause
)
goto :eof
:cmakeGenerate
set "aPlatformAndCompiler=wasm"
set "aWorkDir=%aSrcRoot%\%aBuildRoot%\%aPlatformAndCompiler%-make"
set "aDestDir=%aSrcRoot%\%aBuildRoot%\%aPlatformAndCompiler%"
set "aLogFile=%aSrcRoot%\%aBuildRoot%\build-%aPlatformAndCompiler%.log"
if not exist "%aWorkDir%" ( mkdir "%aWorkDir%" )
if exist "%aLogFile%" ( del "%aLogFile%" )
rem include some information about OCCT into archive
echo ^<pre^>> "%aWorkDir%\VERSION.html"
git status >> "%aWorkDir%\VERSION.html"
git log -n 100 >> "%aWorkDir%\VERSION.html"
echo ^</pre^>>> "%aWorkDir%\VERSION.html"
echo Start building OCCT for %aPlatformAndCompiler%
echo Start building OCCT for %aPlatformAndCompiler%>> %aLogFile%
pushd "%aWorkDir%"
set aTimeZERO=%TIME%
if ["%toCMake%"] == ["1"] (
echo "Configuring OCCT for WASM..."
cmake -G "MinGW Makefiles" ^
-D CMAKE_TOOLCHAIN_FILE:FILEPATH="%aToolchain%" ^
-D CMAKE_BUILD_TYPE:STRING="Release" ^
-D BUILD_LIBRARY_TYPE:STRING="Static" ^
-D INSTALL_DIR:PATH="%aDestDir%" ^
-D INSTALL_DIR_INCLUDE:STRING="inc" ^
-D INSTALL_DIR_RESOURCE:STRING="src" ^
-D 3RDPARTY_FREETYPE_DIR:PATH="%aFreeType%" ^
-D 3RDPARTY_FREETYPE_INCLUDE_DIR_freetype2:FILEPATH="%aFreeType%/include" ^
-D 3RDPARTY_FREETYPE_INCLUDE_DIR_ft2build:FILEPATH="%aFreeType%/include" ^
-D BUILD_MODULE_FoundationClasses:BOOL="ON" ^
-D BUILD_MODULE_ModelingData:BOOL="%BUILD_ModelingData%" ^
-D BUILD_MODULE_ModelingAlgorithms:BOOL="%BUILD_ModelingAlgorithms%" ^
-D BUILD_MODULE_Visualization:BOOL="%BUILD_Visualization%" ^
-D BUILD_MODULE_ApplicationFramework:BOOL="%BUILD_ApplicationFramework%" ^
-D BUILD_MODULE_DataExchange:BOOL="%BUILD_DataExchange%" ^
-D BUILD_MODULE_Draw:BOOL="OFF" ^
-D BUILD_DOC_Overview:BOOL="OFF" ^
"%aSrcRoot%"
if errorlevel 1 (
popd
exit /B 1
goto :eof
)
)
set aTimeGEN=%TIME%
call :computeDuration %aTimeZERO% %aTimeGEN%
if ["%toCMake%"] == ["1"] (
echo Generation time: %DURATION%
echo Generation time: %DURATION%>> "%aLogFile%"
)
if "%toClean%"=="1" (
mingw32-make clean
)
if "%toMake%"=="1" (
echo Building...
mingw32-make -j %aNbJobs% 2>> "%aLogFile%"
if errorlevel 1 (
popd
exit /B 1
goto :eof
)
type "%aLogFile%"
)
set aTimeBUILD=%TIME%
call :computeDuration %aTimeGEN% %aTimeBUILD%
if "%toMake%"=="1" (
echo Building time: %DURATION%
echo Building time: %DURATION%>> "%aLogFile%"
)
call :computeDuration %aTimeZERO% %aTimeBUILD%
if "%toMake%"=="1" (
echo Total building time: %DURATION%
echo Total building time: %DURATION%>> "%aLogFile%"
)
if "%toInstall%"=="1" (
echo Installing into %aDestDir%...
mingw32-make install 2>> "%aLogFile%"
copy /Y "%aWorkDir%\VERSION.html" "%aDestDir%\VERSION.html"
)
set aTimeINSTALL=%TIME%
call :computeDuration %aTimeBUILD% %aTimeINSTALL%
if "%toInstall%"=="1" (
echo Install time: %DURATION%
echo Install time: %DURATION%>> "%aLogFile%"
)
call :computeDuration %aTimeZERO% %aTimeINSTALL%
echo Total time: %DURATION%
echo Total time: %DURATION%>> "%aLogFile%"
popd
goto :eof
:computeDuration
set aTimeFrom=%1
set aTimeEnd=%2
rem handle time before 10AM (win10 - remove empty space at the beginning)
if "%aTimeFrom:~0,1%"==" " set "aTimeFrom=%aTimeFrom:~1%"
if "%aTimeEnd:~0,1%"==" " set "aTimeEnd=%aTimeEnd:~1%"
rem handle time before 10AM (win7 - add 0 at the beginning)
if "%aTimeFrom:~1,1%"==":" set "aTimeFrom=0%aTimeFrom%"
if "%aTimeEnd:~1,1%"==":" set "aTimeEnd=0%aTimeEnd%"
rem convert hours:minutes:seconds:ms into duration
set /A aTimeFrom=(1%aTimeFrom:~0,2%-100)*360000 + (1%aTimeFrom:~3,2%-100)*6000 + (1%aTimeFrom:~6,2%-100)*100 + (1%aTimeFrom:~9,2%-100)
set /A aTimeEnd= (1%aTimeEnd:~0,2%-100)*360000 + (1%aTimeEnd:~3,2%-100)*6000 + (1%aTimeEnd:~6,2%-100)*100 + (1%aTimeEnd:~9,2%-100)
set /A aDurTotalSec=%aTimeEnd%-%aTimeFrom%
if %aTimeEnd% LSS %aTimeFrom% set set /A aDurTotalSec=%aTimeFrom%-%aTimeEnd%
set /A aDurHH=%aDurTotalSec% / 360000
set /A aDurMM=(%aDurTotalSec% - %aDurHH%*360000) / 6000
set /A aDurSS=(%aDurTotalSec% - %aDurHH%*360000 - %aDurMM%*6000) / 100
if %aDurHH% LSS 10 set aDurHH=0%aDurHH%
if %aDurMM% LSS 10 set aDurMM=0%aDurMM%
if %aDurSS% LSS 10 set aDurSS=0%aDurSS%
set "DURATION=%aDurHH%:%aDurMM%:%aDurSS%"
goto :eof

126
adm/scripts/wasm_build.sh Executable file
View File

@@ -0,0 +1,126 @@
#!/bin/bash
# Auxiliary script for semi-automated building of OCCT for WASM platform.
# wasm_custom.sh should be configured with paths to CMake, 3rd-parties and Emscripten SDK.
# FreeType should be specified as mandatory dependency.
export aScriptDir="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
export aSrcRoot="${aScriptDir}/../.."
export aBuildRoot=work
export aNbJobs=${NUMBER_OF_PROCESSORS}
export toCMake=1
export toClean=0
export toMake=1
export toInstall=1
export BUILD_ModelingData=ON
export BUILD_ModelingAlgorithms=ON
export BUILD_Visualization=ON
export BUILD_ApplicationFramework=ON
export BUILD_DataExchange=ON
if [ -f "${aScriptDir}/wasm_custom.sh" ] ; then
. "${aScriptDir}/wasm_custom.sh"
fi
. "${EMSDK_ROOT}/emsdk_env.sh"
export aToolchain="${EMSDK}/upstream/emscripten/cmake/Modules/Platform/Emscripten.cmake"
export aGitBranch=`git symbolic-ref --short HEAD`
echo "Compilation OCCT branch : $aGitBranch"
export aPlatformAndCompiler=wasm
export aWorkDir="${aSrcRoot}/${aBuildRoot}/${aPlatformAndCompiler}-make"
if [ ! -d "${aWorkDir}" ]; then
mkdir -p "${aWorkDir}"
fi
export aDestDir="${aSrcRoot}/${aBuildRoot}/${aPlatformAndCompiler}"
if [ ! -d "${aDestDir}" ]; then
mkdir -p "${aDestDir}"
fi
export aLogFile="${aSrcRoot}/${aBuildRoot}/build-${aPlatformAndCompiler}.log"
if [ -f "${aLogFile}" ]; then
rm "${aLogFile}"
fi
echo Start building OCCT for ${aPlatformAndCompiler}
echo Start building OCCT for ${aPlatformAndCompiler}>> "${aLogFile}"
pushd "${aWorkDir}"
pwd
echo toCMake=${toCMake}
if [ "${toCMake}" = "1" ]; then
echo "Configuring OCCT for WASM..."
echo cmake -G "Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE:FILEPATH="${aToolchain}" \
-DCMAKE_BUILD_TYPE:STRING="Release" \
-DBUILD_LIBRARY_TYPE:STRING="Static" \
-DINSTALL_DIR:PATH="${aDestDir}" \
-DINSTALL_DIR_INCLUDE:STRING="inc" \
-DINSTALL_DIR_RESOURCE:STRING="src" \
-D3RDPARTY_FREETYPE_DIR:PATH="$aFreeType" \
-D3RDPARTY_FREETYPE_INCLUDE_DIR_freetype2:FILEPATH="$aFreeType/include" \
-D3RDPARTY_FREETYPE_INCLUDE_DIR_ft2build:FILEPATH="$aFreeType/include" \
-DBUILD_MODULE_FoundationClasses:BOOL="ON" \
-DBUILD_MODULE_ModelingData:BOOL="${BUILD_ModelingData}" \
-DBUILD_MODULE_ModelingAlgorithms:BOOL="${BUILD_ModelingAlgorithms}" \
-DBUILD_MODULE_Visualization:BOOL="${BUILD_Visualization}" \
-DBUILD_MODULE_ApplicationFramework:BOOL="${BUILD_ApplicationFramework}" \
-DBUILD_MODULE_DataExchange:BOOL="${BUILD_DataExchange}" \
-DBUILD_MODULE_Draw:BOOL="OFF" \
-DBUILD_DOC_Overview:BOOL="OFF" "${aSrcRoot}"
cmake -G "Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE:FILEPATH="${aToolchain}" \
-DCMAKE_BUILD_TYPE:STRING="Release" \
-DBUILD_LIBRARY_TYPE:STRING="Static" \
-DINSTALL_DIR:PATH="${aDestDir}" \
-DINSTALL_DIR_INCLUDE:STRING="inc" \
-DINSTALL_DIR_RESOURCE:STRING="src" \
-D3RDPARTY_FREETYPE_DIR:PATH="$aFreeType" \
-D3RDPARTY_FREETYPE_INCLUDE_DIR_freetype2:FILEPATH="$aFreeType/include" \
-D3RDPARTY_FREETYPE_INCLUDE_DIR_ft2build:FILEPATH="$aFreeType/include" \
-DBUILD_MODULE_FoundationClasses:BOOL="ON" \
-DBUILD_MODULE_ModelingData:BOOL="${BUILD_ModelingData}" \
-DBUILD_MODULE_ModelingAlgorithms:BOOL="${BUILD_ModelingAlgorithms}" \
-DBUILD_MODULE_Visualization:BOOL="${BUILD_Visualization}" \
-DBUILD_MODULE_ApplicationFramework:BOOL="${BUILD_ApplicationFramework}" \
-DBUILD_MODULE_DataExchange:BOOL="${BUILD_DataExchange}" \
-DBUILD_MODULE_Draw:BOOL="OFF" \
-DBUILD_DOC_Overview:BOOL="OFF" "${aSrcRoot}"
if [ $? -ne 0 ]; then
echo "Problem during configuration"
popd
exit 1
fi
fi
if [ "${toClean}" = "1" ]; then
make clean
fi
if [ "${toMake}" = "1" ]; then
echo Building...
make -j ${aNbJobs} 2>> "${aLogFile}"
if [ $? -ne 0 ]; then
echo "Problem during make operation"
popd
exit 1
fi
echo "${aLogFile}"
fi
if [ "${toInstall}" = "1" ]; then
echo Installing into ${aDestDir}
make install 2>> "${aLogFile}"
fi
popd

View File

@@ -0,0 +1,16 @@
rem Environment configuration template for occ_build_wasm.bat (to be renamed as wasm_custom_env.bat)
set "aFreeType=%aSrcRoot%\..\3rdparty\freetype-2.7.1-wasm"
set "EMSDK_ROOT=%aSrcRoot%\..\emsdk"
rem Uncomment to customize building steps
rem set "aBuildRoot=work"
rem set "toCMake=1"
rem set "toClean=0"
rem set "toMake=1"
rem set "toInstall=1"
rem set "BUILD_ModelingData=ON"
rem set "BUILD_ModelingAlgorithms=ON"
rem set "BUILD_Visualization=ON"
rem set "BUILD_ApplicationFramework=ON"
rem set "BUILD_DataExchange=ON"

View File

@@ -0,0 +1,16 @@
# environment configuration template for occ_build_wasm.sh (to be renamed as wasm_custom_env.sh)
export aFreeType="$aSrcRoot/../3rdparty/freetype-2.7.1-wasm"
export EMSDK_ROOT="$aSrcRoot/../emsdk"
# Uncomment to customize building steps
#export aBuildRoot=work
#export toCMake=1
#export toClean=0
#export toMake=1
#export toInstall=1
#export BUILD_ModelingData=ON
#export BUILD_ModelingAlgorithms=ON
#export BUILD_Visualization=ON
#export BUILD_ApplicationFramework=ON
#export BUILD_DataExchange=ON

View File

@@ -21,6 +21,7 @@ set (OpenCASCADE_DEVELOPMENT_VERSION "@OCC_VERSION_DEVELOPMENT@")
# This is made to support different locations of CMake files:
# - in UNIX style: $INSTALL_DIR/lib/cmake/opencascade-<version>
# - in Windows style: $INSTALL_DIR/cmake
# - in Android style: $INSTALL_DIR/libs/$CMAKE_ANDROID_ARCH_ABI/cmake/opencascade-<version>
get_filename_component (OpenCASCADE_INSTALL_PREFIX "${CMAKE_CURRENT_LIST_FILE}" PATH)
get_filename_component (OpenCASCADE_INSTALL_PREFIX "${OpenCASCADE_INSTALL_PREFIX}" PATH)
if (OpenCASCADE_INSTALL_PREFIX MATCHES "/cmake$")
@@ -29,6 +30,10 @@ endif()
if (OpenCASCADE_INSTALL_PREFIX MATCHES "/lib$")
get_filename_component (OpenCASCADE_INSTALL_PREFIX "${OpenCASCADE_INSTALL_PREFIX}" PATH)
endif()
if (OpenCASCADE_INSTALL_PREFIX MATCHES "/libs/${CMAKE_ANDROID_ARCH_ABI}$")
get_filename_component (OpenCASCADE_INSTALL_PREFIX "${OpenCASCADE_INSTALL_PREFIX}" PATH)
get_filename_component (OpenCASCADE_INSTALL_PREFIX "${OpenCASCADE_INSTALL_PREFIX}" PATH)
endif()
# Set OpenCASCADE paths to headers, binaries, libraries, resources, tests, samples, data
set (OpenCASCADE_BINARY_DIR "${OpenCASCADE_INSTALL_PREFIX}/@INSTALL_DIR_BIN@")

38
adm/templates/build.bat Normal file
View File

@@ -0,0 +1,38 @@
@echo off
setlocal
rem Setup environment
call "%~dp0env.bat" %1 %2 %3
rem Define path to project file
set "PRJFILE=%~dp0OCCT.sln"
if "%VCVER%" == "vc8" (
call "%VS80COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc9" (
call "%VS90COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc10" (
call "%VS100COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc11" (
call "%VS110COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc12" (
call "%VS120COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc14" (
call "%VS140COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc141" (
call "%VS141COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc142" (
call "%VS142COMNTOOLS%/vsvars32.bat" > nul
) else (
echo Error: wrong VS identifier
exit /B
)
set BUILDCONFIG=Release
if "%CASDEB%"=="i" set BUILDCONFIG=RelWithDebInfo
if "%CASDEB%"=="d" set BUILDCONFIG=Debug
if "%ARCH%"=="32" set PLATFORM=win32
if "%ARCH%"=="64" set PLATFORM=x64
msbuild "%PRJFILE%" /m /fl /flp:LogFile="build_%BUILDCONFIG%.log" /p:Configuration=%BUILDCONFIG% /p:Platform=%PLATFORM% /p:BuildProjectReferences=false
endlocal

38
adm/templates/install.bat Normal file
View File

@@ -0,0 +1,38 @@
@echo off
setlocal
rem Setup environment
call "%~dp0env.bat" %1 %2 %3
rem Define path to project file
set "PRJFILE=%~dp0INSTALL.vcxproj"
if "%VCVER%" == "vc8" (
call "%VS80COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc9" (
call "%VS90COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc10" (
call "%VS100COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc11" (
call "%VS110COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc12" (
call "%VS120COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc14" (
call "%VS140COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc141" (
call "%VS141COMNTOOLS%/vsvars32.bat" > nul
) else if "%VCVER%" == "vc142" (
call "%VS142COMNTOOLS%/vsvars32.bat" > nul
) else (
echo Error: wrong VS identifier
exit /B
)
set BUILDCONFIG=Release
if "%CASDEB%"=="i" set BUILDCONFIG=RelWithDebInfo
if "%CASDEB%"=="d" set BUILDCONFIG=Debug
if "%ARCH%"=="32" set PLATFORM=win32
if "%ARCH%"=="64" set PLATFORM=x64
msbuild "%PRJFILE%" /m /fl /flp:LogFile="install_%BUILDCONFIG%.log" /p:Configuration=%BUILDCONFIG% /p:Platform=%PLATFORM% /p:BuildProjectReferences=false
endlocal

View File

@@ -45,6 +45,7 @@ dev_guides/git_guide/git_guide.md
dev_guides/tests/tests.md
dev_guides/debug/debug.md
dev_guides/upgrade/upgrade.md
dev_guides/visualization/pbr_math.md
dev_guides/building/building.md
dev_guides/building/3rdparty/3rdparty_windows.md

View File

@@ -26,5 +26,6 @@ dev_guides/contribution/coding_rules.md
dev_guides/git_guide/git_guide.md
dev_guides/tests/tests.md
dev_guides/upgrade/upgrade.md
dev_guides/visualization/pbr_math.md
tutorial/tutorial.md

View File

@@ -11,6 +11,10 @@ The following documents provide information on OCCT building, development and te
* @subpage occt_dev_guides__tests "Automatic Testing system"
* @subpage occt_dev_guides__debug "Debugging tools and hints"
The following documents provide information on OCCT algorithms background:
* @subpage occt_dev_guides__pbr_math "Physically-based Rendering math (PBR for rasterization)"
The following guide provides information relevant to upgrading applications developed with previous versions of OCCT, to recent one:
* @subpage occt_dev_guides__upgrade "Upgrade from previous OCCT versions"

View File

@@ -1979,3 +1979,13 @@ After the change, extended variant:
Previously, sub-classes of *Message_Printer* have to provide a triplet of *Message_Printer::Send()* methods accepting different string representations: TCollection_AsciiString, TCollection_ExtendedString and Standard_CString.
*Message_Printer* interface has been changed, so that sub-classes now have to implement only single method *Message_Printer::send()* accepting TCollection_AsciiString argument and having no Endl flag, which has been removed.
Old three Message_Printer::Send() methods remain defined virtual with unused last argument and redirecting to new send() method by default.
@subsection upgrade_750_prd3d_root Prs3d_Root deprecation
Redundant class Prs3d_Root has been marked as deprecated - Prs3d_Presentation::NewGroup() should be called directly.
@subsection upgrade_750_draw_hotkeys Draw Harness hotkeys
Draw Harness hotkeys **W** (Wireframe) and **S** (Shaded) have been re-mapped to **Ctrl+W** and **Ctrl+S**.
Hotkey **A** has been remapped to **Backspace**.
Hotkeys WASD and Arrays are now mapped for walk-through navigation in 3D Viewer.

View File

@@ -0,0 +1,777 @@
PBR math (rasterization) {#occt_dev_guides__pbr_math}
========================
@tableofcontents
# Preface
**Empirical** illumination models like **Phong reflection model** have been used in real-time graphics for a long time due to their simplicity, convincing look and affordable performance.
Before programmable pipeline has been introduced, graphics cards implemented Gouraud shading as part of fixed-function Transformation & Lighting (T&L) hardware blocks.
Nowadays, however, numerous trade-offs of this simplicity (like lighting partially baked into object material properties and others) pushed developers to **Physically-Based Rendering** (**PBR**) illumination models.
PBR models try to fit surface shading formulas into constrains of physical laws of light propagation / absorption / reflection - hence, called "physically-based".
There are two main categories of PBR illumination:
1. Non-real-time renderer (cinematic).
2. Real-time renderer.
The main objective of cinematic renderer is uncompromised quality, so that it relies on ray-tracing (path-tracing) rendering pipeline.
Although performance of current graphics hardware does not make it possible using computationally-intensive path-tracing renderer in real-time graphics, it can be used in interactive fashion.
"Physically-based" does not necessarily mean physically-correct/precise.
The main objective of real-time PBR renderer is to be fast enough even on low-end graphics hardware.
So that in contrast, it hardly relies on rasterization rendering pipeline, various approximations and tricks making it applicable in real-time, while looking good enough and preserving some physical properties.
OCCT 3D Viewer provides both kinds of PBR renderers, and although they share some details in common, this article is devoted to real-time PBR metallic-roughness illumination model.
This article describes the math underneath PBR shading in OCCT 3D Viewer and its GLSL programs.
However, this article does not clarifies related high-level APIs nor PBR material creation pipelines, as this is another topic.
# Notation
| | | |
|-:|:-|:-|
| \f$n\f$ | normal (on surface) | \f$\|n\|=1\f$ |
| \f$v\f$ | view direction | \f$\|v\|=1\f$ |
| \f$l\f$ | light | \f$\|l\| = 1\f$ |
| \f$h=\frac{v+l}{\|v + l\|}\f$ | half vector | |
| \f$m\f$ | metallic factor | \f$[0, 1]\f$ |
| \f$r\f$ | roughness factor | \f$[0, 1]\f$ |
| \f$IOR\f$ | index of refraction | \f$[1, 3]\f$ |
| \f$c\f$ | albedo color | \f$(R, G, B)\f$ |
\f$\cos\theta_l=(n \cdot l)\f$
\f$\cos\theta_v=(n \cdot v)\f$
\f$\cos\theta_h=(n \cdot h)\f$
\f$\cos\theta_{vh}=(v \cdot h)\f$
# Illumination model
The main goal of illumination model is to calculate outgoing light radiance \f$L_o\f$ along the certain direction.
The starting point of calculation might be the view direction \f$v\f$ aimed from point on surface (or in more general case just in space) to viewer position.
Considering the point on opaque surface with normal \f$n\f$ the main equation of illumination can be defined as:
\f[L_o=\int\limits_H f(v, l) L_i(l) \cos\theta_l\, \mathrm{d}l\f]
Where \f$L_i(l)\f$ is light radiance coming from \f$l\f$ direction, \f$f(v,l)\f$ is **Bidirectional Reflectance Distribution Function** (**BRDF**) and \f$H\f$ is hemisphere which is oriented regarding to the surface normal \f$n\f$.
Opaqueness of the surface mentioned earlier is important because in that case hemisphere is enough.
More general model will require to consider directions all around a whole sphere and is not observed in this paper.
\f$\cos\theta_l\f$ factor appearing is caused by affection of surface area and light direction mutual orientation to the amount of radiance coming to this area.
This is mainly due to geometric laws. The rest part of integral is the key of the whole illumination model.
BRDF defines it's complexity and optical properties of material.
It has to model all light and material interactions and also has to satisfy some following criteria in order to be physical correct:
* Positivity: \f$f(v,l) \geq 0\f$
* Helmholtz reciprocity: \f$f(v,l) = f(l, v)\f$ (follows from 2<sup>nd</sup> Law of Thermodynamics)
* Energy conservation: \f$\displaystyle \forall v \, \int\limits_H f(v,l) \cos\theta_l \, \mathrm{d}l = 1\f$ (in order not to reflect more light than came)
It is worth to be mentioned that \f$f(v,l)\f$ depends on \f$n\f$ also but it is omitted to simplify notation. BRDF is usually split into two parts:
\f[f(v,l) = f_d(v,l)+f_s(v, l)\f]
Where \f$f_s(v, l)\f$ (specular BRDF) models reflection light interaction on surface and \f$f_d(v,l)\f$ (diffuse BRDF) models other processes happening depth in material (subsurface scattering for example).
So that illumination equation might be rewritten as:
\f[L_o=\int\limits_H (f_d(v,l)+f_s(v, l)) L_i(l) \cos\theta_l\, \mathrm{d}l\f]
PBR theory is based on **Cook-Torrance specular BRDF**. It imagines surface as set of perfectly reflected micro faces distributed on area in different ways which is pretty good model approximation of real world materials.
If this area is small enough not to be able to recognize separate micro surfaces the results becomes a sort of averaging or mixing of every micro plane illumination contribution.
In that level it allows to work with micro faces in statistical manner manipulating only probabilities distributions of micro surfaces parameters such as normals, height, pattern, orientation etc.
In computer graphics pixels are units of images and it usually covers a relatively large areas of surfaces so that micro planes can be considered to be unrecognizable.
Going back to the BRDF the Cook-Torrance approach has the following expression:
\f[f_s(v,l)=\frac{DGF}{4\cos\theta_l\cos\theta_v}\f]
Three parts presented in nominator have its own meaning but can have different implementation with various levels of complexity and physical accuracy.
In that paper only one certain implementation is used. The \f$D\f$ component is responsible for **micro faces normals distribution**.
It is the main instrument that controls reflection's shape and strength according to **roughness** \f$r\f$ parameter.
The implementation with good visual results is **Trowbridge-Reitz GGX** approach used in Disney's RenderMan and Unreal Engine:
\f[D=\frac{\alpha^2}{\pi(\cos^2\theta_h(\alpha^2-1) + 1)^2}\f]
Where \f$\alpha = r^2\f$. This square in needed only for smoother roughness parameter control.
Without it the visual appearance of surface becomes rough too quickly during the parameter's increasing.
The second \f$G\f$ component is called **geometric shadowing** or attenuation factor.
The point is that micro surfaces form kind of terrain and can cast shadows over each other especially on extreme viewing angles.
**Schlick's model** has been chosen as implementation:
\f[\displaystyle G=\frac{\cos\theta_l \cos\theta_v}{(\cos\theta_l(1-k)+k)(\cos\theta_v(1-k)+k)}\f]
Where \f$k=\frac{\alpha}{2}\f$, which means \f$k=\frac{r^2}{2}\f$ in terms of this paper.
But \f$G\f$ depends on many factors so that it's approximations has float nature and can be modified a little bit in some cases in order to get more pleasant visual results.
One of this modification will be described later in following chapters.
The last component \f$F\f$ shows **how much light is reflected from surface** and is called **Fresnel's factor**.
The rest amount of radiance might be absorbed or refracted by material.
The most accurate expression of it is pretty complicate for calculation so that there is a variety of approximations.
The good one with less computation efforts is **Schlick's implementation**:
\f[F=F_0+(1-F_0)(1-\cos\theta_{vh})^5\f]
Here \f$F_0\f$ is material's response coefficient at normal incidence (zero angle).
Fresnel's factor has to be calculated differently for metals and dielectric/non-metals, but PBR theory tries to come up with universal formula for all types of material.
In order to do that it is needed to be noticed that Schlick's approximation is applicable only to non-conductors and in that case \f$F_0 = F_{dielectric} = \left(\frac{1-IOR}{1+IOR}\right)^2\f$.
**Index of Refraction** \f$IOR\f$ shows the proportion between light speed in vacuum (or even in air) and in material.
The reference value of \f$IOR\f$ for plastic is **1.5**, and this value can be considered as default for all unknown dielectrics.
In practice this parameter controls reflectance ability of material.
Also it should be remembered that this approximation produces poor results with large \f$IOR\f$ values so that it is recommended to be kept in range of \f$[1, 3]\f$ in order to get plausible Fresnel's factor.
This formula might be further propagated onto metals by using \f$F_0\f$ measured specifically for certain metal.
It can be considered as some kind of a 'color' of metal and can be stored as albedo parameter \f$c\f$.
And the final step of defining Fresnel's factor formula is mixing all this \f$F_0\f$ using metallic parameter \f$m\f$ (**metalness**):
\f[F_0 = F_{dielectric}(1-m)+cm\f]
For pure dielectrics with \f$m=0\f$ exactly Schlick's approximation will be used.
For pure metals with \f$m=1\f$ it will be a little inaccurate but the same formula with measured \f$F_0\f$ values.
Everything else for \f$m \in (0, 1)\f$ is not physically correct and it is recommended to keep \f$m\f$ exactly 1 or 0.
Intermediate values may represent mixed areas for smooth transition between materials - like partially rusted metal (rust is mostly dielectric).
Also it might be useful when parameters are read from textures with filtering and smoothing.
BRDF described above has one important trait making computations easier called **isotropy**.
Isotropy in this case means independence from rotation about normal resulting from supposition of uniform micro faces distribution at any direction along a surface.
It allows to simplify random samples generation during Monte-Carlo integrals calculation and reduce dimensions of some lookup tables, which will be discussed in following chapters.
Of course, isotropic materials form only subset of all real world's materials, but this subset covers majority of cases.
There are special models considering special anisotropic traits of surfaces like a grinding of metal or other with dependency on rotation about normal;
these models require special calculation tricks and additional parameters and are out of scope of this paper.
The only thing left to do is to define \f$f_d(v,l)\f$.
This part is responsible for processes happening in depth of material.
First of all the amount of input light radiance participating in these processes is needed to be calculated.
And it exactly can be realized from already known Fresnel's factor \f$F\f$ showing amount of reflected light but in negative term in this case in order to get the radiance left after reflection:
\f[1-F\f]
This part of ingoing light is assumed to be refracted in depth of surface and variety of events may happen there.
A sequence of absorptions, reflections and reemissions more or less leads to light's subsurface scattering.
Some part of this scattered light can go back outside but in modified form and in pretty unpredictable directions and positions.
For opaque materials this part is noticeable and forms it's own color.
If subsurface's paths of light are small enough and points of output are distributed locally around the input point it's possible to work in statistical way similar to the micro faces.
This assumption covers a big amount of real world opaque materials.
Other materials like skin, milk etc. with noticeable effect of subsurface scattering usually presented in form of partial translucency and some kind of self emission
have more widely distributed output points and require more accurate and complicate ways of modeling with maybe some theory and techniques from volumetric rendering.
The simple but visually enough assuming for statistically driven type of materials is just the same radiance for any direction. It results to **Lambertian's BRDF**:
\f[\frac{c}{\pi}\f]
Where \f$\pi\f$ is normalization coefficient in order to meet BRDF's criteria and \f$c\f$ is material's own color formed by adventures of light under surface.
There is one detail about light interaction bringing some physicality to the model, and that is an absence of this diffuse component in metals.
Metals reflect main part of light and the rest of it is absorbed being transformed into other form (mostly heat).
That is the main visual difference between metallic and non-metallic materials realizing of which brings model to higher level of quality in compare to older non-physical models.
So that all parts described above can be combined into united diffuse BRDF:
\f[f_d(v,l) = (1-F)(1-m)\frac{c}{\pi}\f]
\f$m\f$ is recommended to be exactly 1 or 0 but all values between can represent transition areas, as mentioned before.
In this chapter one possible implementation of illumination model reflecting main PBR principles has been defined.
The next step is using of it in practice.
# Practical application
It's time to apply deduced illumination model in practice.
And the first step of it is separation of **direction based light sources** from illumination integral.
Directional nature of such light sources means possibility to calculate it's influence to point of surface using only one direction and its intensity.
Usually sources of this type do not have physical size and are represented only by position in space (for point or spot lights) or by direction itself (direction light imagined to be too far point sources like sun).
This is just a kind of abstraction, while real world light emitters have noticeably sizes.
But sources with realistic form and size cannot be presented in discrete term and require continuous integrals calculations or special approximations in order to be accurately injected to the model.
In most cases direct based light sources in form of emitting points in space or just certain directions are good approximations and are enough for beginning.
Having finite discrete amount of it in scene and considering only single direction from every of these lights, the integral is transformed just to the sum:
\f[L_{direct} = \sum_{j=1}^M f(v, l_j) L_i^{direct}(l_j) \cos\theta_{l_j}\f]
Where \f$M\f$ is a number of sources, \f$l_j\f$ is a direction and \f$L_i^{direct}\f$ is an intensity related to this direction.
\f$direct\f$ label means that illumination has been computed directly from sources.
The BRDF can be used directly without any calculation problems.
The only exception might be \f$k\f$ in \f$G\f$ factor - it is recommended to be equal \f$\frac{(r+1)^2}{8}\f$ in order to get more pleasant results (that is modification mentioned in previous chapter).
And actually it is enough to finally see something.
There will be correct visualization with assumption of complete dark environment and absence of other points influence.
It is called **local illumination**. Based on this name there is also a global or **indirect illumination** and that is the rest of integral:
\f[L_{indirect} = \int\limits_H f(v, l) L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
It includes influence of light reflected or scattered from other points and environment's contribution.
It's impossible to achieve photorealistic results without this component, but is is also very difficult to compute.
While the cross point light interaction cannot be calculated in a simple way (especially in real time rendering), the environment illumination has some options to be realized via precomputational work before visualization.
But right now lets summarize the practical application of illumination model.
At this moment the output radiance is represented as:
\f[L_o = L_{direct} + L_{indirect}\f]
Where \f$L_{direct}\f$ is direction based light sources contribution which can be directly computed just applying bare formulas.
It is enough to get some results in terms of local illumination but without \f$L_{indirect}\f$ component image will not be looked lifelike.
\f$L_{indirect}\f$ is not trivial thing for calculation and that is stumbling block for real time rendering applications.
But it can be relatively easy implemented in case of environment illumination via some precomputational work about which will be told in details in following chapters.
# Image based lighting
The next goal after \f$L_{direct}\f$ calculation is to find \f$L_{indirect}\f$.
And it would be easier if \f$L_i^{indirect}(l)\f$ was known for every \f$l\f$.
That is the main assumption of **image based lightning** (**IBL**).
In practice, it can be achieved using environment image map, which is a special image representing illumination from all possible directions.
This image might be a photo capturing a real world environment (spherical 360 degrees panoramas) or generated image baking the 3D scene itself, including in that case reflections of other objects.
Environment image might be packed in different ways - **cube maps** and equirectangular maps are the most commonly used.
Anyway, it allows \f$L_i^{indirect}(l)\f$ to be defined for every \f$l\f$ and its practical implementation in form of images gives name for this approach.
Lets back to indirect illumination integral:
\f[L_{indirect} = \int\limits_H f(v, l) L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
Substituting the BRDF by its expression allows to split indirect illumination into diffuse and specular components:
\f[L_{indirect} = \int\limits_H f_d(v,l)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l + \int\limits_H f_s(v,l)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l = \f]
\f[= (1-m)\frac{c}{\pi}\int\limits_H (1-F)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l + \frac{1}{4}\int\limits_H \frac{DFG}{\cos\theta_l \cos\theta_v}L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l\f]
This splitting seems not to lead to simplicity of calculation but these two parts will be computed in slightly different ways in future.
Lets write down this separately:
\f[L_{indirect}^d = (1-m)\frac{c}{\pi}\int\limits_H (1-F)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l\f]
\f[L_{indirect}^s = \frac{1}{4}\int\limits_H \frac{DFG}{\cos\theta_v \cos\theta_l} L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
Next transformations of these expressions require understanding of numerical way to find hemisphere integral and also its performance optimization techniques.
And that the topic of the next chapter.
# Monte-Carlo numeric integration
**Monte-Carlo** is one of numeric methods to **find integral**.
It is based on idea of mathematical expectation calculation.
In one dimensional case if \f$f(x)\f$ is a function with parameter distributed according to probability density \f$p(x)\f$ the mathematical expectation of it can be found using following expression:
\f[E = \int\limits_{-\infty}^\infty f(x) p(x)\, \mathrm{d}x\f]
Also this expectation can be approximated in statistical term using certain sequence of random variable \f$x\f$:
\f[E \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)\f]
It can be used in general definite integrals calculations.
Just valid \f$p(x)\f$ defined on \f$[a, b]\f$ range and sequence \f$x_i\f$ generated according to it are needed for that:
\f[\int\limits_a^b f(x)\, \mathrm{d}x = \int\limits_a^b \frac{f(x)}{p(x)}p(x)\, \mathrm{d}x = \int\limits_{-\infty}^{\infty} \frac{f(x)}{p(x)}p(x)\, \mathrm{d}x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}\f]
Where \f$f(x)\f$ is considered to be equal to zero outside of \f$[a, b]\f$ range.
This is also true for functions on sphere or hemisphere:
\f[\int\limits_{H|S} f(l)\, \mathrm{d}l \approx \frac{1}{N}\sum_{i=1}^{N} \frac{f(l_i)}{p(l_i)}\f]
The main questions are choosing \f$p(l)\f$ and generating samples \f$l_i\f$.
The one of the simple ways is uniform distribution along sphere or hemisphere.
Lets realize that on sphere for example.
There are \f$4\pi\f$ possible directions in terms of sphere's areas and steradians (direction can be presented as dot on a unit sphere):
\f[\int\limits_S 1\, \mathrm{d}l = 4\pi\f]
Where \f$S\f$ is the unit sphere.
In order to be uniform \f$p(l)\f$ must be constant and satisfy normalization criteria:
\f[\int\limits_S p(l)\, \mathrm{d}l = 1\f]
So that \f$p(l) = \frac{1}{4\pi}\f$.
Usually direction \f$l\f$ is parametrized by spherical coordinates \f$\phi \in [0, 2\pi]\f$ and \f$\theta \in [0, \pi]\f$ boiling down to the 2D samples generation.
But in these terms joint \f$p(\theta, \phi)\f$ will be looked slightly different due to variables transition.
\f$l\f$ is defined in regular Cartesian coordinates \f$l=(x, y, z)\f$ with \f$\|l\| = 1\f$.
The spherical coordinates transform looks like:
\f[x = r\sin\theta\cos\phi,\, y = r\sin\theta\sin\phi,\, z = r\cos\theta\f]
Where \f$r = 1\f$.
In order to express probability density using new variables it is needed to multiply this density by Jacobian of transform:
\f[p(\theta,\phi) = p(l)|J_T|\f]
Where:
\f[|J_T| = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi} \end{vmatrix} = r^2\sin\theta\f]
So that joint probability density in new variables looks like:
\f[p(\theta, \phi) = \frac{\sin\theta}{4\pi}\f]
This variable transfer rule of **Probability Density Function** (**PDF**) will be useful in following chapters, when integral calculation optimization techniques will be being told.
Having \f$p(\theta, \phi)\f$ the partial single dimensional probability densities are able to be found:
\f[p(\phi) = \int\limits_0^\pi p(\theta, \phi)\, \mathrm{d}\theta = \frac{1}{4\pi} \int\limits_0^\pi \sin\theta\, \mathrm{d}\theta = \frac{1}{2\pi}\f]
\f[p(\theta) = \int\limits_0^{2\pi} p(\theta, \phi)\, \mathrm{d}\phi = \frac{\sin\theta}{4\pi}\int\limits_0^{2\pi}1\, \mathrm{d}\phi = \frac{\sin\theta}{2}\f]
The final step is sequence generation itself.
In order to be able to generate values with arbitrary distributions it is helpful to start from uniform numbers in range of \f$[0, 1]\f$.
And that can be done via any known true- and pseudo- random generators.
Even simple \f$\frac{1}{i}\f$ sequence is appropriate for beginning but it can be not so efficient in terms of computations convergence.
There are specially designed series for the last reason and it will be tackled in chapter about optimizations.
The \f$\phi\f$ variable is noticed to be uniformly distributed so that it can be directly generated without any additional manipulations.
Just range \f$[0, 1]\f$ is needed to be mapped to range \f$[0, 2\pi]\f$.
For any other variables including \f$\theta\f$ the inverse transform sampling approach can be applied.
First of all **cumulative distribution function** (**CDF**) is needed to be found.
It is probability of random value to be less than argument of this functions by definition.
For continues distributions it can be expressed in following form:
\f[F(x) = \int\limits_{-\infty}^x p(x')\, \mathrm{d}x'\f]
Lets find CDF for \f$\theta\f$:
\f[F(\theta) = \int\limits_{-\infty}^\theta p(\theta')\, \mathrm{d}\theta' = \int\limits_0^\theta \frac{\sin\theta'}{2}\, \mathrm{d}\theta' = \frac{1-\cos\theta}{2}\f]
The CDF maps \f$\theta\f$ values from range of \f$[0, \pi]\f$ to probability in range of \f$[0, 1]\f$.
The next step is to find inverse cumulative function which can be not so trivial sometimes but pretty obvious in current case:
\f[F^{-1}(u) = \arccos(1-2u)\f]
If substitute uniform distributed in range \f$[0, 1]\f$ values \f$u\f$ as argument of this function the values with origin probability density will appear.
In other words:
\f[\theta = \arccos(1 - 2u),\, u \in [0, 1],\, p(u) = 1 \Rightarrow p(\theta) = \frac{\sin\theta}{2}\f]
That is the key of this random values generation technique.
All steps described above can be also done for hemisphere:
\f[p(l) = \frac{1}{2\pi}\f]
\f[p(\theta, \phi) = \frac{\sin\theta}{2\pi}\f]
\f[p(\phi) = \int\limits_0^\frac{\pi}{2} p(\theta, \phi)\, \mathrm{d}\theta = \frac{1}{2\pi} \int\limits_0^\frac{\pi}{2} \sin\theta\, \mathrm{d}\theta = \frac{1}{2\pi}\f]
\f[p(\theta) = \int\limits_0^{2\pi} p(\theta, \phi)\, \mathrm{d}\phi = \frac{\sin\theta}{2\pi}\int\limits_0^{2\pi}1\, \mathrm{d}\phi = \sin\theta\f]
\f[\theta = \arccos(1-u)\f]
Mote-Carlo integration cannot guarantee exact estimation of convergence speed with using random generated samples.
There is only probability estimation of it.
But this algorithm is pretty universal and relatively simple to be applied to almost any function using at least uniform distributed points.
Moreover special \f$p(l)\f$ can be chosen and special pseudo-random sequences can be designed in order to speed up convergence for some functions (following chapter talk about that in details).
That is why this method is widely used in computer graphics and demonstrates good results.
Also another one advantage is worth to be mentioned - possibility to iteratively accumulate computations and present intermediate results during rendering which is used in some ray tracing applications.
# Split sum
Lets go back to the image based lighting and the figure of specular component.
As was defined before that is hemisphere integral with following expression:
\f[L_{indirect}^s = \frac{1}{4}\int\limits_H \frac{DFG}{\cos\theta_v \cos\theta_l} L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
The Monte-Carlo integration algorithm can be directly applied:
\f[L_{indirect}^s = \int\limits_H f_s(v, l)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l \approx \frac{1}{N}\sum_{i=1}^N \frac{f_s(v, l_i) L_i^{indirect}(l_i) \cos\theta_{l_i}}{p(v, l_i)}\f]
\f$p(v, l_i)\f$ depends on \f$v\f$ and implicitly on \f$r\f$ in order to be completely general.
Optimization strategies use different samples distributions for different view direction orientations and roughness values.
Anyway even with all optimization techniques this algorithm continues to require too much calculations.
Good visual results require noticeable number of samples and using this approach for every point in real time rendering becomes unrealistic.
The way to avoid these enormous calculations is doing them beforehand somehow.
The first trick on the way to this is split the sum separating environment light component:
\f[L_{indirect}^s \approx \frac{1}{N} \sum_{i=1}^N \frac{f_s(v, l_i) L_i^{indirect}(l_i) \cos\theta_{l_i}}{p(v, l_i)} \approx \left( \frac{1}{N} \sum_{i=1}^N L_i^{indirect}(l_i) \right) \left( \frac{1}{N} \sum_{i=1}^N \frac{f_s(v, l_i) \cos\theta_{l_i}}{p(v, l_i)} \right)\f]
Where the second brackets represent approximation of integral so that the expression can be rewritten as:
\f[L_{indirect}^s \approx \frac{1}{N} \sum_{i=1}^N \frac{f_s(v, l_i) L_i^{indirect}(l_i) \cos\theta_{l_i}}{p(v, l_i)} \approx \left( \frac{1}{N} \sum_{i=1}^N L_i^{indirect}(l_i) \right) \int\limits_H f_s(v, l) \cos\theta_l\, \mathrm{d}l\f]
This integral is exact \f$L_{indirect}^s\f$ in condition when \f$L_i^{indirect}(l) = 1\f$ what just means white uniform environment.
The sum before it is kind of averaged environment illumination.
The main accomplishment after all this manipulations is possibility to calculate light and BRDF components separately.
The sum with \f$L_i^{indirect}(l_i)\f$ can be computed beforehand for every normal direction and stored to image called specular map but with some valuable details.
The problem is that \f$l_i\f$ samples must be generated according to \f$p(v, l_i)\f$ distribution depended on \f$v\f$ and \f$r\f$ as was mentioned earlier.
Variation of normal is not enough in that case and these variables are needed to be considered too.
The ways to resolve it are topic of one of the following chapters and now understanding the fact that at least this part can be precomputed before rendering is enough for now.
And it is important not to miss out that there is no more BRDF influence in this sum and only \f$p(v, l)\f$ can affect in this case.
That is why it is so important to strict to PDF during samples generation and that is why \f$p(v, l)\f$ must be correlated with BRDF somehow in this approximation approach with splitting.
For example completely mirroring materials with \f$r = 0\f$ will not be looked as expected if just uniform distribution is used
because such surfaces have only one possible direction from which light can be reflected along view direction in compare with \f$N\f$ absolutely scattered in case of uniform or many other distributions.
The rest part also can be saved to image. Lets unroll its expression:
\f[\int\limits_H f_s(v, l) \cos\theta_l\, \mathrm{d}l = \int\limits_H \frac{DGF}{4\cos\theta_v \cos\theta_l} \cos\theta_l\, \mathrm{d}l\f]
This integral is not actually a scalar.
That is RGB value due to only \f$F\f$ factor and even more only to \f$F_0\f$.
In order to simplify future computations \f$F_0\f$ is needed to be moved out of integral.
Substitution of Schlick's approximation helps to achieve it:
\f[F = F_0+(1-F_0)(1-\cos\theta_{vh})^5 = F_0(1-(1-\cos\theta_{vh})^5) + (1-\cos\theta_{vh})^5\f]
\f[\int\limits_H \frac{DGF}{\cos\theta_v \cos\theta_l} \cos\theta_l\, \mathrm{d}l = F_0 \int\limits_H \frac{DG}{4\cos\theta_v \cos\theta_l} (1-(1-\cos\theta_{vh})^5) \cos\theta_l\, \mathrm{d}l + \int\limits_H \frac{DG}{4\cos\theta_v \cos\theta_l} (1-\cos\theta_{vh})^5 \cos\theta_l\, \mathrm{d}l\f]
This form may not look easier, but it has several advantages.
The first one is independence from globally defined \f$L_i^{indirect}(l)\f$, so that normal orientation does not matter and can be set in any handful way for calculations (Z axis for example).
The second one results from isotropic illumination system allowing \f$\phi\f$ component of view vector to be set arbitrarily (0 for example) and \f$\cos\theta_v\f$ will be enough to define view direction.
And the third one is scalar nature of integrals so that only two precomputed numbers are needed to find BRDF part of \f$L_{indirect}^s\f$.
Considering dependency of these integrals from \f$\cos\theta_v\f$ and \f$r\f$ both of it can be precomputed and stored to 2D look-up image variating these two parameters in range \f$[0, 1]\f$ with two channels consisting of scale and bias for \f$F_0\f$.
Current result for \f$L_{indirect}^s\f$ is computing it using 2D image for BRDF part and omnidirectional image for environment illumination.
There were a lot of words about Monte-Carlo optimizations techniques and about PDF choice which is important not only in terms of numeric integration but in terms of visual results correctness.
It's time to talk about that.
# Importance sampling
Current goal is to speed up Monte-Carlo integration of Cook-Torrance like integrals with following expression:
\f[\int\limits_H \frac{DG}{4\cos\theta_v \cos\theta_l} g(v, l) \cos\theta_l\, \mathrm{d}l\f]
Where \f$g(v, l)\f$ is just arbitrary function representing Fresnel's factor itself or its components.
In order to increase convergence the samples with larger contribution (or in other words with larger function's values) have to appear more frequently than others proportionally to its contribution.
So that less significant summand with less influence to result will be considered rarely and in opposite way parts brining noticeable changes to the sum will be taken often.
That is the main idea of **importance sampling technique**.
\f$p(l)\f$ has to represent significance of sample in terms of integrated function via probability somehow.
And it will be like that if PDF is already part of original function because in that case probability density directly affects to contribution forming.
Separating this distribution component is one possible and effective way to realize importance sampling strategy.
In integral presented above PDF part already exists and that is \f$D\f$ component.
But it is distribution of micro faces normals or ideally reflection direction or \f$h\f$ in other word and not light directions distribution which is needed in fact.
Anyway that is good starting point and lets generate \f$h\f$ vectors first.
\f$D\f$ has the following expression:
\f[D=\frac{\alpha^2}{\pi(\cos^2\theta_h(\alpha^2-1) + 1)^2}\f]
Frankly speaking \f$D(h)\f$ is called normal distribution but cannot be directly used as hemisphere distribution.
Originally it is statistical factor used to define total area of micro faces \f$\mathrm{d}A_h\f$
whose normals lie withing given infinitesimal solid angle \f$\mathrm{d}h\f$ centered on \f$h\f$ direction using the original small enough area of macro surface \f$\mathrm{d}A\f$:
\f[dA_h = D(h)\,\mathrm{d}h\, \mathrm{d}A\f]
First of all this factor must be positive:
\f[D(h) \geq 0\f]
But the total area of micro faces landscape is at least equal to origin surface but even bigger in general:
\f[1 \leq \int\limits_H D(h)\, \mathrm{d}h\f]
This trait does not allow to use \f$D\f$ as hemisphere distribution.
But it can be fixed with following feature:
\f[\forall v\, \int\limits_H D(h)(v \cdot h)\, \mathrm{d}h = (v \cdot n)\f]
Which means that total area of micro faces projected to any direction must be the same as projected area of origin macro surface.
It is pretty tricky trait in \f$D\f$ definition but it leads to interesting results in condition when \f$v = n\f$:
\f[\int\limits_H D(h)\cos\theta_h\, \mathrm{d}h = 1\f]
So that \f$\cos\theta_h\f$ coefficient normalizes normal distribution in terms of hemisphere and allows to use it as distribution.
Finally PDF of half vectors can be wrote:
\f[p(\theta_h, \phi_h) = D\cos\theta_h\sin\theta_h = \frac{\alpha^2 \cos\theta_h\sin\theta_h}{\pi(\cos^2\theta_h(\alpha^2-1) + 1)^2}\f]
\f$\sin\theta_h\f$ results from spherical coordinate system transfer which was described in Monte-Carlo integration chapter.
Lets strict to samples generation procedure and find partial probability densities:
\f[p(\phi_h) = \int\limits_0^\frac{\pi}{2} p(\theta_h, \phi_h)\, \mathrm{d}\theta_h = \int\limits_0^\frac{\pi}{2} \frac{\alpha^2 \cos\theta_h\sin\theta_h}{\pi(\cos^2\theta_h(\alpha^2-1) + 1)^2}\, \mathrm{d}\theta = \frac{1}{2\pi}\f]
\f[p(\theta_h) = \int\limits_0^{2\pi} p(\theta_h, \phi_h)\, \mathrm{d}\phi_h = \int\limits_0^{2\pi} \frac{\alpha^2 \cos\theta_h\sin\theta_h}{\pi(\cos^2\theta_h(\alpha^2-1) + 1)^2}\, \mathrm{d}\phi = \frac{2 \alpha^2 \cos\theta_h\sin\theta_h}{(\cos^2\theta_h(\alpha^2-1) + 1)^2}\f]
\f$p(\phi_h)\f$ is unnecessary to be calculated analytically.
The fact of independency from \f$\phi\f$ is enough to figure out that this coordinate is uniformly distributed.
Anyway the \f$F(\theta_h)\f$ is next step:
\f[F(\theta_h) = \int\limits_0^{\theta_h} \frac{2 \alpha^2 \cos\theta'_h\sin\theta'_h}{(\cos^2\theta'_h(\alpha^2-1) + 1)^2}\, \mathrm{d}\theta'_h = \int\limits_{\theta_h}^0 \frac{2 \alpha^2}{(\cos^2\theta'_h(\alpha^2-1) + 1)^2}\, \mathrm{d}(\cos^2\theta'_h) = \frac{\alpha^2}{\alpha^2-1}\int\limits_0^{\theta_h} \mathrm{d}\frac{1}{\cos^2\theta'_h(\alpha^2-1)+1} =\f]
\f[ = \frac{\alpha^2}{\alpha^2-1} \left( \frac{1}{\cos^2\theta_h(\alpha^2-1) + 1} - \frac{1}{\alpha^2} \right) = \frac{\alpha^2}{\cos^2\theta_h(\alpha^2-1)^2+(\alpha^2-1)} - \frac{1}{\alpha^2-1}\f]
In order to apply inverse transform sampling the \f$F^{-1}(u)\f$ is needed to be found:
\f[F^{-1}(u) = \theta_h = \arccos\sqrt{\frac{1-u}{u(\alpha^2-1)+1}}\f]
So that there is no more obstacles to generate \f$h\f$.
But the main goal was \f$l\f$ direction.
In order to get it the view vector \f$v\f$ has to be reflected related to already found \f$h\f$:
\f[l = 2(v \cdot h)h - v\f]
That is practical side of light direction generation.
But the theoretical one is needed to be resolved to calculate sum.
It is time to find \f$p(l)\f$ using known \f$p(h)\f$.
First of all the fact that \f$l\f$ is just transformed \f$h\f$ is needed to be understood.
In that way the light direction's PDF has following expression:
\f[p(l) = p(h)|J_T|\f]
Where \f$|J_T|\f$ is Jacobian of reflection transformation.
Lets find it.
Right now \f$n\f$ is axis from which \f$\theta\f$ spherical coordinate is encountered.
The first step is setting \f$v\f$ as starting point of \f$\theta\f$ instead of \f$n\f$.
This is linear transform so that \f$|J_T| = 1\f$.
Next step is transfer to spherical coordinate with \f$|J_T| = \sin\theta_{vh}\f$.
Due to previous step \f$\theta_{vh}\f$ is used instead of \f$\theta_h\f$.
In this coordinate system reflecting of \f$v\f$ relative to \f$h\f$ is just doubling \f$\theta_{vh}\f$ and Jacobian of it is equal to \f$\frac{1}{2}\f$.
In series of transform the Jacobians are multiplied so that currently \f$|J_T| = \frac{1}{2}\sin\theta_{vh}\f$.
And the final step is inverse transform to Cartesian coordinate system with \f$|J_T| = (\sin\theta_{vl})^{-1} = (\sin2\theta_{vh})^{-1}\f$.
Combining this all together the following expression is obtained for reflection transform Jacobian:
\f[|J_T| = \frac{\sin\theta_{vh}}{2\sin2\theta_{vh}} = \frac{\sin\theta_{vh}}{4\sin\theta_{vh}\cos\theta_{vh}} = \frac{1}{4\cos\theta_{vh}}\f]
And finally \f$p(l)\f$ looks like:
\f[p(l) = p(h)|J_T| = \frac{D\cos\theta_h}{4\cos\theta_{vh}}\f]
Lets go back to the Monte-Carlo sum and insert found result to it:
\f[\int\limits_H \frac{DG}{4\cos\theta_v \cos\theta_l} g(v, l) \cos\theta_l\, \mathrm{d}l \approx \frac{1}{N} \sum_{i=1}^N \frac{DG\, g(v, l_i) \cos\theta_{l_i}}{4\cos\theta_v \cos\theta_{l_i}\, p(l_i)} = \frac{1}{N} \sum_{i=1}^N \frac{G\, g(v, l_i) \cos\theta_{l_i} \cos\theta_{vh_i}}{\cos\theta_v \cos\theta_{l_i} \cos\theta_{h_i}}\f]
Here \f$G\f$ component is recommended to be calculated with original \f$k=\frac{\alpha}{2} = \frac{r^2}{2}\f$ in order to get more plausible result.
Of course, all \f$\cos\f$ must be clamped to range \f$[0, 1]\f$ because integral is calculated on a hemisphere and all expressions are defined on it.
\f$\cos\theta_v \cos\theta_{l_i}\f$ in denominator can be reduced with exactly the same part in geometric attenuation factor in order to avoid additional zero division cases.
Summarizing importance sampling strategy described above the convergence of Monte-Carlo integration can be improved using special PDF correlated with integrated function.
In case of BRDF with normal distribution functions \f$D\f$ the PDF producing procedure is defined.
Practically half vector \f$h\f$ is generated first and \f$l\f$ is obtained from it by view vector \f$v\f$ reflecting.
Due to this transformation final form of probability density used in sum is quite different but also has defined algorithm of calculation.
For isotropic Cook-Torrance BRDF the \f$\cos\theta_v\f$ and roughness \f$r\f$ are enough to start generation so that all integrals of that kind can be precalculated in 2D look-up tables variating these two parameters.
The same samples generation procedure must be used in specular map baking described in next chapter.
# Specular map
The situation with BRDF part of \f$L_{indirect}^s\f$ is clear now and \f$L_i^{indirect}(l)\f$ sum is left to be discussed.
That was called **specular map** and has following form:
\f[\frac{1}{N}\sum_{i=1}^N L_i^{indirect}(l_i)\f]
As was mentioned this sum must be calculated for every normal direction using the same samples generation principles as in numeric integration computation.
This principles require two scalar parameters \f$\cos\theta_v\f$ and \f$r\f$ but now \f$\phi\f$ really matters.
So that in fact the specular map has to be saved in 3D table consisting omnidirectional textures.
That is a big expense of computational and memory resources.
A couple of tricks helps to reduce dimensions.
First of all the \f$\cos\theta_v\f$ and \f$\phi\f$ can be just excluded.
In that way \f$v\f$ is considered to be equal to \f$n\f$.
Of course this approach produces an error and affects the final result.
It can be fixed more or less by \f$\cos\theta_{l_i}\f$ weighting:
\f[\frac{1}{N} \sum_{i=1}^N L_i^{indirect}(l_i) \cos\theta_{l_i}\f]
It is not a complete solution but practice shows that it is enough to get plausible illumination with sacrificing of lengthy reflections at grazing angles which exist in fact if everything is honestly computed.
The problem is that for \f$v \neq n\f$ considering this sum to be defined related to \f$n\f$ became incorrect.
For example, for complete mirroring materials with \f$r = 0\f$ this sum must boil down to \f$L_i^{indirect}(v_r)\f$
but not to \f$L_i^{indirect}(n)\f$ where \f$v_r\f$ is just reflected \f$v\f$ or in other words \f$v_r = 2(v \cdot n)n - v\f$.
That it just mirroring reflection principle.
Assumption of \f$n = v\f$ also means that \f$n = v = v_r\f$.
In that way radiance map better to be considered as averaging of illumination coming from \f$v_r\f$.
So that it has become to be defined related to reflection direction which has to be calculated before map's fetching.
Anyway, there are just two dimensions in radiance look-up table remain.
The rest one with \f$r\f$ parameter cannot be reduced.
There is no other ways except just roughness variation but in order to simplify that computations can be done for several values and the rest ones lying between can be obtained from linear interpolation.
This is another source of visual artifacts but it also works good in practice and that is pretty common approach.
But it still requires noticeably amount of samples and that is for every pixel related to each \f$r\f$ value.
It can be appropriate for precomputations but still limits using dynamic environments in real time rendering or just even static environments but on weak devices such as mobile ones.
And there are several possible ways to improve radiance map baking performance.
The first one is using textures with smaller resolutions for larger roughnesses.
The point is that smaller \f$r\f$ values produce map saving more details from origin environment in opposite to larger ones representing lower frequency components and working as low pass filters in fact.
So less pixels in combination with linear interpolation is enough to store less detailed convolutions.
Moreover, this approach naturally works with textures levels of details in graphics API
so that every certain radiance map related to certain \f$r\f$ can be stored on its own mip level and be directly fetched with linear interpolation not only over one texture but over levels too.
As practice shows 6 levels are enough.
After reducing pixels count it is turn for samples number.
And again correlation with roughness can be noticed.
For example map for completely mirroring materials with \f$r = 0\f$ the same sample \f$l_i = v_r\f$ will be produced.
So that only one sample is enough in this case.
In opposite way directions for \f$r = 1\f$ will be scattered over almost whole hemisphere what requires as much samples as available.
The 'locality' of distribution is decreased during increasing roughness and it is possible to assume that samples number might to be proportional to this 'locality' keeping accuracy at the same level.
But how can 'locality' be interpreted in terms of probability distribution? One possible way is CDF meaning.
\f$F(\theta_h)\f$ has been already defined and by definition it shows the probability of random value \f$\theta_h\f$ to be less than argument of CDF.
In other words \f$F(\theta'_h) = u\f$ means that probability of \f$\theta_h\f$ to be in range of \f$[0, \theta'_h]\f$ is \f$u\f$.
The inverse task of range searching using given \f$u\f$ can be solved with help of \f$F^{-1}(u) = \theta'_h\f$.
If \f$u\f$ is close to 1 (exact 1 has no sense because in that case \f$\theta'_h = \max\theta_h = \frac{\pi}{2}\f$)
then \f$\theta'_h\f$ represents the range of the most probable or most frequently generated values and that can be interpreted as 'locality' of distribution.
After that if samples number of the worst case with \f$r = 1\f$ is set (\f$N(1) = \max N\f$) the other ones can be estimated using following formula:
\f[N(r) = N(1)\frac{\theta'_h(r)}{\frac{\pi}{2}} = N(1)\frac{2\theta'_h(r)}{\pi} = N(1)\frac{2F^{-1}(u)}{\pi} = N(1)\frac{2}{\pi}\arccos\sqrt{\frac{1-u}{u(\alpha^2-1)+1}}\f]
It is approximate expression representing only estimated general proportionality so that cases of \f$r = 0\f$ and \f$r = 1\f$ must be processed separately with \f$N(0) = 1\f$ and \f$N(1) = \max N\f$.
\f$u\f$ can be parameter of this optimization strategy controlling speed of samples reducing in order to balance performance and quality (\f$u = 1\f$ disables this optimization at all).
This pretty tricky technique allows reducing calculations for every pixels without sacrificing the quality.
In addition to optimizations mentioned before another one can be applied in order to help to reduce samples numbers as previous one.
Using less samples produces image noise due to discrete nature of Monte-Carlo approximation.
But it can be slightly smoothed using some prefiltration.
The idea is that for the directions with small PDF or in other words for rare directions the samples near of it is unlikely to be generated.
So that this direction represents the averaged illumination from relatively big area on hemisphere but approximate it by just a constant.
It wold be better to get from such direction already averaged over bigger area environment.
It can be achieved using mip levels of origin \f$L_i^{indirect}\f$ whose pixels of one level is exact 4 averaged pixels from previous one.
Also mip levels generation is build in most common graphic API so there are no problems with it.
But first of all the area covered by one sample is needed to be found.
And that can be done as:
\f[\Omega_s = \frac{1}{N\,p(l)} = \frac{4\cos\theta_{vh}}{ND\cos\theta_h}\f]
Circumstance of \f$v = v_r = n\f$ leads to \f$\cos\theta_{vh}\f$ and \f$\cos\theta_h\f$ reducing so expression becomes even simpler:
\f[\Omega_s =\frac{4}{ND}\f]
Of course all zero divisions must be avoided by clamping, for example.
After that the area covered by one pixel of environment map is calculated.
In case of a cube map it looks like:
\f[\Omega_p = \frac{4\pi}{6k^2}\f]
Where \f$k\f$ is size of one cube map side in pixels (sides are assumed to be quads).
Finally the mip level of origin environment map which is needed to be fetched for this certain sample is defined by following expression:
\f[lod = \frac{1}{2} \log_2\left(\frac{\Omega_s}{\Omega_p}\right)\f]
The mathematics connected with mip levels sizes lie behind it but this is out of scope of this paper.
In combination with previous optimization technique this approach allows \f$N(1)\f$ to be smaller keeping visual results good.
That is not all possible optimization tricks but at least these three significantly reduces compute efforts and brings radiance map calculation to weak devices or even to dynamic environments in real time but in reasonable limits.
In that way \f$L_{indirect}^s\f$ can be completely computed without any integral approximations.
Only 2D look-up table of BRDF part and mip mapped omnidirectional texture of irradiance map are needed.
The first one can be got even without any environment.
It was achieved using some rough approximations and assumptions but despite of that the visual result are still plausible and can be compared even with ray traced images.
In order to complete whole image based lighting the \f$L_{indirect}^d\f$ component is left to be discussed.
# Spherical harmonics
Lets go back to diffuse indirect illumination component represented by following formula:
\f[L_{indirect}^d = (1-m)\frac{c}{\pi}\int\limits_H (1-F)L_i^{indirect}(l)\cos\theta_l\, \mathrm{d}l\f]
Of course, Monte-Carlo algorithm can be applied directly and hemisphere integral can be precalculated for every normal direction
but dependence from \f$v\f$ in Fresnel's factor does not allow to do it efficiently (every \f$v\f$ direction is needed to be considered again).
In order to resolve it modified version of Schlick's approximation has been created:
\f[F \approx F_{ss}=F_0+(\max(1-r, F_0))(1-\cos\theta_v)^5\f]
It differs from origin one and loses accuracy a little bit but now there is no light direction inside
so that it can be considered as kind of screen space defined Fresnel's factor (\f$ss\f$ means exactly 'screen space') and can be removed from integral:
\f[L_{indirect}^d = (1-m)(1-F_{ss})\frac{c}{\pi} \int\limits_H L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
The resulted expression without \f$(1-m)\f$ and \f$(1-F_{ss})\f$ parts is pretty known entity called **irradiance**.
It can be precalculated using \f$\cos\theta_l\f$ as PDF for importance sampling (actually it is only option in this case excluding uniform distribution).
But even with that samples will be scattered almost over whole hemisphere.
As was discussed in previous chapter this case requires significant amount of samples in order to average illumination with appropriate quality.
Poor accuracy resulted from lack of summand can be noticed especially on high frequency environments having a lot of contrasting details.
It worth to be mentioned that irradiance is used not only in BRDF.
Omnidirectional diffuse illumination captured for certain point or even for several points uniformly or hierarchically distributed is base of some baking global illumination techniques.
There it is called a **light probe**. So that other way to compute and store irradiance maps was found resolving many mentioned problems.
The Fourier's decomposition analogue for spherical function allows to achieve this.
That would be easy to explain concept directly on example.
So lets start from \f$L_i^{indirect}(l)\f$.
It is spherical function because directions are just points on sphere.
The decomposition looks like:
\f[L_i^{indirect}(l) = \sum_{i = 0}^\infty \sum_{j=-i}^i L_i^j y_i^j(l)\f]
Where \f$y_i^j(l)\f$ are spherical functions forming orthonormalized basis called spherical harmonics and \f$L_i^j\f$ is decompositions coefficients.
Orthonormality means that dot product of two basis elements is equal to 1 if this is the same functions and is equal to zero otherwise.
Dot product on a sphere is defined as integral of functions multiplication. In other words:
\f[\int\limits_S y_i^j(l)\, y_{i'}^{j'}(l)\, \mathrm{d}l = \begin{cases} 1 & \quad i,j = i',j' \\ 0 & \quad \mathrm{otherwise}\end{cases}\f]
Function basis with such traits is known and is described by following formulas:
\f[y_i^{j > 0}(\theta, \phi) = \sqrt{2}K_i^j\cos(j\phi)P_i^j(\cos\theta)\f]
\f[y_i^{j<0}(\theta, \phi) = \sqrt{2}K_i^j\sin(j\phi)P_i^{|j|}(\cos\theta)\f]
\f[y_i^0(\theta, \phi) = K_i^0P_i^0(\cos\theta)\f]
\f[K_i^j = \sqrt{\frac{(2i+1)(i-|j|)!}{4\pi(i+|j|)!}}\f]
\f[P_0^0(x) = 1\f]
\f[P_1^0(x) = x\f]
\f[P_i^i(x) = (-1)^i(2i-1)!!(1-x^2)^\frac{i}{2}\f]
\f[P_i^j(x) = \frac{(2i-1)xP_{i-1}^j(x) - (i + j - 1)P_{i-2}^j}{i - j}\f]
Here \f$K_i^j\f$ are normalization factors and \f$P_i^j\f$ are **Legendre's polynomials**.
Decomposition coefficients \f$L_i^j\f$ are dot product of origin function (\f$L_i^{indirect}(l)\f$ in current case) and corresponding basis element. It can be written down as:
\f[L_i^j = \int\limits_S L_i^{indirect}(l)\,y_i^j(l)\, \mathrm{d}l\f]
Fact that all calculation happen over a sphere but not over hemisphere right now is important not to be missed.
That was example of spherical function decomposition but not a solution for original task which looks like:
\f[\int\limits_H L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l\f]
First of all, lets transform this integral to be defined not over hemisphere but sphere:
\f[\int\limits_H L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l = \int\limits_S L_i^{indirect}(l)\overline{\cos}\theta_l\, \mathrm{d}l\f]
Where \f$\overline{\cos}\f$ is cosine clamped to zero which can be expressed as:
\f[\overline{\cos}\theta_l = \max(\cos\theta_l, 0)\f]
Resulted expression can be considered as convolution in terms of spherical functions where \f$L_i^{indirect}(l)\f$ is target and \f$\overline{\cos}\theta_l\f$ is core.
This integral may seem independent but in fact hemisphere is oriented related to \f$n\f$ therefore \f$\overline{\cos}\theta_l\f$ depends on it too and became a kind of 'oriented' version of cosine.
That is pretty tricky and explanation about meaning of convolution on sphere is out of scope of this paper.
Fact that this is convolution analogue related to \f$n\f$ is enough for now.
The goal of looking at integral from this angle is using of convolution's trait allowing to compute decomposition using just only coefficients of function and core.
\f$\overline{\cos}\theta_l\f$ is independent from \f$\phi_l\f$ and in case of such radial symmetric cores the resulting coefficients boil down to following formula:
\f[(L_i^{indirect}(l) \ast \overline{\cos}\theta_l)_i^j = \frac{1}{K_i^0}L_i^j\, c_i^0 = \sqrt{\frac{4\pi}{2i+1}}L_i^j\, c_i^0\f]
Where \f$c_i^0\f$ are spherical harmonics factors corresponding to \f$\overline{\cos}\theta\f$.
Therefore the final decomposition looks like:
\f[\int\limits_{H(n)} L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l = \int\limits_S L_i^{indirect}(l)\overline{\cos}\theta_l\, \mathrm{d}l = \sum_{i=0}^\infty \sum_{j = -i}^i \sqrt{\frac{4\pi}{2i+1}}L_i^j\, c_i^0\, y_i^j(n)\f]
\f$c_i^0\f$ is left to be found.
Due to independence from \f$\phi\f$ all \f$c_i^{j \neq 0} = 0\f$.
The rest ones are calculated by regular dot product with basis functions:
\f[c_i^0 = c_i = \int\limits_S y_i^0(l)\, \overline{\cos}\theta_l\, \mathrm{d}l = \int\limits_0^{2\pi} \mathrm{d}\phi \int\limits_0^\pi y_i^0(\theta, \phi)\, \overline{\cos}\theta \sin\theta\, \mathrm{d}\theta = \int\limits_0^{2\pi} \mathrm{d}\phi \int\limits_0^\frac{\pi}{2} y_i^0(\theta, \phi)\, \cos\theta\sin\theta\, \mathrm{d}\theta = \f]
\f[= 2\pi\int\limits_0^\frac{\pi}{2} y_i^0(\theta, \phi)\, \cos\theta\sin\theta\, \mathrm{d}\theta = 2\pi K_i^0\int\limits_0^\frac{\pi}{2} P_i^0(\cos\theta)\, \cos\theta\sin\theta\, \mathrm{d}\theta\f]
\f$\sin\theta\f$ appears due to transfer from integral over sphere to double integral where \f$\mathrm{d}l = \sin\theta\, \mathrm{d}\theta\, \mathrm{d}\phi\f$.
There is an analytical solution for this expressions:
\f[c_1 = \sqrt{\frac{\pi}{3}}\f]
\f[c_{odd} = 0 \quad c_{even} = 2\pi\sqrt{\frac{2i+1}{4\pi}}\frac{(-1)^{\frac{i}{2}-1}}{(i+2)(i-1)}\frac{i!}{2^i\left(\frac{i!}{2}\right)^2}\f]
Starting from about the third \f$c_i\f$ the coefficients become less and less valuable so that only couple of them is enough in order to approximate \f$\overline{\cos}\theta\f$ with appropriate accuracy.
The same principle is true for convolution too because its coefficients are multiplied by \f$c_i\f$.
So there is no need to use more than even three bands (\f$i = 0, 1, 2\f$) of basis functions.
Lets write down them all in Cartesian coordinate system:
\f[y_0^0 = \frac{1}{2}\sqrt{\frac{1}{\pi}} = Y_0^0\f]
\f[y_1^{-1} = -\frac{1}{2}\sqrt{\frac{3}{\pi}}y = Y_1^{-1}y\f]
\f[y_1^0 = \frac{1}{2}\sqrt{\frac{3}{\pi}}z = Y_1^0z\f]
\f[y_1^1 = -\frac{1}{2}\sqrt{\frac{3}{\pi}}x = Y_1^1x\f]
\f[y_2^{-2} = \frac{1}{2}\sqrt{\frac{15}{\pi}}xy = Y_2^{-2}xy\f]
\f[y_2^{-1} = -\frac{1}{2}\sqrt{\frac{15}{\pi}}yz = Y_2^{-1}yz\f]
\f[y_2^0 = \frac{1}{4}\sqrt{\frac{5}{\pi}}(3z^2-1) = Y_2^0(3z^2-1)\f]
\f[y_2^1 = -\frac{1}{2}\sqrt{\frac{15}{\pi}}xz = Y_2^1xz\f]
\f[y_2^2 = \frac{1}{4}\sqrt{\frac{15}{\pi}}(x^2-y^2) = Y_2^2(x^2-y^2)\f]
All \f$Y_i^j\f$ are just constants so that it can be moved from integral during calculations and can be taken from precomputed table.
Other constants related to \f$c_i\f$ can be united and also be calculated beforehand:
\f[\hat{c}_i = \frac{1}{K_i^0}\, c_i = \sqrt{\frac{4\pi}{2i+1}}\, c_i\f]
Finally expression of irradiance map approximation can be defined:
\f[\int\limits_{H(n)} L_i^{indirect}(l) \cos\theta_l\, \mathrm{d}l \approx \sum_{i=0}^2 \sum_{j=-i}^i L_i^j\, \hat{c}_i\, y_i^j(n)\f]
Where \f$\hat{c}_i\f$ is precalculated constants \f$y_i^j(n)\f$ are pretty easy functions and only \f$L_i^j\f$ are needed to be precomputed.
Of course \f$L_i^j\f$ are integrals over even whole sphere but now there is only nine of it instead of one for every pixel of omnidirectional image.
Moreover, texture is not needed at all in that case and only 9 colors representing \f$L_i^j\f$ have to be saved.
The Monte-Carlo algorithm can be applied with just uniform samples distribution without importance sampling at all.
\f$Y_i^j\f$ are used twice: in \f$L_i^j\f$ calculations and in sum after that.
So there is sense to store only squares of it.
All tables with constants presented below:
| |
|-|
| \f$(Y_0^0)^2 \approx (0.282095)^2\f$ |
| \f$(Y_1^{-1})^2 = (Y_1^0)^2 = (Y_1^1)^2 \approx (0.488603)^2\f$ |
| \f$(Y_2^{-2})^2 = (Y_2^{-1})^2 = (Y_2^1)^2 \approx (1.092548)^2\f$ |
| \f$(Y_2^0)^2 \approx (0.315392)^2\f$ |
| \f$(Y_2^2)^2 \approx (0.546274)^2\f$ |
| | |
|-|-|
| \f$\hat{c}_0\f$ | \f$3.141593\f$ |
| \f$\hat{c}_1\f$ | \f$2.094395\f$ |
| \f$\hat{c}_2\f$ | \f$0.785398\f$ |
Summarizing all mathematics above spherical harmonics decomposition boils down irradiance map to only 9 values which is needed to be precalculated as integrals.
As practice shows this is very good approximation of diffuse indirect illumination component.
# Transparent materials
TODO
# Low discrepancy sequence
TODO

View File

@@ -26,7 +26,7 @@ This modular structure is illustrated in the diagram below.
* @ref OCCT_TOVW_SECTION_2 "Foundation Classes" module underlies all other OCCT classes;
* @ref OCCT_TOVW_SECTION_3 "Modeling Data" module supplies data structures to represent 2D and 3D geometric primitives and their compositions into CAD models;
* @ref OCCT_TOVW_SECTION_4 "Modeling Algorithms" module contains a vast range of geometrical and topological algorithms;
* @ref OCCT_TOVW_SECTION_4a "Mesh" module implements tessellated representations of objects;
* @ref OCCT_TOVW_SECTION_4a "Mesh" toolkit from "Modeling Algorithms" module implements tessellated representations of objects;
* @ref OCCT_TOVW_SECTION_5 "Visualization" module provides complex mechanisms for graphical data representation;
* @ref OCCT_TOVW_SECTION_6 "Data Exchange" module inter-operates with popular data formats and relies on @ref OCCT_TOVW_SECTION_6a "Shape Healing" to improve compatibility between CAD software of different vendors;
* @ref OCCT_TOVW_SECTION_7 "Application Framework" module offers ready-to-use solutions for handling application-specific data (user attributes) and commonly used functionality (save/restore, undo/redo, copy/paste, tracking CAD modifications, etc).
@@ -38,21 +38,20 @@ In addition, @ref OCCT_TOVW_SECTION_8 "Open CASCADE Test Harness", also called D
**Foundation Classes** module contains data structures and services used by higher-level Open CASCADE Technology classes:
* Primitive types, such as Boolean, Character, Integer or Real;
* String classes that handle ASCII and Unicode strings;
* String classes that handle Unicode strings;
* Collection classes that handle statically or dynamically sized aggregates of data, such as arrays, lists, queues, sets and hash tables (data maps).
* Classes providing commonly used numerical algorithms and basic linear algebra calculations (addition, multiplication, transposition of vectors and matrices, solving linear systems etc).
* Fundamental types representing physical quantities and supporting date and time information;
* Fundamental types like color, date and time information;
* Primitive geometry types providing implementation of basic geometric and algebraic entities that define and manipulate elementary data structures.
* Exception classes that describe situations, when the normal execution of program is abandoned;
This module also provides a variety of general-purpose services, such as:
* Safe handling of dynamically created objects, ensuring automatic deletion of unreferenced objects (smart pointers);
* Configurable optimized memory manager increasing the performance of applications that intensively use dynamically created objects;
* Standard and specialized memory allocators;
* Extended run-time type information (RTTI) mechanism maintaining a full type hierarchy and providing means to iterate over it;
* Encapsulation of C++ streams;
* Automated management of heap memory by means of specific allocators;
* Basic interpreter of expressions facilitating the creation of customized scripting tools, generic definition of expressions, etc.;
* Tools for dealing with configuration resource files and customizable message files facilitating multi-language support in applications;
* Tools for dealing with configuration resource files and customizable message files facilitating multi-language support in applications;
* Progress indication and user break interfaces, giving a possibility even for low-level algorithms to communicate with the user in a universal and convenient way;
* and many others...
@@ -62,28 +61,33 @@ See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-
@section OCCT_TOVW_SECTION_3 Modeling Data
**Modeling Data** supplies data structures to implement boundary representation (BRep) of objects in 3D. In BRep the shape is represented as an aggregation of geometry within topology. The geometry is understood as a mathematical description of a shape, e.g. as curves and surfaces (simple or canonical, Bezier, NURBS, etc). The topology is a data structure binding geometrical objects together.
**Modeling Data** supplies data structures to implement boundary representation (BRep) of objects in 3D.
In BRep the shape is represented as an aggregation of geometry within topology.
The geometry is understood as a mathematical description of a shape, e.g. as curves and surfaces (simple or canonical, Bezier, NURBS, etc).
The topology is a data structure binding geometrical objects together.
Geometry types and utilities provide geometric data structures and services for:
* Description of points, vectors, curves and surfaces:
* their positioning in 3D space using axis or coordinate systems, and
* their geometric transformation, by applying translations, rotations, symmetries, scaling transformations and combinations thereof.
* their positioning in 3D space using axis or coordinate systems, and
* their geometric transformation, by applying translations, rotations, symmetries, scaling transformations and combinations thereof.
* Creation of parametric curves and surfaces by interpolation and approximation;
* Algorithms of direct construction;
* Conversion of curves and surfaces to NURBS form;
* Computation of point coordinates on 2D and 3D curves;
* Calculation of extrema between geometric objects.
Topology defines relationships between simple geometric entities. A shape, which is a basic topological entity, can be divided into components (sub-shapes):
Topology defines relationships between simple geometric entities.
A shape, which is a basic topological entity, can be divided into components (sub-shapes):
* Vertex -- a zero-dimensional shape corresponding to a point;
* Edge -- a shape corresponding to a curve and bounded by a vertex at each extremity;
* Wire -- a sequence of edges connected by their vertices;
* Face -- a part of a plane (in 2D) or a surface (in 3D) bounded by wires;
* Shell -- a collection of faces connected by edges of their wire boundaries;
* Solid -- a finite closed part of 3D space bounded by shells;
* Compound solid -- a collection of solids connected by faces of their shell boundaries.
* Composite solid -- a collection of solids connected by faces of their shell boundaries;
* Compound -- a collection of shapes of arbitrary type.
Complex shapes can be defined as assemblies of simpler entities.
Complex shapes can be defined as assemblies (compounds) of simpler entities.
See the details in @ref occt_user_guides__modeling_data "Modeling Data User's Guide"
@@ -94,56 +98,56 @@ See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-
@section OCCT_TOVW_SECTION_4 Modeling Algorithms
**Modeling Algorithms** module groups a wide range of topological and geometric algorithms used in geometric modeling. Basically, there are two groups of algorithms in Open CASCADE Technology:
* High-level modeling routines used in the real design;
* Low-level mathematical support functions used as a groundwork for the modeling API;
**Modeling Algorithms** module groups a wide range of topological and geometric algorithms used in geometric modeling.
Basically, there are two groups of algorithms in Open CASCADE Technology:
* High-level modeling routines used in the real design;
* Low-level mathematical support functions used as a groundwork for the modeling API.
* Low-level geometric tools provide the algorithms, which:
* Calculate the intersection of two curves, surfaces, or a curve and a surface;
* Project points onto 2D and 3D curves, points onto surfaces and 3D curves onto surfaces;
* Construct lines and circles from constraints;
* Construct free-form curves and surfaces from constraints (interpolation, approximation, skinning, gap filling, etc);
Low-level *geometric tools* provide the algorithms, which:
* Calculate the intersection of two curves, surfaces, or a curve and a surface;
* Project points onto 2D and 3D curves, points onto surfaces and 3D curves onto surfaces;
* Construct lines and circles from constraints;
* Construct free-form curves and surfaces from constraints (interpolation, approximation, skinning, gap filling, etc).
* Low-level topological tools provide the algorithms, which:
* Tessellate shapes;
* Check correct definition of shapes;
* Determine the local and global properties of shapes (derivatives, mass-inertia properties, etc);
* Perform affine transformations;
* Find planes in which edges are located;
* Convert shapes to NURBS geometry;
* Sew connected topologies (shells and wires) from separate topological elements (faces and edges).
Low-level *topological tools* provide the algorithms, which:
* Tessellate shapes;
* Check correct definition of shapes;
* Determine the local and global properties of shapes (derivatives, mass-inertia properties, etc);
* Perform affine transformations;
* Find planes in which edges are located;
* Convert shapes to NURBS geometry;
* Sew connected topologies (shells and wires) from separate topological elements (faces and edges).
Top-level API provides the following functionality:
* Construction of Primitives:
* Boxes;
* Prisms;
* Cylinders;
* Cones;
* Spheres;
* Toruses.
* Kinematic Modeling:
* Prisms -- linear sweeps;
* Revolutions -- rotational sweeps;
* Pipes -- general-form sweeps;
* Lofting.
* Construction of Primitives:
* Boxes;
* Prisms;
* Cylinders;
* Cones;
* Spheres;
* Toruses.
* Kinematic Modeling:
* Prisms -- linear sweeps;
* Revolutions -- rotational sweeps;
* Pipes -- general-form sweeps;
* Lofting.
@figure{/technical_overview/images/0001.png "Shapes containing pipes with variable radius produced by sweeping"}
* Boolean Operations, which allow creating new shapes from the combinations of source shapes. For two shapes *S1* and *S2*:
* *Common* contains all points that are in *S1* and *S2*;
* *Fuse* contains all points that are in *S1* or *S2*;
* *Cut* contains all points in that are in *S1* and not in *S2*
* Boolean Operations, which allow creating new shapes from the combinations of source shapes. For two shapes *S1* and *S2*:
* *Common* contains all points that are in *S1* and *S2*;
* *Fuse* contains all points that are in *S1* or *S2*;
* *Cut* contains all points in that are in *S1* and not in *S2*.
See @ref occt_user_guides__boolean_operations "Boolean Operations" User's Guide for detailed documentation.
* Algorithms for local modifications such as:
* Hollowing;
* Shelling;
* Creation of tapered shapes using draft angles;
* Algorithms to make fillets and chamfers on shape edges, including those with variable radius (chord).
* Algorithms for local modifications such as:
* Hollowing;
* Shelling;
* Creation of tapered shapes using draft angles;
* Algorithms to make fillets and chamfers on shape edges, including those with variable radius (chord).
* Algorithms for creation of mechanical features, i.e. depressions, protrusions, ribs and grooves or slots along planar or revolution surfaces.
* Algorithms for creation of mechanical features, i.e. depressions, protrusions, ribs and grooves or slots along planar or revolution surfaces.
@figure{/technical_overview/images/0004.png}
@@ -151,17 +155,13 @@ See the details in @ref occt_user_guides__modeling_algos "Modeling Algorithms Us
See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-learning & Training</a> offerings.
@section OCCT_TOVW_SECTION_4a Mesh
@subsection OCCT_TOVW_SECTION_4a Mesh
**Mesh** module provides the functionality to work with tessellated representations of objects in form of triangular facets. This module contains:
**Mesh** toolkit provides the functionality to work with tessellated representations of objects in form of triangular facets. This toolkit contains:
- data structures to store surface mesh data associated to shapes and basic algorithms to handle them;
- data structures and algorithms to a build triangular surface mesh from *BRep* objects (shapes);
- data structures and algorithms to build triangular surface mesh from *BRep* objects (shapes);
- tools for displaying meshes with associated pre- and post-processor data (scalars or vectors).
Open CASCADE Technology includes two mesh converters:
- VRML converter translates Open CASCADE shapes to VRML 1.0 files (Virtual Reality Modeling Language). Two representation modes are possible: shaded, which presents shapes as sets of triangles computed by the mesh algorithm, or wireframe, which presents shapes as sets of curves.
- STL converter translates Open CASCADE shapes to STL files. STL (STtereoLithography) format is widely used for rapid prototyping (3D printing).
Open CASCADE SAS also offers Advanced Mesh Products:
- <a href="https://www.opencascade.com/content/mesh-framework">Open CASCADE Mesh Framework (OMF)</a>
- <a href="https://www.opencascade.com/content/express-mesh">Express Mesh</a>
@@ -170,61 +170,70 @@ Open CASCADE SAS also offers Advanced Mesh Products:
@section OCCT_TOVW_SECTION_5 Visualization
**Visualization** module provides ready-to-use algorithms to create graphic presentations from various objects: shapes, meshes, etc.
In Open CASCADE Technology visualization is based on the separation of CAD data and its graphical presentation. The presentations can be customized to take the specificity of your application into account.
**Visualization** module provides ready-to-use algorithms to create graphic presentations from various objects: shapes, meshes, etc.
In Open CASCADE Technology visualization is based on the separation of CAD data and its graphical presentation.
The module also supports a fast and powerful interactive selection mechanism.
The view facilities provided by OCCT range from low-level tools working with basic geometry and topology (such as NURBS visualization with control points and nodes, rendering of isolines to estimate speed and quality of parameterization, or rendering of a parametric profile of edges) to high-level tools for real time quality rendering of models using ray tracing: shades, reflections, transparency, anti-aliasing, etc.
Visualization module relies on the following key toolkits:
- *TKV3d* toolkit defines a high-level API called (Application Interactive Services* (AIS) for working with interactive objects.
- *TKService* toolkit defines a low-level API for managing and creating presentations from primitive arrays.
This toolkit defines an abstraction layer for defining an arbitrary graphic driver responsible for actual rendering.
- *TKOpenGl* toolkit implements the graphic driver using OpenGL and OpenGL ES libraries.
Here are just a few examples:
While low-level API operates with primitive arrays (triangles, lines, points), the higher level includes services for building presentations for B-Rep shapes (shaded and wireframe).
A comprehensive list of standard interactive objects includes topological shape, mesh presentation, various dimensions, manipulators and others.
It provides a solid basis for rapid application development, while flexible and extensible API allows development of highly customized application-specific presentations.
* Camera-driven view projection and orientation. It is possible to choose between perspective, orthographic and stereographic projection.
* Real-time ray tracing technique using recursive Whitted's algorithm and Bounded Volume Hierarchy effective optimization structure.
@figure{/technical_overview/images/0002.png, "Real time visualization by ray tracing method"}
* Support of GLSL shaders. The shader management is fully automatic, like with any other OpenGL resource.
Here are a few examples of OCCT Visualization features:
* Camera-driven view projection and orientation.
Perspective, orthographic and stereographic projections are supported.
* Support of Common (diffuse/ambient/specular) and PBR metallic-roughness material models.
* Possibility to flexibly adjust appearance of dimensions in a 3D view.
The 3D text object represents a given text string as a true 3D object in the model space.
* Definition of clipping planes through the plane equation coefficients.
Ability to define visual attributes for cross-section at the level or individual clipping planes.
In the image below different parts of the rocket are clipped with different planes and hatched.
@figure{/technical_overview/images/0008.png, "Display of shape cross-section and dimensions"}
* Support of built-in and application-specific GLSL shaders.
@figure{/technical_overview/images/0013.png, "Fragment shader implementing custom clipping surface"}
* Support of standard and custom materials, defined by transparency, diffuse, ambient and specular reflection and refraction index. The latter allows implementing transparent materials, such as glass, diamond and water.
* Optimization of rendering performance through the algorithms of:
* View frustum culling, which skips the presentation outside camera at the rendering stage;
* Back face culling, which reduces the rendered number of triangles and eliminates artifacts at shape boundaries.
* Real-time ray tracing technique using recursive Whitted's algorithm and Bounded Volume Hierarchy effective optimization structure.
@figure{/technical_overview/images/0002.png, "Real time visualization by ray tracing method"}
@figure{/technical_overview/images/0012.png, "Simulation of a glass cover"}
* Optimization of rendering performance through the algorithms of:
* View frustum culling, which skips the presentation outside camera at the rendering stage and
* Back face culling, which reduces the rendered number of triangles and eliminates artifacts at shape boundaries.
* Definition of clipping planes through the plane equation coefficients. Ability to define visual attributes for cross-section at the level or individual clipping planes. In the image below different parts of the rocket are clipped with different planes and hatched.
* Possibility to flexibly adjust appearance of dimensions in a 3D view. The 3D text object represents a given text string as a true 3D object in the model space.
@figure{/technical_overview/images/0008.png, "Display of shape cross-section and dimensions"}
For more details, see @ref occt_user_guides__visualization "Visualization User's Guide".
The visualization of OCCT topological shapes by means of VTK library provided by VIS component is described in a separate @ref occt_user_guides__vis "VTK Integration Services" User's Guide.
See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-learning & Training</a> offerings.
@section OCCT_TOVW_SECTION_6 Data Exchange
**Data Exchange** allows developing OCCT-based applications that can interact with other CAD systems by writing and reading CAD models to and from external data. The exchanges run smoothly regardless of the quality of external data or requirements to its internal representation, for example, to the data types, accepted geometric inaccuracies, etc.
**Data Exchange** allows developing OCCT-based applications that can interact with other CAD systems by writing and reading CAD models to and from external data.
@figure{/technical_overview/images/0014.png,"Shape imported from STEP"}
**Data Exchange** is organized in a modular way as a set of interfaces that comply with various CAD formats: IGES, STEP, STL, VRML, etc. The interfaces allow software based on OCCT to exchange data with various CAD/PDM software packages, maintaining a good level of interoperability.
**Data Exchange** is organized in a modular way as a set of interfaces that comply with various CAD formats: IGES, STEP, STL, VRML, etc.
The interfaces allow software based on OCCT to exchange data with various CAD/PDM software packages, maintaining a good level of interoperability.
This module handles various problems of interoperability between CAD systems, caused by differences in model validity criteria and requirements to internal representation.
* **Standardized Data Exchange** interfaces allow querying and examining the input file, converting its contents to a CAD model and running validity checks on a fully translated shape. The following formats are currently supported.
* @ref occt_user_guides__step "STEP" (AP203 : Mechanical Design, this covers General 3D CAD; AP214: Automotive Design)
* @ref occt_user_guides__iges "IGES" (up to 5.3)
* glTF, OBJ, VRML and STL meshes.
* **Standardized Data Exchange** interfaces allow querying and examining the input file, converting its contents to a CAD model and running validity checks on a fully translated shape.
The following formats are currently supported:
* @ref occt_user_guides__step "STEP" (AP203: Mechanical Design, this covers General 3D CAD; AP214: Automotive Design; AP242).
* @ref occt_user_guides__iges "IGES" (up to 5.3).
* **glTF** 2.0 reader and writer.
* **OBJ** mesh file reader.
* **VRML** converter translates Open CASCADE shapes to VRML 1.0 files (Virtual Reality Modeling Language).
* **STL** converter translates Open CASCADE shapes to STL files.
STL (STtereoLithography) format is widely used for rapid prototyping (3D printing).
* @ref occt_user_guides__xde "Extended data exchange" (XDE) allows translating additional attributes attached to geometric data (colors, layers, names, materials etc).
* <a href="https://www.opencascade.com/content/advanced-data-exchange-components">Advanced Data Exchange Components</a> are available in addition to standard Data Exchange interfaces to support interoperability and data adaptation (also using @ref OCCT_TOVW_SECTION_6a "Shape Healing") with CAD software using the following proprietary formats:
* <a href="https://www.opencascade.com/content/advanced-data-exchange-components">Advanced Data Exchange Components</a>
are available in addition to standard Data Exchange interfaces to support interoperability and data adaptation (also using @ref OCCT_TOVW_SECTION_6a "Shape Healing") with CAD software using the following proprietary formats:
* <a href="https://www.opencascade.com/content/acis-sat-import-export">ACIS SAT</a>
* <a href="https://www.opencascade.com/content/parasolid-import">Parasolid</a>
* <a href="https://www.opencascade.com/content/dxf-import-export">DXF</a>
@@ -238,22 +247,22 @@ These components are based on the same architecture as interfaces with STEP and
**Shape Healing** library provides algorithms to correct and adapt the geometry and topology of shapes imported to OCCT from other CAD systems.
Shape Healing algorithms include, but are not limited to, the following operations:
* analyze shape characteristics and, in particular, identify the shapes that do not comply with OCCT geometry and topology validity rules by analyzing geometrical objects and topology:
- check edge and wire consistency;
- check edge order in a wire;
- check the orientation of face boundaries;
- analyze shape tolerances;
- identify closed and open wires in a boundary.
* fix incorrect or incomplete shapes:
- provide consistency between a 3D curve and its corresponding parametric curve;
- repair defective wires;
- fit the shapes to a user-defined tolerance value;
- fill gaps between patches and edges.
* upgrade and change shape characteristics:
- reduce curve and surface degree;
- split shapes to obtain C1 continuity;
- convert any types of curves or surfaces to Bezier or B-Spline curves or surfaces and back;
- split closed surfaces and revolution surfaces.
* Analyze shape characteristics and, in particular, identify the shapes that do not comply with OCCT geometry and topology validity rules by analyzing geometrical objects and topology:
- check edge and wire consistency;
- check edge order in a wire;
- check the orientation of face boundaries;
- analyze shape tolerances;
- identify closed and open wires in a boundary.
* Fix incorrect or incomplete shapes:
- provide consistency between a 3D curve and its corresponding parametric curve;
- repair defective wires;
- fit the shapes to a user-defined tolerance value;
- fill gaps between patches and edges.
* Upgrade and change shape characteristics:
- reduce curve and surface degree;
- split shapes to obtain C1 continuity;
- convert any types of curves or surfaces to Bezier or B-Spline curves or surfaces and back;
- split closed surfaces and revolution surfaces.
Each sub-domain of Shape Healing has its own scope of functionality:
@@ -269,21 +278,24 @@ For more details, refer to @ref occt_user_guides__shape_healing "Shape Healing U
See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-learning & Training</a> offerings.
@section OCCT_TOVW_SECTION_7 Application Framework
**Open CASCADE Application Framework** (OCAF) handles Application Data basing on the Application/Document paradigm. It uses an associativity engine to simplify the development of a CAD application thanks to the following ready-to-use features and services:
**Open CASCADE Application Framework** (OCAF) handles Application Data basing on the Application/Document paradigm.
It uses an associativity engine to simplify the development of a CAD application thanks to the following ready-to-use features and services:
* Data attributes managing the application data, which can be organized according to the development needs;
* Data storage and persistence (open/save);
* Possibility to modify and recompute attributes in documents. With OCAF it is easy to represent the history of modification and parametric dependencies within your model;
* Possibility to modify and recompute attributes in documents.
With OCAF it is easy to represent the history of modification and parametric dependencies within your model;
* Possibility to manage multiple documents;
* Predefined attributes common to CAD/CAM/CAE applications (e.g. to store dimensions);
* Undo-Redo and Copy-Paste functions.
Since OCAF handles the application structure, the only development task is the creation of application-specific data and GUIs.
OCAF differs from any other CAD framework in the organization of application data, as there the data structures are based on reference keys rather than on shapes. In a model, such attributes as shape data, color and material are attached to an invariant structure, which is deeper than the shapes. A shape object becomes the value of *Shape* attribute, in the same way as an integer number is the value of *Integer* attribute and a string is the value of *Name* attribute.
OCAF differs from any other CAD framework in the organization of application data, as there the data structures are based on reference keys rather than on shapes.
In a model, such attributes as shape data, color and material are attached to an invariant structure, which is deeper than the shapes.
A shape object becomes the value of *Shape* attribute, in the same way as an integer number is the value of *Integer* attribute and a string is the value of *Name* attribute.
OCAF organizes and embeds these attributes in a document. OCAF documents, in their turn, are managed by an OCAF application.
@@ -291,10 +303,11 @@ For more details, see @ref occt_user_guides__ocaf "OCAF User's Guide".
See also: our <a href="https://www.opencascade.com/content/tutorial-learning">E-learning & Training</a> offerings.
@section OCCT_TOVW_SECTION_8 Draw Test Harness
**Test Harness** or **Draw** is a convenient testing tool for OCCT libraries. It can be used to test and prototype various algorithms before building an entire application. It includes:
**Test Harness** or **Draw** is a convenient testing tool for OCCT libraries.
It can be used to test and prototype various algorithms before building an entire application.
It includes:
- A command interpreter based on the TCL language;
- A number of 2D and 3D viewers;
- A set of predefined commands.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>
<classpathentry exported="true" kind="con" path="com.android.ide.eclipse.adt.LIBRARIES"/>
<classpathentry exported="true" kind="con" path="com.android.ide.eclipse.adt.DEPENDENCIES"/>
<classpathentry kind="src" path="src"/>
<classpathentry kind="src" path="gen"/>
<classpathentry kind="output" path="bin/classes"/>
</classpath>

View File

@@ -1,12 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<launchConfiguration type="org.eclipse.ui.externaltools.ProgramBuilderLaunchConfigurationType">
<stringAttribute key="org.eclipse.debug.core.ATTR_REFRESH_SCOPE" value="${working_set:&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?&gt;&#10;&lt;resources&gt;&#10;&lt;item path=&quot;/occtJniActivity/libs&quot; type=&quot;2&quot;/&gt;&#10;&lt;/resources&gt;}"/>
<booleanAttribute key="org.eclipse.debug.ui.ATTR_LAUNCH_IN_BACKGROUND" value="false"/>
<booleanAttribute key="org.eclipse.ui.externaltools.ATTR_BUILDER_ENABLED" value="true"/>
<stringAttribute key="org.eclipse.ui.externaltools.ATTR_BUILD_SCOPE" value="${working_set:&lt;?xml version=&quot;1.0&quot; encoding=&quot;UTF-8&quot;?&gt;&#10;&lt;resources&gt;&#10;&lt;item path=&quot;/occtJniActivity/jni&quot; type=&quot;2&quot;/&gt;&#10;&lt;/resources&gt;}"/>
<stringAttribute key="org.eclipse.ui.externaltools.ATTR_LOCATION" value="~/develop/android-ndk-r10/ndk-build"/>
<stringAttribute key="org.eclipse.ui.externaltools.ATTR_RUN_BUILD_KINDS" value="full,incremental,auto,"/>
<stringAttribute key="org.eclipse.ui.externaltools.ATTR_TOOL_ARGUMENTS" value="V=1 jniall"/>
<booleanAttribute key="org.eclipse.ui.externaltools.ATTR_TRIGGERS_CONFIGURED" value="true"/>
<stringAttribute key="org.eclipse.ui.externaltools.ATTR_WORKING_DIRECTORY" value="${workspace_loc:/occtJniActivity/jni}"/>
</launchConfiguration>

1
samples/java/jniviewer/.gitattributes vendored Normal file
View File

@@ -0,0 +1 @@
*.gradle eol=lf

View File

@@ -1,4 +1,10 @@
/assets
/bin
/gen
/libs
/.gradle
/.idea
/build
/gradle
gradlew
gradlew.bat
/app/.cxx
/app/build
gradle.properties
local.properties

View File

@@ -1,43 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>occtJniActivity</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>com.android.ide.eclipse.adt.ResourceManagerBuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>com.android.ide.eclipse.adt.PreCompilerBuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.ui.externaltools.ExternalToolBuilder</name>
<triggers>auto,full,incremental,</triggers>
<arguments>
<dictionary>
<key>LaunchConfigHandle</key>
<value>&lt;project&gt;/.externalToolBuilders/C++ Builder.launch</value>
</dictionary>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>com.android.ide.eclipse.adt.ApkBuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>com.android.ide.eclipse.adt.AndroidNature</nature>
<nature>org.eclipse.jdt.core.javanature</nature>
</natures>
</projectDescription>

View File

@@ -1,4 +0,0 @@
eclipse.preferences.version=1
org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.6
org.eclipse.jdt.core.compiler.compliance=1.6
org.eclipse.jdt.core.compiler.source=1.6

View File

@@ -11,36 +11,22 @@ This sample demonstrates indirect method of wrapping C++ to Java using manually
Alternative method is available, wrapping individual OCCT classes to Java equivalents so that their full API is available to Java user
and the code can be programmed on Java level similarly to C++ one.
See description of OCCT Java Wrapper in Advanced Samples and Tools on OCCT web site at
http://www.opencascade.org/support/products/advsamples
https://www.opencascade.com/content/advanced-samples-and-tools
Run Eclipse from ADT (Android Developer Tools) for building the sample. To import sample project perform
~~~~
File -> Import... -> Android -> Existing Android code into Workspace
~~~~
and specify this directory. The project re-build will be started immediately right after importation if "Build automatically" option is turned on (default in Eclipse).
Proxy library compilation and packaging is performed by NDK build script, called by "C++ Builder" configured within Eclipse project.
The path to "ndk-build" tool from Android NDK (Native Development Kit) should be specified in Eclipse project properties:
~~~~
Project -> Properties -> Builders -> C++ Builder -> Edit -> Location
~~~~
Install Android Studio 4.0+ and install building tools (check Tools -> SDK Manager):
- Android SDK (API level 21 or higher).
- Android SDK build tools.
- Android NDK r16 or higher (coming with CMake toolchain).
Using NDK r18 or newer will require changing ANDROID_STL in project settings.
- CMake 3.10+.
Now paths to OCCT C++ libraries and additional components should be specified in "jni/Android.mk" file:
~~~~
OCCT_ROOT := $(LOCAL_PATH)/../../../..
Specify this folder location in Android Studio for opening project.
You might need re-entering Android SDK explicitly in File -> Project Structure -> SDK Location settings (SDK, NDK, JDK locations).
FREETYPE_INC := $(OCCT_ROOT)/../freetype/include/freetype2
FREETYPE_LIBS := $(OCCT_ROOT)/../freetype/libs
FREEIMAGE_INC := $(OCCT_ROOT)/../FreeImage/include
FREEIMAGE_LIBS := $(OCCT_ROOT)/../FreeImage/libs
OCCT_INC := $(OCCT_ROOT)/inc
OCCT_LIBS := $(OCCT_ROOT)/and/libs
~~~~
The list of extra components (Freetype, FreeImage) depends on OCCT configuration.
Variable $(TARGET_ARCH_ABI) is used within this script to refer to active architecture.
E.g. for 32-bit ARM build (see variable *APP_ABI* in "jni/Application.mk")
the folder *OCCT_LIBS* should contain sub-folder "armeabi-v7a" with OCCT libraries.
This sample expects OCCT to be already build - please refer to appropriate CMake building instructions in OCCT documentation.
The following variables should be added into file gradle.properties (see gradle.properties.template as template):
- `OCCT_ROOT` - path to OCCT installation folder.
- `FREETYPE_ROOT` - path to FreeType installation folder.
FreeImage is optional and does not required for this sample, however you should include all extra libraries used for OCCT building
and load the explicitly from Java code within OcctJniActivity::loadNatives() method, including toolkits from OCCT itself in proper order:
@@ -49,10 +35,8 @@ and load the explicitly from Java code within OcctJniActivity::loadNatives() met
|| !loadLibVerbose ("TKMath", aLoaded, aFailed)
|| !loadLibVerbose ("TKG2d", aLoaded, aFailed)
~~~~
Note that C++ STL library is not part of Android system.
Thus application must package this library as well as extra component.
"gnustl_shared" STL implementation is expected within this sample.
Note that C++ STL library is not part of Android system, and application must package this library as well as extra component ("gnustl_shared" by default - see also `ANDROID_STL`).
After successful build, the application can be packaged to Android:
- Deploy and run application on connected device or emulator directly from Eclipse using adb interface by menu items "Run" and "Debug". This would sign package with debug certificate.
- Prepare signed end-user package using wizard File -> Export -> Android -> Export Android Application.
After successful build via Build -> Rebuild Project, the application can be packaged to Android:
- Deploy and run application on connected device or emulator directly from Android Studio using adb interface by menu items "Run" and "Debug". This would sign package with debug certificate.
- Prepare signed end-user package using wizard Build -> Generate signed APK.

View File

@@ -0,0 +1,48 @@
apply plugin: 'com.android.application'
android {
compileSdkVersion 21
buildToolsVersion "30.0.0"
defaultConfig {
applicationId "com.opencascade.jnisample"
minSdkVersion 21
targetSdkVersion 26
ndk {
abiFilters "arm64-v8a"
}
externalNativeBuild {
cmake {
arguments "-DOCCT_ROOT=" + OCCT_ROOT,
"-DFREETYPE_ROOT=" + FREETYPE_ROOT,
"-DANDROID_STL=gnustl_shared"
}
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.txt'
}
}
sourceSets {
main {
manifest.srcFile 'src/main/AndroidManifest.xml'
assets.srcDirs = [OCCT_ROOT + "/src"]
}
}
externalNativeBuild {
cmake {
path "src/main/jni/CMakeLists.txt"
}
}
}
dependencies {
implementation fileTree(dir: 'java/com/opencascade/jnisample', include: ['*.jar'])
}

View File

@@ -31,6 +31,5 @@
</activity>
</application>
<uses-feature android:glEsVersion="0x00020000"/>
<uses-sdk android:minSdkVersion="15"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
</manifest>

View File

@@ -110,11 +110,8 @@ public class OcctJniActivity extends Activity implements OnClickListener
// copy OCCT resources
String aResFolder = getFilesDir().getAbsolutePath();
copyAssetFolder (getAssets(), "Shaders", aResFolder + "/Shaders");
copyAssetFolder (getAssets(), "SHMessage", aResFolder + "/SHMessage");
copyAssetFolder (getAssets(), "XSMessage", aResFolder + "/XSMessage");
copyAssetFolder (getAssets(), "TObj", aResFolder + "/TObj");
copyAssetFolder (getAssets(), "UnitsAPI", aResFolder + "/UnitsAPI");
copyAssetFolder (getAssets(), "src/SHMessage", aResFolder + "/SHMessage");
copyAssetFolder (getAssets(), "src/XSMessage", aResFolder + "/XSMessage");
// C++ runtime
loadLibVerbose ("gnustl_shared", aLoaded, aFailed);
@@ -204,6 +201,9 @@ public class OcctJniActivity extends Activity implements OnClickListener
String aDataPath = aDataUrl != null ? aDataUrl.getPath() : "";
myOcctView.open (aDataPath);
myLastPath = aDataPath;
myContext = new android.content.ContextWrapper (this);
myContext.getExternalFilesDir (null);
}
//! Handle scroll events
@@ -513,6 +513,9 @@ public class OcctJniActivity extends Activity implements OnClickListener
aClickedBtn.setBackgroundColor (getResources().getColor(R.color.pressedBtnColor));
if (myFileOpenDialog == null)
{
// should be requested on runtime since API level 26 (Android 8)
askUserPermission (android.Manifest.permission.WRITE_EXTERNAL_STORAGE, null); // for accessing SD card
myFileOpenDialog = new OcctJniFileDialog (this, aPath);
myFileOpenDialog.setFileEndsWith (".brep");
myFileOpenDialog.setFileEndsWith (".rle");
@@ -760,6 +763,88 @@ public class OcctJniActivity extends Activity implements OnClickListener
return aResultSize;
}
//! Request user permission.
private void askUserPermission (String thePermission, String theRationale)
{
// Dynamically load methods introduced by API level 23.
// On older system this permission is granted by user during application installation.
java.lang.reflect.Method aMetPtrCheckSelfPermission, aMetPtrRequestPermissions, aMetPtrShouldShowRequestPermissionRationale;
try
{
aMetPtrCheckSelfPermission = myContext.getClass().getMethod ("checkSelfPermission", String.class);
aMetPtrRequestPermissions = getClass().getMethod ("requestPermissions", String[].class, int.class);
aMetPtrShouldShowRequestPermissionRationale = getClass().getMethod ("shouldShowRequestPermissionRationale", String.class);
}
catch (SecurityException theError)
{
postMessage ("Unable to find permission methods:\n" + theError.getMessage(), Message_Trace);
return;
}
catch (NoSuchMethodException theError)
{
postMessage ("Unable to find permission methods:\n" + theError.getMessage(), Message_Trace);
return;
}
try
{
int isAlreadyGranted = (Integer )aMetPtrCheckSelfPermission.invoke (myContext, thePermission);
if (isAlreadyGranted == android.content.pm.PackageManager.PERMISSION_GRANTED)
{
return;
}
boolean toShowInfo = theRationale != null && (Boolean )aMetPtrShouldShowRequestPermissionRationale.invoke (this, thePermission);
if (toShowInfo)
{
postMessage (theRationale, Message_Info);
}
// show dialog to user
aMetPtrRequestPermissions.invoke (this, new String[]{thePermission}, 0);
}
catch (IllegalArgumentException theError)
{
postMessage ("Internal error: Unable to call permission method:\n" + theError.getMessage(), Message_Fail);
return;
}
catch (IllegalAccessException theError)
{
postMessage ("Internal error: Unable to call permission method:\n" + theError.getMessage(), Message_Fail);
return;
}
catch (java.lang.reflect.InvocationTargetException theError)
{
postMessage ("Internal error: Unable to call permission method:\n" + theError.getMessage(), Message_Fail);
return;
}
}
//! Message gravity.
private static final int Message_Trace = 0;
private static final int Message_Info = 1;
private static final int Message_Warning = 2;
private static final int Message_Alarm = 3;
private static final int Message_Fail = 4;
//! Auxiliary method to show info message.
public void postMessage (String theMessage, int theGravity)
{
if (theGravity == Message_Trace)
{
return;
}
final String aText = theMessage;
final Context aCtx = this;
this.runOnUiThread (new Runnable() { public void run() {
android.app.AlertDialog.Builder aBuilder = new android.app.AlertDialog.Builder (aCtx);
aBuilder.setMessage (aText).setNegativeButton ("OK", null);
android.app.AlertDialog aDialog = aBuilder.create();
aDialog.show();
}});
}
//! OCCT major version
private native long cppOcctMajorVersion();
@@ -772,6 +857,7 @@ public class OcctJniActivity extends Activity implements OnClickListener
private OcctJniView myOcctView;
private TextView myMessageTextView;
private String myLastPath;
private android.content.ContextWrapper myContext = null;
private OcctJniFileDialog myFileOpenDialog;
private int myButtonPreferSize = 65;

View File

@@ -34,11 +34,13 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
};
//! Empty constructor.
OcctJniRenderer()
OcctJniRenderer (GLSurfaceView theView,
float theScreenDensity)
{
myView = theView; // this makes cyclic dependency, but it is OK for JVM
if (OcctJniActivity.areNativeLoaded)
{
myCppViewer = cppCreate();
myCppViewer = cppCreate (theScreenDensity);
}
}
@@ -56,7 +58,10 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
{
if (myCppViewer != 0)
{
cppRedraw (myCppViewer);
if (cppRedraw (myCppViewer))
{
myView.requestRender(); // this method is allowed from any thread
}
}
}
@@ -77,48 +82,39 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
}
}
//! Initialize rotation (remember first point position)
public void onStartRotation (int theStartX, int theStartY)
//! Add touch point.
public void onAddTouchPoint (int theId, float theX, float theY)
{
if (myCppViewer != 0)
{
cppStartRotation (myCppViewer, theStartX, theStartY);
cppAddTouchPoint (myCppViewer, theId, theX, theY);
}
}
//! Perform rotation (relative to first point)
public void onRotation (int theX, int theY)
//! Update touch point.
public void onUpdateTouchPoint (int theId, float theX, float theY)
{
if (myCppViewer != 0)
{
cppOnRotation (myCppViewer, theX, theY);
cppUpdateTouchPoint (myCppViewer, theId, theX, theY);
}
}
//! Perform panning
public void onPanning (int theDX, int theDY)
//! Remove touch point.
public void onRemoveTouchPoint (int theId)
{
if (myCppViewer != 0)
{
cppOnPanning (myCppViewer, theDX, theDY);
cppRemoveTouchPoint (myCppViewer, theId);
}
}
//! Perform selection
public void onClick (int theX, int theY)
//! Select in 3D Viewer.
public void onSelectInViewer (float theX, float theY)
{
if (myCppViewer != 0)
{
cppOnClick (myCppViewer, theX, theY);
}
}
//! Stop previously active action (e.g. discard first rotation point)
public void onStopAction()
{
if (myCppViewer != 0)
{
cppStopAction (myCppViewer);
cppSelectInViewer (myCppViewer, theX, theY);
}
}
@@ -157,7 +153,7 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
}
//! Create instance of C++ class
private native long cppCreate();
private native long cppCreate (float theDispDensity);
//! Destroy instance of C++ class
private native void cppDestroy (long theCppPtr);
@@ -171,11 +167,21 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
//! Open CAD file
private native void cppOpen (long theCppPtr, String thePath);
//! Handle detection in the viewer
private native void cppMoveTo (long theCppPtr, int theX, int theY);
//! Add touch point
private native void cppAddTouchPoint (long theCppPtr, int theId, float theX, float theY);
//! Update touch point
private native void cppUpdateTouchPoint (long theCppPtr, int theId, float theX, float theY);
//! Remove touch point
private native void cppRemoveTouchPoint (long theCppPtr, int theId);
//! Select in 3D Viewer.
private native void cppSelectInViewer (long theCppPtr, float theX, float theY);
//! Redraw OCCT viewer
private native void cppRedraw (long theCppPtr);
//! Returns TRUE if more frames are requested.
private native boolean cppRedraw (long theCppPtr);
//! Fit All
private native void cppFitAll (long theCppPtr);
@@ -198,21 +204,7 @@ public class OcctJniRenderer implements GLSurfaceView.Renderer
//! Move camera
private native void cppSetZnegProj (long theCppPtr);
//! Initialize rotation
private native void cppStartRotation (long theCppPtr, int theStartX, int theStartY);
//! Perform rotation
private native void cppOnRotation (long theCppPtr, int theX, int theY);
//! Perform panning
private native void cppOnPanning (long theCppPtr, int theDX, int theDY);
//! Perform selection
private native void cppOnClick (long theCppPtr, int theX, int theY);
//! Stop action (rotation / panning / scaling)
private native void cppStopAction (long theCppPtr);
private GLSurfaceView myView = null; //!< back reference to the View
private long myCppViewer = 0; //!< pointer to c++ class instance
}

View File

@@ -38,6 +38,9 @@ class OcctJniView extends GLSurfaceView
{
super (theContext, theAttrs);
android.util.DisplayMetrics aDispInfo = theContext.getResources().getDisplayMetrics();
myScreenDensity = aDispInfo.density;
setPreserveEGLContextOnPause (true);
setEGLContextFactory (new ContextFactory());
setEGLConfigChooser (new ConfigChooser());
@@ -45,8 +48,9 @@ class OcctJniView extends GLSurfaceView
RelativeLayout.LayoutParams aLParams = new RelativeLayout.LayoutParams (LayoutParams.WRAP_CONTENT, LayoutParams.WRAP_CONTENT);
aLParams.addRule (RelativeLayout.ALIGN_TOP);
myRenderer = new OcctJniRenderer();
myRenderer = new OcctJniRenderer (this, myScreenDensity);
setRenderer (myRenderer);
setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY); // render on request to spare battery
}
//! Open file.
@@ -54,6 +58,7 @@ class OcctJniView extends GLSurfaceView
{
final String aPath = thePath;
queueEvent (new Runnable() { public void run() { myRenderer.open (aPath); }});
requestRender();
}
//! Create OpenGL ES 2.0+ context
@@ -202,77 +207,44 @@ class OcctJniView extends GLSurfaceView
//! Callback to handle touch events
@Override public boolean onTouchEvent (MotionEvent theEvent)
{
int aPointerIndex = theEvent.getActionIndex();
int aPointerId = theEvent.getPointerId (aPointerIndex);
int aMaskedAction = theEvent.getActionMasked();
final int aMaskedAction = theEvent.getActionMasked();
switch (aMaskedAction)
{
case MotionEvent.ACTION_DOWN:
case MotionEvent.ACTION_POINTER_DOWN:
{
PointF aPntLast = null;
if (myActivePointers.size() >= 1)
final int aPointerIndex = theEvent.getActionIndex();
final int aPointerId = theEvent.getPointerId (aPointerIndex);
final PointF aPnt = new PointF (theEvent.getX (aPointerIndex), theEvent.getY (aPointerIndex));
if (theEvent.getPointerCount() == 1)
{
aPntLast = myActivePointers.get (myActivePointers.keyAt (0));
}
final PointF aPnt = new PointF();
aPnt.x = theEvent.getX (aPointerIndex);
aPnt.y = theEvent.getY (aPointerIndex);
myActivePointers.put (aPointerId, aPnt);
switch (myActivePointers.size())
{
case 1:
{
final int aStartX = (int )aPnt.x;
final int aStartY = (int )aPnt.y;
queueEvent (new Runnable() { public void run() { myRenderer.onStartRotation (aStartX, aStartY); }});
break;
}
case 2:
{
myPanFrom.x = (aPntLast.x + aPnt.x) * 0.5f;
myPanFrom.y = (aPntLast.y + aPnt.y) * 0.5f;
break;
}
mySelectPoint = aPnt;
}
else
{
mySelectPoint = null;
}
queueEvent (new Runnable() { public void run() { myRenderer.onAddTouchPoint (aPointerId, aPnt.x, aPnt.y); }});
break;
}
case MotionEvent.ACTION_MOVE:
{
for (int aNbPointers = theEvent.getPointerCount(), aPntIter = 0; aPntIter < aNbPointers; ++aPntIter)
{
PointF aPnt = myActivePointers.get (theEvent.getPointerId (aPntIter));
if (aPnt != null)
{
aPnt.x = theEvent.getX (aPntIter);
aPnt.y = theEvent.getY (aPntIter);
}
final int aPointerId = theEvent.getPointerId (aPntIter);
final PointF aPnt = new PointF (theEvent.getX (aPntIter), theEvent.getY (aPntIter));
queueEvent (new Runnable() { public void run() { myRenderer.onUpdateTouchPoint (aPointerId, aPnt.x, aPnt.y); }});
}
switch (myActivePointers.size())
if (mySelectPoint != null)
{
case 1:
final float aTouchThreshold = 5.0f * myScreenDensity;
final int aPointerIndex = theEvent.getActionIndex();
final PointF aDelta = new PointF (theEvent.getX (aPointerIndex) - mySelectPoint.x, theEvent.getY (aPointerIndex) - mySelectPoint.y);
if (Math.abs (aDelta.x) > aTouchThreshold || Math.abs (aDelta.y) > aTouchThreshold)
{
PointF aPnt = myActivePointers.get (theEvent.getPointerId (0));
final int anX = (int )aPnt.x;
final int anY = (int )aPnt.y;
queueEvent (new Runnable() { public void run() { myRenderer.onRotation (anX, anY); }});
break;
}
case 2:
{
PointF aPnt1 = myActivePointers.get (myActivePointers.keyAt (0));
PointF aPnt2 = myActivePointers.get (myActivePointers.keyAt (1));
PointF aPntAver = new PointF ((aPnt1.x + aPnt2.x) * 0.5f,
(aPnt1.y + aPnt2.y) * 0.5f);
final int aDX = (int )(aPntAver.x - myPanFrom.x);
final int aDY = (int )(myPanFrom.y -aPntAver.y);
myPanFrom.x = aPntAver.x;
myPanFrom.y = aPntAver.y;
queueEvent (new Runnable() { public void run() { myRenderer.onPanning (aDX, aDY); }});
mySelectPoint = null;
}
}
break;
@@ -281,30 +253,21 @@ class OcctJniView extends GLSurfaceView
case MotionEvent.ACTION_POINTER_UP:
case MotionEvent.ACTION_CANCEL:
{
myActivePointers.remove (aPointerId);
if (myActivePointers.size() == 0)
if (mySelectPoint != null)
{
final int aPressX = (int )theEvent.getX (aPointerIndex);
final int aPressY = (int )theEvent.getY (aPointerIndex);
double aPressTimeMs = theEvent.getEventTime() - theEvent.getDownTime();
if (aPressTimeMs < 100.0)
{
queueEvent (new Runnable() { public void run() { myRenderer.onClick (aPressX, aPressY); }});
break;
}
final float aSelX = mySelectPoint.x;
final float aSelY = mySelectPoint.y;
queueEvent (new Runnable() { public void run() { myRenderer.onSelectInViewer (aSelX, aSelY); }});
mySelectPoint = null;
}
else if (myActivePointers.size() == 1)
{
PointF aPnt = myActivePointers.get (myActivePointers.keyAt (0));
final int aStartX = (int )aPnt.x;
final int aStartY = (int )aPnt.y;
queueEvent (new Runnable() { public void run() { myRenderer.onStartRotation (aStartX, aStartY); }});
}
//queueEvent (new Runnable() { public void run() { myRenderer.onStopAction(); }});
break;
final int aPointerIndex = theEvent.getActionIndex();
final int aPointerId = theEvent.getPointerId (aPointerIndex);
final PointF aPnt = new PointF (theEvent.getX (aPointerIndex), theEvent.getY (aPointerIndex));
queueEvent (new Runnable() { public void run() { myRenderer.onRemoveTouchPoint (aPointerId); }});
}
}
///invalidate();
requestRender();
return true;
}
@@ -312,21 +275,20 @@ class OcctJniView extends GLSurfaceView
public void fitAll()
{
queueEvent (new Runnable() { public void run() { myRenderer.fitAll(); }});
requestRender();
}
//! Move camera
public void setProj (final OcctJniRenderer.TypeOfOrientation theProj)
{
queueEvent (new Runnable() { public void run() { myRenderer.setProj (theProj); }});
requestRender();
}
//! OCCT viewer
private OcctJniRenderer myRenderer = null;
//! Touch events cache
private SparseArray<PointF> myActivePointers = new SparseArray<PointF>();
//! Starting point for panning event
private PointF myPanFrom = new PointF (0.0f, 0.0f);
private OcctJniRenderer myRenderer = null;
private int mySelectId = -1;
private PointF mySelectPoint = null;
private float myScreenDensity = 1.0f;
}

View File

@@ -0,0 +1,43 @@
cmake_minimum_required(VERSION 3.4.1)
set(HEADER_FILES OcctJni_MsgPrinter.hxx OcctJni_Viewer.hxx)
set(SOURCE_FILES OcctJni_MsgPrinter.cxx OcctJni_Viewer.cxx)
set (anOcctLibs
TKernel TKMath TKG2d TKG3d TKGeomBase TKBRep TKGeomAlgo TKTopAlgo TKShHealing TKMesh
# exchange
TKPrim TKBO TKBool TKFillet TKOffset
TKXSBase
TKIGES
TKSTEPBase TKSTEPAttr TKSTEP209 TKSTEP
# OCCT Visualization
TKService TKHLR TKV3d TKOpenGl
)
set(aLibDeps "")
# OCCT libraries
include_directories(${OCCT_ROOT}/inc)
foreach(anOcctLib ${anOcctLibs})
add_library(lib_${anOcctLib} SHARED IMPORTED)
set_target_properties(lib_${anOcctLib} PROPERTIES IMPORTED_LOCATION ${OCCT_ROOT}/libs/${ANDROID_ABI}/lib${anOcctLib}.so)
list(APPEND aLibDeps lib_${anOcctLib})
endforeach()
# FreeType
add_library(lib_FreeType SHARED IMPORTED)
set_target_properties(lib_FreeType PROPERTIES IMPORTED_LOCATION ${FREETYPE_ROOT}/libs/${ANDROID_ABI}/libfreetype.so)
list(APPEND aLibDeps lib_FreeType)
# FreeImage - uncomment, if OCCT was built with FreeImage
#add_library(lib_FreeImage SHARED IMPORTED)
#set_target_properties(lib_FreeImage PROPERTIES IMPORTED_LOCATION ${FREETYPE_ROOT}/libs/${ANDROID_ABI}/libfreeimage.so)
#list(APPEND aLibDeps lib_FreeImage)
# system libraries
list(APPEND aLibDeps EGL GLESv2 log android)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -frtti -fexceptions -fpermissive")
add_library(TKJniSample SHARED ${SOURCE_FILES})
target_link_libraries(TKJniSample ${aLibDeps})

View File

@@ -11,7 +11,7 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <OcctJni_MsgPrinter.hxx>
#include "OcctJni_MsgPrinter.hxx"
#include <TCollection_AsciiString.hxx>
#include <TCollection_ExtendedString.hxx>
@@ -66,6 +66,6 @@ void OcctJni_MsgPrinter::send (const TCollection_AsciiString& theString,
}
jstring aJStr = myJEnv->NewStringUTF ((theString + "\n").ToCString());
myJEnv->CallObjectMethod (myJObj, myJMet, aJStr);
myJEnv->CallVoidMethod (myJObj, myJMet, aJStr);
myJEnv->DeleteLocalRef (aJStr);
}

View File

@@ -34,7 +34,7 @@ protected:
//! Main printing method
virtual void send (const TCollection_AsciiString& theString,
const Message_Gravity theGravity) const;
const Message_Gravity theGravity) const override;
private:

View File

@@ -11,17 +11,21 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <OcctJni_Viewer.hxx>
#include <OcctJni_MsgPrinter.hxx>
#include "OcctJni_Viewer.hxx"
#include "OcctJni_MsgPrinter.hxx"
#include <AIS_ViewCube.hxx>
#include <AIS_Shape.hxx>
#include <Aspect_NeutralWindow.hxx>
#include <Image_AlienPixMap.hxx>
#include <BRepTools.hxx>
#include <Message_Messenger.hxx>
#include <Message_MsgFile.hxx>
#include <Message_PrinterSystemLog.hxx>
#include <OpenGl_GraphicDriver.hxx>
#include <OSD_Environment.hxx>
#include <OSD_Timer.hxx>
#include <Prs3d_DatumAspect.hxx>
#include <Standard_Version.hxx>
#include <BRepPrimAPI_MakeBox.hxx>
@@ -105,18 +109,69 @@ Standard_Boolean setResourceEnv (const TCollection_AsciiString& theVarName,
// function : OcctJni_Viewer
// purpose :
// =======================================================================
OcctJni_Viewer::OcctJni_Viewer()
OcctJni_Viewer::OcctJni_Viewer (float theDispDensity)
: myDevicePixelRatio (theDispDensity),
myIsJniMoreFrames (false)
{
SetTouchToleranceScale (theDispDensity);
#ifndef NDEBUG
// Register printer for logging messages into global Android log.
// Should never be used in production (or specify higher gravity for logging only failures).
Handle(Message_Messenger) aMsgMgr = Message::DefaultMessenger();
aMsgMgr->RemovePrinters (STANDARD_TYPE (Message_PrinterSystemLog));
aMsgMgr->AddPrinter (new Message_PrinterSystemLog ("OcctJni_Viewer"));
#endif
// prepare necessary environment
TCollection_AsciiString aResRoot = "/data/data/com.opencascade.jnisample/files";
setResourceEnv ("CSF_ShadersDirectory", aResRoot + "/Shaders", "Declarations.glsl", Standard_False);
setResourceEnv ("CSF_XSMessage", aResRoot + "/XSMessage", "XSTEP.us", Standard_False);
setResourceEnv ("CSF_SHMessage", aResRoot + "/XSMessage", "SHAPE.us", Standard_False);
//setResourceEnv ("CSF_PluginDefaults", "Plugin", Standard_False);
setResourceEnv ("CSF_XSMessage", aResRoot + "/XSMessage", "XSTEP.us", Standard_False);
setResourceEnv ("CSF_SHMessage", aResRoot + "/XSMessage", "SHAPE.us", Standard_False);
}
// make sure OCCT loads the dictionary
//UnitsAPI::SetLocalSystem (UnitsAPI_SI);
// ================================================================
// Function : dumpGlInfo
// Purpose :
// ================================================================
void OcctJni_Viewer::dumpGlInfo (bool theIsBasic)
{
TColStd_IndexedDataMapOfStringString aGlCapsDict;
myView->DiagnosticInformation (aGlCapsDict, Graphic3d_DiagnosticInfo_Basic); //theIsBasic ? Graphic3d_DiagnosticInfo_Basic : Graphic3d_DiagnosticInfo_Complete);
if (theIsBasic)
{
TCollection_AsciiString aViewport;
aGlCapsDict.FindFromKey ("Viewport", aViewport);
aGlCapsDict.Clear();
aGlCapsDict.Add ("Viewport", aViewport);
}
aGlCapsDict.Add ("Display scale", TCollection_AsciiString(myDevicePixelRatio));
// beautify output
{
TCollection_AsciiString* aGlVer = aGlCapsDict.ChangeSeek ("GLversion");
TCollection_AsciiString* aGlslVer = aGlCapsDict.ChangeSeek ("GLSLversion");
if (aGlVer != NULL
&& aGlslVer != NULL)
{
*aGlVer = *aGlVer + " [GLSL: " + *aGlslVer + "]";
aGlslVer->Clear();
}
}
TCollection_AsciiString anInfo;
for (TColStd_IndexedDataMapOfStringString::Iterator aValueIter (aGlCapsDict); aValueIter.More(); aValueIter.Next())
{
if (!aValueIter.Value().IsEmpty())
{
if (!anInfo.IsEmpty())
{
anInfo += "\n";
}
anInfo += aValueIter.Key() + ": " + aValueIter.Value();
}
}
Message::Send (anInfo, Message_Warning);
}
// =======================================================================
@@ -152,19 +207,10 @@ bool OcctJni_Viewer::init()
return false;
}
TCollection_AsciiString anEglInfo = TCollection_AsciiString()
+ "\n EGLVersion: " + eglQueryString (anEglDisplay, EGL_VERSION)
+ "\n EGLVendor: " + eglQueryString (anEglDisplay, EGL_VENDOR)
+ "\n EGLClient APIs: " + eglQueryString (anEglDisplay, EGL_CLIENT_APIS)
+ "\n GLvendor: " + (const char* )glGetString (GL_VENDOR)
+ "\n GLdevice: " + (const char* )glGetString (GL_RENDERER)
+ "\n GLversion: " + (const char* )glGetString (GL_VERSION) + " [GLSL: " + (const char* )glGetString (GL_SHADING_LANGUAGE_VERSION) + "]";
::Message::DefaultMessenger()->Send (anEglInfo, Message_Info);
if (!myViewer.IsNull())
{
Handle(OpenGl_GraphicDriver) aDriver = Handle(OpenGl_GraphicDriver)::DownCast (myViewer->Driver());
Handle(OcctJni_Window) aWindow = Handle(OcctJni_Window)::DownCast (myView->Window());
Handle(Aspect_NeutralWindow) aWindow = Handle(Aspect_NeutralWindow)::DownCast (myView->Window());
if (!aDriver->InitEglContext (anEglDisplay, anEglContext, anEglConfig))
{
Message::DefaultMessenger()->Send ("Error: OpenGl_GraphicDriver can not be initialized!", Message_Fail);
@@ -174,6 +220,7 @@ bool OcctJni_Viewer::init()
aWindow->SetSize (aWidth, aHeight);
myView->SetWindow (aWindow, (Aspect_RenderingContext )anEglContext);
dumpGlInfo (true);
return true;
}
@@ -187,6 +234,17 @@ bool OcctJni_Viewer::init()
return false;
}
myTextStyle = new Prs3d_TextAspect();
myTextStyle->SetFont (Font_NOF_ASCII_MONO);
myTextStyle->SetHeight (12);
myTextStyle->Aspect()->SetColor (Quantity_NOC_GRAY95);
myTextStyle->Aspect()->SetColorSubTitle (Quantity_NOC_BLACK);
myTextStyle->Aspect()->SetDisplayType (Aspect_TODT_SHADOW);
myTextStyle->Aspect()->SetTextFontAspect (Font_FA_Bold);
myTextStyle->Aspect()->SetTextZoomable (false);
myTextStyle->SetHorizontalJustification (Graphic3d_HTA_LEFT);
myTextStyle->SetVerticalJustification (Graphic3d_VTA_BOTTOM);
// create viewer
myViewer = new V3d_Viewer (aDriver);
myViewer->SetDefaultBackgroundColor (Quantity_NOC_BLACK);
@@ -195,14 +253,22 @@ bool OcctJni_Viewer::init()
// create AIS context
myContext = new AIS_InteractiveContext (myViewer);
//myContext->SetDisplayMode (AIS_WireFrame, false);
myContext->SetPixelTolerance (int(myDevicePixelRatio * 6.0)); // increase tolerance and adjust to hi-dpi screens
myContext->SetDisplayMode (AIS_Shaded, false);
Handle(OcctJni_Window) aWindow = new OcctJni_Window (aWidth, aHeight);
Handle(Aspect_NeutralWindow) aWindow = new Aspect_NeutralWindow();
aWindow->SetSize (aWidth, aHeight);
myView = myViewer->CreateView();
myView->SetImmediateUpdate (false);
myView->ChangeRenderingParams().Resolution = (unsigned int )(96.0 * myDevicePixelRatio + 0.5);
myView->ChangeRenderingParams().ToShowStats = true;
myView->ChangeRenderingParams().CollectedStats = (Graphic3d_RenderingParams::PerfCounters ) (Graphic3d_RenderingParams::PerfCounters_FrameRate | Graphic3d_RenderingParams::PerfCounters_Triangles);
myView->ChangeRenderingParams().StatsTextAspect = myTextStyle->Aspect();
myView->ChangeRenderingParams().StatsTextHeight = (int )myTextStyle->Height();
myView->SetWindow (aWindow, (Aspect_RenderingContext )anEglContext);
myView->TriedronDisplay (Aspect_TOTP_RIGHT_LOWER, Quantity_NOC_WHITE, 0.08, V3d_ZBUFFER);
dumpGlInfo (false);
//myView->TriedronDisplay (Aspect_TOTP_RIGHT_LOWER, Quantity_NOC_WHITE, 0.08 * myDevicePixelRatio, V3d_ZBUFFER);
initContent();
return true;
@@ -233,13 +299,13 @@ void OcctJni_Viewer::resize (int theWidth,
}
Handle(OpenGl_GraphicDriver) aDriver = Handle(OpenGl_GraphicDriver)::DownCast (myViewer->Driver());
Handle(OcctJni_Window) aWindow = Handle(OcctJni_Window)::DownCast (myView->Window());
Handle(Aspect_NeutralWindow) aWindow = Handle(Aspect_NeutralWindow)::DownCast (myView->Window());
aWindow->SetSize (theWidth, theHeight);
//myView->MustBeResized(); // can be used instead of SetWindow() when EGLsurface has not been changed
EGLContext anEglContext = eglGetCurrentContext();
myView->SetImmediateUpdate (Standard_False);
myView->SetWindow (aWindow, (Aspect_RenderingContext )anEglContext);
dumpGlInfo (true);
//saveSnapshot ("/sdcard/Download/tt.png", theWidth, theHeight);
}
@@ -251,6 +317,28 @@ void OcctJni_Viewer::initContent()
{
myContext->RemoveAll (Standard_False);
if (myViewCube.IsNull())
{
myViewCube = new AIS_ViewCube();
{
// setup view cube size
static const double THE_CUBE_SIZE = 60.0;
myViewCube->SetSize (myDevicePixelRatio * THE_CUBE_SIZE, false);
myViewCube->SetBoxFacetExtension (myViewCube->Size() * 0.15);
myViewCube->SetAxesPadding (myViewCube->Size() * 0.10);
myViewCube->SetFontHeight (THE_CUBE_SIZE * 0.16);
}
// presentation parameters
myViewCube->SetTransformPersistence (new Graphic3d_TransformPers (Graphic3d_TMF_TriedronPers, Aspect_TOTP_RIGHT_LOWER, Graphic3d_Vec2i (200, 200)));
myViewCube->Attributes()->SetDatumAspect (new Prs3d_DatumAspect());
myViewCube->Attributes()->DatumAspect()->SetTextAspect (myTextStyle);
// animation parameters
myViewCube->SetViewAnimation (myViewAnimation);
myViewCube->SetFixedAnimationLoop (false);
myViewCube->SetAutoStartAnimation (true);
}
myContext->Display (myViewCube, false);
OSD_Timer aTimer;
aTimer.Start();
if (!myShape.IsNull())
@@ -383,6 +471,10 @@ bool OcctJni_Viewer::open (const TCollection_AsciiString& thePath)
if (!myContext.IsNull())
{
myContext->RemoveAll (Standard_False);
if (!myViewCube.IsNull())
{
myContext->Display (myViewCube, false);
}
}
if (thePath.IsEmpty())
{
@@ -523,18 +615,33 @@ bool OcctJni_Viewer::saveSnapshot (const TCollection_AsciiString& thePath,
return true;
}
// ================================================================
// Function : handleViewRedraw
// Purpose :
// ================================================================
void OcctJni_Viewer::handleViewRedraw (const Handle(AIS_InteractiveContext)& theCtx,
const Handle(V3d_View)& theView)
{
AIS_ViewController::handleViewRedraw (theCtx, theView);
myIsJniMoreFrames = myToAskNextFrame;
}
// =======================================================================
// function : redraw
// purpose :
// =======================================================================
void OcctJni_Viewer::redraw()
bool OcctJni_Viewer::redraw()
{
if (myView.IsNull())
{
return;
return false;
}
myView->Redraw();
// handle user input
myIsJniMoreFrames = false;
myView->InvalidateImmediate();
FlushViewEvents (myContext, myView, true);
return myIsJniMoreFrames;
}
// =======================================================================
@@ -552,89 +659,13 @@ void OcctJni_Viewer::fitAll()
myView->Invalidate();
}
// =======================================================================
// function : startRotation
// purpose :
// =======================================================================
void OcctJni_Viewer::startRotation (int theStartX,
int theStartY)
{
if (myView.IsNull())
{
return;
}
myView->StartRotation (theStartX, theStartY, 0.45);
myView->Invalidate();
}
// =======================================================================
// function : onRotation
// purpose :
// =======================================================================
void OcctJni_Viewer::onRotation (int theX,
int theY)
{
if (myView.IsNull())
{
return;
}
myView->Rotation (theX, theY);
myView->Invalidate();
}
// =======================================================================
// function : onPanning
// purpose :
// =======================================================================
void OcctJni_Viewer::onPanning (int theDX,
int theDY)
{
if (myView.IsNull())
{
return;
}
myView->Pan (theDX, theDY);
myView->Invalidate();
}
// =======================================================================
// function : onClick
// purpose :
// =======================================================================
void OcctJni_Viewer::onClick (int theX,
int theY)
{
if (myView.IsNull())
{
return;
}
myContext->MoveTo (theX, theY, myView, Standard_False);
myContext->Select (Standard_False);
myView->Invalidate();
}
// =======================================================================
// function : stopAction
// purpose :
// =======================================================================
void OcctJni_Viewer::stopAction()
{
if (myView.IsNull())
{
return;
}
}
#define jexp extern "C" JNIEXPORT
jexp jlong JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppCreate (JNIEnv* theEnv,
jobject theObj)
jobject theObj,
jfloat theDispDensity)
{
return jlong(new OcctJni_Viewer());
return jlong(new OcctJni_Viewer (theDispDensity));
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppDestroy (JNIEnv* theEnv,
@@ -684,11 +715,11 @@ jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppOpen (JNIEnv
((OcctJni_Viewer* )theCppPtr)->open (aPath);
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppRedraw (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr)
jexp jboolean JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppRedraw (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr)
{
((OcctJni_Viewer* )theCppPtr)->redraw();
return ((OcctJni_Viewer* )theCppPtr)->redraw() ? JNI_TRUE : JNI_FALSE;
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppSetAxoProj (JNIEnv* theEnv,
@@ -747,47 +778,41 @@ jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppFitAll (JNIE
((OcctJni_Viewer* )theCppPtr)->fitAll();
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppStartRotation (JNIEnv* theEnv,
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppAddTouchPoint (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theStartX,
jint theStartY)
jint theId,
jfloat theX,
jfloat theY)
{
((OcctJni_Viewer* )theCppPtr)->startRotation (theStartX, theStartY);
((OcctJni_Viewer* )theCppPtr)->AddTouchPoint (theId, Graphic3d_Vec2d (theX, theY));
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppOnRotation (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theX,
jint theY)
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppUpdateTouchPoint (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theId,
jfloat theX,
jfloat theY)
{
((OcctJni_Viewer* )theCppPtr)->onRotation (theX, theY);
((OcctJni_Viewer* )theCppPtr)->UpdateTouchPoint (theId, Graphic3d_Vec2d (theX, theY));
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppOnPanning (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theDX,
jint theDY)
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppRemoveTouchPoint (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theId)
{
((OcctJni_Viewer* )theCppPtr)->onPanning (theDX, theDY);
((OcctJni_Viewer* )theCppPtr)->RemoveTouchPoint (theId);
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppOnClick (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jint theX,
jint theY)
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppSelectInViewer (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr,
jfloat theX,
jfloat theY)
{
((OcctJni_Viewer* )theCppPtr)->onClick (theX, theY);
}
jexp void JNICALL Java_com_opencascade_jnisample_OcctJniRenderer_cppStopAction (JNIEnv* theEnv,
jobject theObj,
jlong theCppPtr)
{
((OcctJni_Viewer* )theCppPtr)->stopAction();
((OcctJni_Viewer* )theCppPtr)->SelectInViewer (Graphic3d_Vec2i ((int )theX, (int )theY));
}
jexp jlong JNICALL Java_com_opencascade_jnisample_OcctJniActivity_cppOcctMajorVersion (JNIEnv* theEnv,

View File

@@ -11,21 +11,22 @@
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <OcctJni_Window.hxx>
#include <AIS_InteractiveContext.hxx>
#include <AIS_ViewController.hxx>
#include <TopoDS_Shape.hxx>
#include <V3d_Viewer.hxx>
#include <V3d_View.hxx>
class AIS_ViewCube;
//! Main C++ back-end for activity.
class OcctJni_Viewer
class OcctJni_Viewer : public AIS_ViewController
{
public:
//! Empty constructor
OcctJni_Viewer();
OcctJni_Viewer (float theDispDensity);
//! Initialize the viewer
bool init();
@@ -46,43 +47,45 @@ public:
int theHeight = 0);
//! Viewer update.
void redraw();
//! Returns TRUE if more frames should be requested.
bool redraw();
//! Move camera
void setProj (V3d_TypeOfOrientation theProj) { if (!myView.IsNull()) myView->SetProj (theProj); }
void setProj (V3d_TypeOfOrientation theProj)
{
if (myView.IsNull())
{
return;
}
myView->SetProj (theProj);
myView->Invalidate();
}
//! Fit All.
void fitAll();
//! Start rotation (remember first point position)
void startRotation (int theStartX,
int theStartY);
//! Perform rotation (relative to first point)
void onRotation (int theX,
int theY);
//! Perform panning
void onPanning (int theDX,
int theDY);
//! Perform selection
void onClick (int theX,
int theY);
//! Stop previously started action
void stopAction();
protected:
//! Reset viewer content.
void initContent();
//! Print information about OpenGL ES context.
void dumpGlInfo (bool theIsBasic);
//! Handle redraw.
virtual void handleViewRedraw (const Handle(AIS_InteractiveContext)& theCtx,
const Handle(V3d_View)& theView) override;
protected:
Handle(V3d_Viewer) myViewer;
Handle(V3d_View) myView;
Handle(AIS_InteractiveContext) myContext;
Handle(Prs3d_TextAspect) myTextStyle; //!< text style for OSD elements
Handle(AIS_ViewCube) myViewCube; //!< view cube object
TopoDS_Shape myShape;
float myDevicePixelRatio; //!< device pixel ratio for handling high DPI displays
bool myIsJniMoreFrames; //!< need more frame flag
};

View File

Before

Width:  |  Height:  |  Size: 1.4 KiB

After

Width:  |  Height:  |  Size: 1.4 KiB

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 1002 B

After

Width:  |  Height:  |  Size: 1002 B

View File

Before

Width:  |  Height:  |  Size: 2.5 KiB

After

Width:  |  Height:  |  Size: 2.5 KiB

View File

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

View File

Before

Width:  |  Height:  |  Size: 443 B

After

Width:  |  Height:  |  Size: 443 B

View File

Before

Width:  |  Height:  |  Size: 917 B

After

Width:  |  Height:  |  Size: 917 B

View File

Before

Width:  |  Height:  |  Size: 1.4 KiB

After

Width:  |  Height:  |  Size: 1.4 KiB

View File

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

Before

Width:  |  Height:  |  Size: 1.8 KiB

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

Before

Width:  |  Height:  |  Size: 1.7 KiB

After

Width:  |  Height:  |  Size: 1.7 KiB

View File

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

Before

Width:  |  Height:  |  Size: 1.8 KiB

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

Before

Width:  |  Height:  |  Size: 839 B

After

Width:  |  Height:  |  Size: 839 B

View File

Before

Width:  |  Height:  |  Size: 1.6 KiB

After

Width:  |  Height:  |  Size: 1.6 KiB

View File

Before

Width:  |  Height:  |  Size: 3.6 KiB

After

Width:  |  Height:  |  Size: 3.6 KiB

View File

Before

Width:  |  Height:  |  Size: 5.4 KiB

After

Width:  |  Height:  |  Size: 5.4 KiB

View File

@@ -0,0 +1,17 @@
// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript {
repositories {
jcenter()
google()
}
dependencies {
classpath 'com.android.tools.build:gradle:4.0.0'
}
}
allprojects {
repositories {
jcenter()
google()
}
}

View File

@@ -0,0 +1,5 @@
# customized paths
OCCT_ROOT=c\:/android/occt-dev-android
FREETYPE_ROOT=c\:/android/freetype-2.7.1-android
# in case if OCCT was built with FreeImage
#FREEIMAGE_ROOT=c\:/android/freeimage-3.17-android

View File

@@ -1,205 +0,0 @@
LOCAL_PATH:= $(call my-dir)
STL_INC := $(NDK_ROOT)/sources/cxx-stl/gnu-libstdc++/$(NDK_TOOLCHAIN_VERSION)/include $(NDK_ROOT)/sources/cxx-stl/gnu-libstdc++/$(NDK_TOOLCHAIN_VERSION)/libs/$(TARGET_ARCH_ABI)/include
#STL_LIB := $(NDK_ROOT)/sources/cxx-stl/gnu-libstdc++/$(NDK_TOOLCHAIN_VERSION)/libs/$(TARGET_ARCH_ABI)/libgnustl_static.a
STL_LIB := $(NDK_ROOT)/sources/cxx-stl/gnu-libstdc++/$(NDK_TOOLCHAIN_VERSION)/libs/$(TARGET_ARCH_ABI)/libgnustl_shared.so
OCCT_ROOT := $(LOCAL_PATH)/../../../..
FREETYPE_INC := $(OCCT_ROOT)/../freetype/include/freetype2
FREETYPE_LIBS := $(OCCT_ROOT)/../freetype/libs
FREEIMAGE_INC := $(OCCT_ROOT)/../FreeImage/include
FREEIMAGE_LIBS := $(OCCT_ROOT)/../FreeImage/libs
OCCT_INC := $(OCCT_ROOT)/inc
OCCT_LIBS := $(OCCT_ROOT)/and/libs
ASSETDIR := $(LOCAL_PATH)/../assets
$(ASSETDIR)/Shaders: $(ASSETDIR)
-mkdir -p $(ASSETDIR)
-mkdir -p $(ASSETDIR)/Shaders
cp -f -r $(OCCT_ROOT)/src/Shaders/*.* $(ASSETDIR)/Shaders
$(ASSETDIR)/SHMessage: $(ASSETDIR)
-mkdir -p $(ASSETDIR)
-mkdir -p $(ASSETDIR)/SHMessage
cp -f -r $(OCCT_ROOT)/src/SHMessage/*.* $(ASSETDIR)/SHMessage
$(ASSETDIR)/XSMessage: $(ASSETDIR)
-mkdir -p $(ASSETDIR)
-mkdir -p $(ASSETDIR)/XSMessage
cp -f -r $(OCCT_ROOT)/src/XSMessage/*.* $(ASSETDIR)/XSMessage
pre_all: $(ASSETDIR)/Shaders $(ASSETDIR)/SHMessage $(ASSETDIR)/XSMessage
jniall: pre_all all
# STL libs
include $(CLEAR_VARS)
LOCAL_MODULE := SharedStl
LOCAL_EXPORT_C_INCLUDES := $(STL_INC)
LOCAL_SRC_FILES := $(STL_LIB)
include $(PREBUILT_SHARED_LIBRARY)
# 3rd-parties used in OCCT
include $(CLEAR_VARS)
LOCAL_MODULE := FreeType
LOCAL_EXPORT_C_INCLUDES := $(FREETYPE_INC)
LOCAL_SRC_FILES := $(FREETYPE_LIBS)/$(TARGET_ARCH_ABI)/libfreetype.so
include $(PREBUILT_SHARED_LIBRARY)
#include $(CLEAR_VARS)
#LOCAL_MODULE := FreeImage
#LOCAL_EXPORT_C_INCLUDES := $(FREEIMAGE_INC)
#LOCAL_SRC_FILES := $(FREEIMAGE_LIBS)/$(TARGET_ARCH_ABI)/libfreeimage.so
#include $(PREBUILT_SHARED_LIBRARY)
# OCCT core
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKernel
LOCAL_EXPORT_C_INCLUDES := $(OCCT_INC)
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKernel.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKMath
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKMath.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKG2d
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKG2d.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKG3d
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKG3d.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKGeomBase
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKGeomBase.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKBRep
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKBRep.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKGeomAlgo
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKGeomAlgo.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKTopAlgo
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKTopAlgo.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKShHealing
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKShHealing.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKMesh
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKMesh.so
include $(PREBUILT_SHARED_LIBRARY)
# OCCT Exchange
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKPrim
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKPrim.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKBO
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKBO.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKBool
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKBool.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKFillet
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKFillet.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKOffset
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKOffset.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKXSBase
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKXSBase.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKIGES
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKIGES.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKSTEPBase
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKSTEPBase.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKSTEPAttr
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKSTEPAttr.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKSTEP209
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKSTEP209.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKSTEP
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKSTEP.so
include $(PREBUILT_SHARED_LIBRARY)
# OCCT visualization
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKService
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKService.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKHLR
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKHLR.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKV3d
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKV3d.so
include $(PREBUILT_SHARED_LIBRARY)
include $(CLEAR_VARS)
LOCAL_MODULE := OcctTKOpenGl
LOCAL_SRC_FILES := $(OCCT_LIBS)/$(TARGET_ARCH_ABI)/libTKOpenGl.so
include $(PREBUILT_SHARED_LIBRARY)
# our sample
include $(CLEAR_VARS)
LOCAL_MODULE := libTKJniSample
LOCAL_C_INCLUDES := $(STL_INC)
#LOCAL_STATIC_LIBRARIES := $(STL_LIB) does not work
LOCAL_CFLAGS := -Wall -std=c++11
LOCAL_CPP_EXTENSION := .cxx .cpp
LOCAL_CPP_FEATURES := rtti exceptions
LOCAL_SRC_FILES := OcctJni_Viewer.cxx OcctJni_Window.cxx OcctJni_MsgPrinter.cxx
LOCAL_SHARED_LIBRARIES := OcctTKernel OcctTKMath OcctTKG2d OcctTKG3d OcctTKGeomBase OcctTKBRep OcctTKGeomAlgo OcctTKTopAlgo OcctTKShHealing OcctTKMesh OcctTKPrim
LOCAL_SHARED_LIBRARIES += OcctTKIGES OcctTKSTEP OcctTKXSBase
LOCAL_SHARED_LIBRARIES += OcctTKService OcctTKHLR OcctTKV3d OcctTKOpenGl
LOCAL_SHARED_LIBRARIES += SharedStl
LOCAL_LDLIBS := -llog -lGLESv2 -lEGL
#LOCAL_LDLIBS += $(STL_LIB)
include $(BUILD_SHARED_LIBRARY)

View File

@@ -1,8 +0,0 @@
NDK_TOOLCHAIN_VERSION := 4.8
APP_PLATFORM := android-15
APP_ABI := armeabi-v7a
#APP_ABI := all
#APP_STL := gnustl_static
#APP_STL := stlport_static

View File

@@ -1,109 +0,0 @@
// Copyright (c) 2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef OcctJni_Window_H
#define OcctJni_Window_H
#include <Aspect_Window.hxx>
//! This class defines dummy window
class OcctJni_Window : public Aspect_Window
{
public:
//! Creates a wrapper over existing Window handle
OcctJni_Window (const int theWidth, const int theHeight)
: myWidth (theWidth), myHeight(theHeight) {}
//! Returns native Window handle
virtual Aspect_Drawable NativeHandle() const Standard_OVERRIDE { return 0; }
//! Returns parent of native Window handle
virtual Aspect_Drawable NativeParentHandle() const Standard_OVERRIDE { return 0; }
//! Returns nothing on Android
virtual Aspect_FBConfig NativeFBConfig() const Standard_OVERRIDE { return 0; }
virtual void Destroy() {}
//! Opens the window <me>
virtual void Map() const Standard_OVERRIDE {}
//! Closes the window <me>
virtual void Unmap() const Standard_OVERRIDE {}
//! Applies the resizing to the window <me>
virtual Aspect_TypeOfResize DoResize() Standard_OVERRIDE { return Aspect_TOR_UNKNOWN; }
//! Apply the mapping change to the window <me>
virtual Standard_Boolean DoMapping() const Standard_OVERRIDE { return Standard_True; }
//! Returns True if the window <me> is opened
virtual Standard_Boolean IsMapped() const Standard_OVERRIDE { return Standard_True; }
//! Returns The Window RATIO equal to the physical WIDTH/HEIGHT dimensions
virtual Standard_Real Ratio() const Standard_OVERRIDE { return 1.0; }
//! Returns The Window POSITION in PIXEL
virtual void Position (Standard_Integer& theX1,
Standard_Integer& theY1,
Standard_Integer& theX2,
Standard_Integer& theY2) const Standard_OVERRIDE
{
theX1 = 0;
theX2 = myWidth;
theY1 = 0;
theY2 = myHeight;
}
//! Set The Window POSITION in PIXEL
void SetPosition (const Standard_Integer theX1,
const Standard_Integer theY1,
const Standard_Integer theX2,
const Standard_Integer theY2)
{
myWidth = theX2 - theX1;
myHeight = theY2 - theY1;
}
//! Returns The Window SIZE in PIXEL
virtual void Size (Standard_Integer& theWidth,
Standard_Integer& theHeight) const Standard_OVERRIDE
{
theWidth = myWidth;
theHeight = myHeight;
}
//! Set The Window SIZE in PIXEL
void SetSize (const Standard_Integer theWidth,
const Standard_Integer theHeight)
{
myWidth = theWidth;
myHeight = theHeight;
}
private:
int myWidth;
int myHeight;
public:
DEFINE_STANDARD_RTTIEXT(OcctJni_Window,Aspect_Window)
};
DEFINE_STANDARD_HANDLE(OcctJni_Window, Aspect_Window)
#endif // OcctJni_Window_H

View File

@@ -1,14 +0,0 @@
# This file is automatically generated by Android Tools.
# Do not modify this file -- YOUR CHANGES WILL BE ERASED!
#
# This file must be checked in Version Control Systems.
#
# To customize properties used by the Ant build system edit
# "ant.properties", and override values to adapt the script to your
# project structure.
#
# To enable ProGuard to shrink and obfuscate your code, uncomment this (available properties: sdk.dir, user.home):
#proguard.config=${sdk.dir}/tools/proguard/proguard-android.txt:proguard-project.txt
# Project target.
target=android-15

View File

@@ -0,0 +1 @@
include ':app'

View File

@@ -30,7 +30,7 @@ void ISession2D_Curve::Compute(const Handle(PrsMgr_PresentationManager3d)& ,
const Handle(Prs3d_Presentation)& thePrs,
const Standard_Integer )
{
Handle(Graphic3d_Group) aPrsGroup = Prs3d_Root::CurrentGroup (thePrs);
Handle(Graphic3d_Group) aPrsGroup = thePrs->CurrentGroup();
aPrsGroup->SetGroupPrimitivesAspect (myDrawer->LineAspect()->Aspect());
aPrsGroup->SetGroupPrimitivesAspect (myDrawer->PointAspect()->Aspect());

View File

@@ -84,10 +84,10 @@ void ISession_Direction::Compute (const Handle(PrsMgr_PresentationManager3d)& /*
Handle(Graphic3d_ArrayOfSegments) aPrims = new Graphic3d_ArrayOfSegments (2);
aPrims->AddVertex (myPnt);
aPrims->AddVertex (aLastPoint);
Prs3d_Root::CurrentGroup (aPresentation)->SetPrimitivesAspect (myDrawer->LineAspect()->Aspect());
Prs3d_Root::CurrentGroup (aPresentation)->AddPrimitiveArray (aPrims);
aPresentation->CurrentGroup()->SetPrimitivesAspect (myDrawer->LineAspect()->Aspect());
aPresentation->CurrentGroup()->AddPrimitiveArray (aPrims);
// Draw arrow
Prs3d_Arrow::Draw (Prs3d_Root::CurrentGroup (aPresentation),
Prs3d_Arrow::Draw (aPresentation->CurrentGroup(),
aLastPoint,
myDir,
anArrowAspect->Angle(),
@@ -97,7 +97,7 @@ void ISession_Direction::Compute (const Handle(PrsMgr_PresentationManager3d)& /*
if (myText.Length() != 0)
{
gp_Pnt aTextPosition = aLastPoint;
Prs3d_Text::Draw (Prs3d_Root::CurrentGroup (aPresentation),
Prs3d_Text::Draw (aPresentation->CurrentGroup(),
myDrawer->TextAspect(),
myText,
aTextPosition);

View File

@@ -214,7 +214,6 @@
#include <Precision.hxx>
#include <Prs3d_Arrow.hxx>
#include <Prs3d_Drawer.hxx>
#include <Prs3d_Root.hxx>
#include <Prs3d_Text.hxx>
#include <Prs3d_ArrowAspect.hxx>
#include <Prs3d_IsoAspect.hxx>

View File

@@ -42,10 +42,10 @@ void ISession_Direction::Compute(const Handle(PrsMgr_PresentationManager3d)& /*a
Handle(Graphic3d_ArrayOfSegments) aPrims = new Graphic3d_ArrayOfSegments (2);
aPrims->AddVertex (myStartPnt);
aPrims->AddVertex (myEndPnt);
Prs3d_Root::CurrentGroup (aPresentation)->SetPrimitivesAspect (myDrawer->LineAspect()->Aspect());
Prs3d_Root::CurrentGroup (aPresentation)->AddPrimitiveArray (aPrims);
aPresentation->CurrentGroup()->SetPrimitivesAspect (myDrawer->LineAspect()->Aspect());
aPresentation->CurrentGroup()->AddPrimitiveArray (aPrims);
// Draw arrow
Prs3d_Arrow::Draw (Prs3d_Root::CurrentGroup (aPresentation),
Prs3d_Arrow::Draw (aPresentation->CurrentGroup(),
myEndPnt,
gp_Dir (gp_Vec(myStartPnt, myEndPnt)),
anArrowAspect->Angle(),

View File

@@ -126,7 +126,6 @@
#include <Plate_GtoCConstraint.hxx>
#include <Prs3d_Arrow.hxx>
#include <Prs3d_LineAspect.hxx>
#include <Prs3d_Root.hxx>
#include <GeomPlate_Surface.hxx>
#include <GeomProjLib.hxx>
#include <GCE2d_MakeSegment.hxx>

View File

@@ -10,19 +10,15 @@ set (Animation_HEADER_FILES ${Animation_SRC_DIR}/AnimationApp.h
${Animation_SRC_DIR}/AnimationDoc.h
${Animation_SRC_DIR}/AnimationView3D.h
${Animation_SRC_DIR}/Fonc.hxx
${Animation_SRC_DIR}/Sensitivity.h
${Animation_SRC_DIR}/ShadingDialog.h
${Animation_SRC_DIR}/ThreadDialog.h
${Animation_SRC_DIR}/Tune.h
${Animation_SRC_DIR}/StdAfx.h )
set (Animation_SOURCE_FILES ${Animation_SRC_DIR}/AnimationApp.cpp
${Animation_SRC_DIR}/AnimationDoc.cpp
${Animation_SRC_DIR}/AnimationView3D.cpp
${Animation_SRC_DIR}/Fonc.cxx
${Animation_SRC_DIR}/Sensitivity.cpp
${Animation_SRC_DIR}/ShadingDialog.cpp
${Animation_SRC_DIR}/ThreadDialog.cpp
${Animation_SRC_DIR}/Tune.cpp
${Animation_SRC_DIR}/StdAfx.cpp )
set (Animation_RESOURCE_DIR ${MFC_STANDARD_SAMPLES_DIR}/09_Animation/res)

View File

@@ -314,7 +314,6 @@
<PreprocessorDefinitions Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<ClCompile Include="..\..\..\src\Fonc.cxx" />
<ClCompile Include="..\..\..\src\Sensitivity.cpp" />
<ClCompile Include="..\..\..\src\ShadingDialog.cpp">
<Optimization Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Disabled</Optimization>
<AdditionalIncludeDirectories Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
@@ -367,7 +366,6 @@
<AdditionalIncludeDirectories Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<PreprocessorDefinitions Condition="'$(Configuration)|$(Platform)'=='Release|x64'">%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<ClCompile Include="..\..\..\src\Tune.cpp" />
<ClCompile Include="..\..\..\..\Common\WINMAIN.CPP">
<Optimization Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">Disabled</Optimization>
<AdditionalIncludeDirectories Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
@@ -391,11 +389,9 @@
<ClInclude Include="..\..\..\src\AnimationView3D.h" />
<ClInclude Include="..\..\..\src\Fonc.hxx" />
<ClInclude Include="..\..\..\res\resource.h" />
<ClInclude Include="..\..\..\src\Sensitivity.h" />
<ClInclude Include="..\..\..\src\ShadingDialog.h" />
<ClInclude Include="..\..\..\src\StdAfx.h" />
<ClInclude Include="..\..\..\src\ThreadDialog.h" />
<ClInclude Include="..\..\..\src\Tune.h" />
</ItemGroup>
<ItemGroup>
<None Include="..\..\..\res\child2.bmp" />

View File

@@ -32,9 +32,6 @@
<ClCompile Include="..\..\..\src\Fonc.cxx">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\..\src\Sensitivity.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\..\src\ShadingDialog.cpp">
<Filter>Source Files</Filter>
</ClCompile>
@@ -44,9 +41,6 @@
<ClCompile Include="..\..\..\src\ThreadDialog.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\..\src\Tune.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\..\..\Common\WINMAIN.CPP">
<Filter>Source Files</Filter>
</ClCompile>
@@ -67,9 +61,6 @@
<ClInclude Include="..\..\..\res\resource.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\..\..\src\Sensitivity.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\..\..\src\ShadingDialog.h">
<Filter>Header Files</Filter>
</ClInclude>
@@ -79,9 +70,6 @@
<ClInclude Include="..\..\..\src\ThreadDialog.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\..\..\src\Tune.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="..\..\..\res\child2.bmp">

View File

@@ -80,9 +80,6 @@ BEGIN
BUTTON ID_SHADING
SEPARATOR
BUTTON ID_FILE_LOADGRID
BUTTON ID_SENSITIVITY
BUTTON ID_VIEW_DISPLAYSTATUS
BUTTON ID_WALK_WALKTHRU
SEPARATOR
BUTTON ID_APP_ABOUT
END
@@ -156,11 +153,6 @@ BEGIN
BEGIN
MENUITEM "&About DisplayAnimation...", ID_APP_ABOUT
END
POPUP "Walk"
BEGIN
MENUITEM "Sensitivity...", ID_SENSITIVITY
MENUITEM "Walkthrough", ID_WALK_WALKTHRU
END
END
@@ -191,51 +183,6 @@ BEGIN
EDITTEXT IDC_Angle,65,27,48,16,ES_AUTOHSCROLL
END
IDD_SENS DIALOG 0, 0, 229, 50
STYLE DS_SETFONT | DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Sensitivity"
FONT 8, "MS Sans Serif"
BEGIN
LTEXT "Fly",IDC_STATIC,8,10,10,8
EDITTEXT IDC_FLY,33,8,76,15,ES_AUTOHSCROLL
CONTROL "Spin1",IDC_SPIN1,"msctls_updown32",UDS_ARROWKEYS,112,8,11,15
LTEXT "Turn",IDC_STATIC,6,28,16,8
EDITTEXT IDC_TURN,34,25,76,15,ES_AUTOHSCROLL
CONTROL "Spin1",IDC_SPIN2,"msctls_updown32",UDS_ARROWKEYS,112,25,11,15
DEFPUSHBUTTON "OK",IDOK,170,7,50,14
PUSHBUTTON "Cancel",IDCANCEL,170,23,50,14
END
IDD_TUNE DIALOG 0, 0, 131, 154
STYLE DS_SETFONT | DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Display Tuning"
FONT 8, "MS Sans Serif"
BEGIN
LTEXT "Distance",IDC_STATIC,9,8,29,8
EDITTEXT IDC_FOCDIST,46,5,57,14,ES_AUTOHSCROLL
CONTROL "Spin1",IDC_SPINFOC,"msctls_updown32",UDS_ARROWKEYS,107,6,11,14
LTEXT "Aperture",IDC_STATIC,9,25,28,8
EDITTEXT IDC_APPERTURE,46,23,57,14,ES_AUTOHSCROLL
CONTROL "Spin4",IDC_SPINANG,"msctls_updown32",UDS_ARROWKEYS,107,23,11,14
LTEXT "X :",IDC_STATIC,17,52,12,8
LTEXT "0.",IDC_XEYE,31,52,66,8
GROUPBOX "Eye",IDC_STATIC,9,41,110,43
LTEXT "Y :",IDC_STATIC,17,62,12,8
LTEXT "0.",IDC_YEYE,31,62,66,8
LTEXT "Z :",IDC_STATIC,17,72,12,8
LTEXT "0.",IDC_ZEYE,31,72,66,8
LTEXT "X :",IDC_STATIC,15,98,12,8
LTEXT "0.",IDC_XAT,33,98,66,8
GROUPBOX "Target",IDC_STATIC,9,86,110,45
LTEXT "Y :",IDC_STATIC,15,109,12,8
LTEXT "0.",IDC_YAT,33,109,66,8
LTEXT "Z :",IDC_STATIC,15,120,12,8
LTEXT "0.",IDC_ZAT,33,120,66,8
LTEXT "Twist :",IDC_STATIC,11,137,22,8
LTEXT "0.",IDC_TWIST,35,137,77,8
END
/////////////////////////////////////////////////////////////////////////////
//
// Version
@@ -297,12 +244,6 @@ BEGIN
ID_FILE_LOADGRID "Load Grid Files\nLoad Grid File"
END
STRINGTABLE
BEGIN
ID_VIEW_DISPLAYSTATUS "Show/Hide the display status Window\nShow/Hide the display status Window"
ID_WALK_WALKTHRU "Toggle Walkthru On/Off\nToggle Walkthru On/Off"
END
#endif // English (U.S.) resources
/////////////////////////////////////////////////////////////////////////////

View File

@@ -45,10 +45,6 @@ CAnimationDoc::CAnimationDoc()
{
// TODO: add one-time construction code here
static Standard_Integer StaticCount=1;
StaticCount++;
myCount = StaticCount;
Handle(Graphic3d_GraphicDriver) aGraphicDriver =
((CAnimationApp*)AfxGetApp())->GetGraphicDriver();
@@ -60,7 +56,6 @@ CAnimationDoc::CAnimationDoc()
myDeviation = 0.0008;
thread = 4;
myAngle = 0;
BRep_Builder B;
TopoDS_Shape CrankArm;
@@ -184,90 +179,6 @@ void CAnimationDoc::Dump(CDumpContext& dc) const
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::DragEvent(const Standard_Integer x ,
const Standard_Integer y ,
const Standard_Integer TheState ,
const Handle(V3d_View)& aView )
{
// TheState == -1 button down
// TheState == 0 move
// TheState == 1 button up
static Standard_Integer theButtonDownX=0;
static Standard_Integer theButtonDownY=0;
if (TheState == -1)
{
theButtonDownX=x;
theButtonDownY=y;
}
if (TheState == 1)
myAISContext->Select (theButtonDownX, theButtonDownY, x, y, aView, Standard_True);
}
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::InputEvent(const Standard_Integer /*x*/,
const Standard_Integer /*y*/,
const Handle(V3d_View)& /*aView*/ )
{
myAISContext->Select (Standard_True);
}
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::MoveEvent(const Standard_Integer x ,
const Standard_Integer y ,
const Handle(V3d_View)& aView )
{
myAISContext->MoveTo (x, y, aView, Standard_True);
}
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::ShiftMoveEvent(const Standard_Integer x ,
const Standard_Integer y ,
const Handle(V3d_View)& aView )
{
myAISContext->MoveTo (x, y, aView, Standard_True);
}
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::ShiftDragEvent(const Standard_Integer x ,
const Standard_Integer y ,
const Standard_Integer TheState ,
const Handle(V3d_View)& aView )
{
static Standard_Integer theButtonDownX=0;
static Standard_Integer theButtonDownY=0;
if (TheState == -1)
{
theButtonDownX=x;
theButtonDownY=y;
}
if (TheState == 0)
myAISContext->ShiftSelect (theButtonDownX, theButtonDownY, x, y, aView, Standard_True);
}
//-----------------------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------------------
void CAnimationDoc::ShiftInputEvent(const Standard_Integer /*x*/,
const Standard_Integer /*y*/,
const Handle(V3d_View)& /*aView*/)
{
myAISContext->ShiftSelect (Standard_True);
}
//-----------------------------------------------------------------------------------------
//
@@ -278,7 +189,7 @@ void CAnimationDoc::Popup(const Standard_Integer /*x*/,
{
}
void CAnimationDoc::OnMyTimer()
void CAnimationDoc::OnMyTimer (double theTimeSec)
{
// TODO: Add your message handler code here and/or call default
@@ -287,9 +198,7 @@ void CAnimationDoc::OnMyTimer()
Standard_Real X;
gp_Ax1 Ax1(gp_Pnt(0,0,0),gp_Vec(0,0,1));
myAngle++;
angleA = thread*myAngle*M_PI/180;
angleA = thread * theTimeSec;
X = Sin(angleA)*3/8;
angleB = atan(X / Sqrt(-X * X + 1));
Standard_Real decal(25*0.6);
@@ -308,8 +217,6 @@ void CAnimationDoc::OnMyTimer()
gp_Trsf aPistonTrsf;
aPistonTrsf.SetTranslation(gp_Vec(-3*decal*(1-Cos(angleA))-8*decal*(1-Cos(angleB)),0,0));
myAISContext->SetLocation(myAisPiston,aPistonTrsf);
myAISContext->UpdateCurrentViewer();
}
void CAnimationDoc::OnShading()

View File

@@ -17,33 +17,6 @@
class CAnimationDoc : public OCC_BaseDoc
{
public:
void DragEvent (const Standard_Integer x,
const Standard_Integer y,
const Standard_Integer TheState,
const Handle(V3d_View)& aView);
void InputEvent (const Standard_Integer x,
const Standard_Integer y,
const Handle(V3d_View)& aView);
void MoveEvent (const Standard_Integer x,
const Standard_Integer y,
const Handle(V3d_View)& aView);
void ShiftMoveEvent (const Standard_Integer x,
const Standard_Integer y,
const Handle(V3d_View)& aView);
void ShiftDragEvent (const Standard_Integer x,
const Standard_Integer y,
const Standard_Integer TheState,
const Handle(V3d_View)& aView);
void ShiftInputEvent (const Standard_Integer x,
const Standard_Integer y,
const Handle(V3d_View)& aView);
void Popup (const Standard_Integer x,
const Standard_Integer y,
const Handle(V3d_View)& aView);
@@ -78,11 +51,9 @@ private:
Handle(AIS_Shape) myAisEngineBlock ;
Standard_Real myDeviation;
Standard_Integer myAngle;
public:
void OnMyTimer();
Standard_Integer myCount;
void OnMyTimer (double theTimeSec);
Standard_Integer thread;
double m_Xmin, m_Ymin, m_Zmin, m_Xmax, m_Ymax, m_Zmax;
BOOL m_bIsGridLoaded;

File diff suppressed because it is too large Load Diff

View File

@@ -9,10 +9,12 @@
#pragma once
#endif // _MSC_VER >= 1000
#include "Tune.h"
#include "AnimationDoc.h"
#include "..\..\Common\res\OCC_Resource.h"
#include <AIS_AnimationTimer.hxx>
#include <AIS_ViewController.hxx>
class AIS_RubberBand;
enum View3D_CurrentAction {
@@ -26,7 +28,7 @@ enum View3D_CurrentAction {
CurrentAction3d_Turn
};
class CAnimationView3D : public CView
class CAnimationView3D : public CView, public AIS_ViewController
{
protected: // create from serialization only
CAnimationView3D();
@@ -58,20 +60,10 @@ public:
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif
void SetDimensions ();
void ReloadData();
CTune m_Tune;
void SetFocal (double theFocus, double theAngle);
void Fly (int x , int y);
void Turn (int x , int y);
void Roll (int x , int y);
void Twist (int x , int y);
protected:
double m_dAngle;
BOOL m_bShift;
int m_cx , m_cy ;
int m_curx , m_cury ;
// Generated message map functions
protected:
@@ -94,6 +86,7 @@ protected:
afx_msg void OnSize(UINT nType, int cx, int cy);
afx_msg void OnBUTTONZoomProg();
afx_msg void OnBUTTONZoomWin();
afx_msg BOOL OnMouseWheel(UINT nFlags, short zDelta, CPoint point);
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnMButtonDown(UINT nFlags, CPoint point);
@@ -110,15 +103,11 @@ protected:
afx_msg void OnUpdateBUTTONRot(CCmdUI* pCmdUI);
afx_msg void OnChangeBackground();
afx_msg void OnTimer(UINT_PTR nIDEvent);
afx_msg void OnSensitivity();
afx_msg void OnBUTTONFly();
afx_msg void OnBUTTONTurn();
afx_msg void OnUpdateBUTTONFly(CCmdUI* pCmdUI);
afx_msg void OnUpdateBUTTONTurn(CCmdUI* pCmdUI);
afx_msg void OnViewDisplaystatus();
afx_msg void OnUpdateViewDisplaystatus(CCmdUI* pCmdUI);
//}}AFX_MSG
public :
@@ -131,26 +120,44 @@ private:
Handle(V3d_View) myView;
public:
Handle(V3d_View)& GetView() { return myView;};
void DisplayTuneDialog();
//! Request view redrawing.
void update3dView();
//! Flush events and redraw view.
void redraw3dView();
protected:
//! Handle view redraw.
virtual void handleViewRedraw (const Handle(AIS_InteractiveContext)& theCtx,
const Handle(V3d_View)& theView) Standard_OVERRIDE;
protected:
//! Setup mouse gestures.
void defineMouseGestures();
//! Get current action.
View3D_CurrentAction getCurrentAction() const { return myCurrentMode; }
//! Set current action.
void setCurrentAction (View3D_CurrentAction theAction)
{
myCurrentMode = theAction;
defineMouseGestures();
}
private:
Standard_Integer myXmin;
Standard_Integer myYmin;
Standard_Integer myXmax;
Standard_Integer myYmax;
AIS_AnimationTimer myAnimTimer;
AIS_MouseGestureMap myDefaultGestures;
Graphic3d_Vec2i myClickPos;
Standard_Real myCurZoom;
Standard_Boolean myHlrModeIsOn;
Standard_Boolean myIsTurnStarted;
unsigned int myUpdateRequests; //!< counter for unhandled update requests
View3D_CurrentAction myCurrentMode;
double m_Atx , m_Aty , m_Atz ;
double m_Eyex , m_Eyey , m_Eyez ;
double m_FlySens ;
double m_TurnSens ;
double m_Focus ;
private:
Handle(AIS_RubberBand) myRect; //!< Rubber rectangle for selection
void DrawRectangle (Standard_Integer theMinX, Standard_Integer theMinY, Standard_Integer theMaxX, Standard_Integer theMaxY,
Standard_Boolean theToDraw, Aspect_TypeOfLine theLineType = Aspect_TOL_SOLID);
};
#ifndef _DEBUG // debug version in AnimationView.cpp

View File

@@ -1,81 +0,0 @@
// Sensitivity.cpp : implementation file
//
#include "stdafx.h"
#include "Sensitivity.h"
#include "AnimationApp.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////////////////////////
// CSensitivity dialog
CSensitivity::CSensitivity(CWnd* pParent /*=NULL*/)
: CDialog(CSensitivity::IDD, pParent)
{
//{{AFX_DATA_INIT(CSensitivity)
m_SensFly = 0.0;
m_SensTurn = 0.0;
//}}AFX_DATA_INIT
}
void CSensitivity::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CSensitivity)
DDX_Text(pDX, IDC_FLY, m_SensFly);
DDV_MinMaxDouble(pDX, m_SensFly, 0., 10000000.);
DDX_Text(pDX, IDC_TURN, m_SensTurn);
DDV_MinMaxDouble(pDX, m_SensTurn, 0., 10000000.);
//}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CSensitivity, CDialog)
//{{AFX_MSG_MAP(CSensitivity)
ON_NOTIFY(UDN_DELTAPOS, IDC_SPIN1, OnDeltaposSpin1)
ON_NOTIFY(UDN_DELTAPOS, IDC_SPIN2, OnDeltaposSpin2)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
/////////////////////////////////////////////////////////////////////////////
// CSensitivity message handlers
void CSensitivity::OnDeltaposSpin1(NMHDR* pNMHDR, LRESULT* pResult)
{
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
// TODO: Add your control notification handler code here
if ( pNMUpDown->iDelta > 0 ) {
m_SensFly /= 1.1 ;
}
else {
m_SensFly *= 1.1 ;
}
UpdateData ( FALSE ) ;
*pResult = 0;
}
void CSensitivity::OnDeltaposSpin2(NMHDR* pNMHDR, LRESULT* pResult)
{
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
// TODO: Add your control notification handler code here
if ( pNMUpDown->iDelta > 0 ) {
m_SensTurn /= 1.1 ;
}
else {
m_SensTurn *= 1.1 ;
}
UpdateData ( FALSE ) ;
*pResult = 0;
}

View File

@@ -1,48 +0,0 @@
#if !defined(AFX_SENSITIVITY_H__F3897393_7D55_11D2_8E5F_0800369C8A03__INCLUDED_)
#define AFX_SENSITIVITY_H__F3897393_7D55_11D2_8E5F_0800369C8A03__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// Sensitivity.h : header file
//
/////////////////////////////////////////////////////////////////////////////
// CSensitivity dialog
class CSensitivity : public CDialog
{
// Construction
public:
CSensitivity(CWnd* pParent = NULL); // standard constructor
// Dialog Data
//{{AFX_DATA(CSensitivity)
enum { IDD = IDD_SENS };
double m_SensFly;
double m_SensTurn;
//}}AFX_DATA
// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CSensitivity)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
//}}AFX_VIRTUAL
// Implementation
protected:
// Generated message map functions
//{{AFX_MSG(CSensitivity)
afx_msg void OnDeltaposSpin1(NMHDR* pNMHDR, LRESULT* pResult);
afx_msg void OnDeltaposSpin2(NMHDR* pNMHDR, LRESULT* pResult);
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};
//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.
#endif // !defined(AFX_SENSITIVITY_H__F3897393_7D55_11D2_8E5F_0800369C8A03__INCLUDED_)

View File

@@ -1,140 +0,0 @@
// Tune.cpp : implementation file
//
#include "stdafx.h"
#include "Tune.h"
#include "AnimationApp.h"
#include "Animationdoc.h"
#include "AnimationView3D.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
/////////////////////////////////////////////////////////////////////////////
// CTune dialog
CTune::CTune(CWnd* pParent /*=NULL*/)
: CDialog(CTune::IDD, pParent)
{
//{{AFX_DATA_INIT(CTune)
m_dAngle = 0.0;
m_dFocus = 0.0;
//}}AFX_DATA_INIT
}
void CTune::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CTune)
DDX_Text(pDX, IDC_APPERTURE, m_dAngle);
DDV_MinMaxDouble(pDX, m_dAngle, 5., 179.);
DDX_Text(pDX, IDC_FOCDIST, m_dFocus);
DDV_MinMaxDouble(pDX, m_dFocus, 1.e-003, 10000000.);
//}}AFX_DATA_MAP
}
BEGIN_MESSAGE_MAP(CTune, CDialog)
//{{AFX_MSG_MAP(CTune)
ON_NOTIFY(UDN_DELTAPOS, IDC_SPINANG, OnDeltaposSpinang)
ON_NOTIFY(UDN_DELTAPOS, IDC_SPINFOC, OnDeltaposSpinfoc)
ON_EN_CHANGE(IDC_APPERTURE, OnChangeApperture)
ON_EN_CHANGE(IDC_FOCDIST, OnChangeFocdist)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()
/////////////////////////////////////////////////////////////////////////////
// CTune message handlers
void CTune::OnDeltaposSpinang(NMHDR* pNMHDR, LRESULT* pResult)
{
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
// TODO: Add your control notification handler code here
if ( pNMUpDown->iDelta > 0 ) {
if ( m_dAngle > 2. )
m_dAngle -= 1. ;
}
else {
if ( m_dAngle < 178. )
m_dAngle += 1 ;
}
UpdateData ( FALSE ) ;
OnChangeApperture() ;
*pResult = 0;
}
void CTune::OnDeltaposSpinfoc(NMHDR* pNMHDR, LRESULT* pResult)
{
NM_UPDOWN* pNMUpDown = (NM_UPDOWN*)pNMHDR;
// TODO: Add your control notification handler code here
if ( pNMUpDown->iDelta > 0 ) {
m_dFocus /= 1.1 ;
}
else {
m_dFocus *= 1.1 ;
}
UpdateData ( FALSE ) ;
OnChangeFocdist() ;
*pResult = 0;
}
void CTune::OnChangeApperture()
{
// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function to send the EM_SETEVENTMASK message to the control
// with the ENM_CHANGE flag ORed into the lParam mask.
// TODO: Add your control notification handler code here
( (CAnimationView3D *) m_pView) ->SetFocal ( m_dFocus , m_dAngle ) ;
}
void CTune::OnChangeFocdist()
{
// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the CDialog::OnInitDialog()
// function to send the EM_SETEVENTMASK message to the control
// with the ENM_CHANGE flag ORed into the lParam mask.
// TODO: Add your control notification handler code here
( (CAnimationView3D *) m_pView) ->SetFocal ( m_dFocus , m_dAngle ) ;
}
BOOL CTune::OnCommand(WPARAM wParam, LPARAM lParam)
{
// TODO: Add your specialized code here and/or call the base class
return CDialog::OnCommand(wParam, lParam);
}
BOOL CTune::OnInitDialog()
{
CDialog::OnInitDialog();
// TODO: Add extra initialization here
return TRUE; // return TRUE unless you set the focus to a control
// EXCEPTION: OCX Property Pages should return FALSE
}
BOOL CTune::OnNotify(WPARAM wParam, LPARAM lParam, LRESULT* pResult)
{
// TODO: Add your specialized code here and/or call the base class
return CDialog::OnNotify(wParam, lParam, pResult);
}

View File

@@ -1,54 +0,0 @@
#if !defined(AFX_TUNE_H__D7E45B53_AAD2_11D2_9E97_0800362A0F04__INCLUDED_)
#define AFX_TUNE_H__D7E45B53_AAD2_11D2_9E97_0800362A0F04__INCLUDED_
#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// Tune.h : header file
//
/////////////////////////////////////////////////////////////////////////////
// CTune dialog
class CTune : public CDialog
{
// Construction
public:
CTune(CWnd* pParent = NULL); // standard constructor
CView * m_pView;
// Dialog Data
//{{AFX_DATA(CTune)
enum { IDD = IDD_TUNE };
double m_dAngle;
double m_dFocus;
//}}AFX_DATA
// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CTune)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
virtual BOOL OnNotify(WPARAM wParam, LPARAM lParam, LRESULT* pResult);
//}}AFX_VIRTUAL
// Implementation
protected:
// Generated message map functions
//{{AFX_MSG(CTune)
afx_msg void OnDeltaposSpinang(NMHDR* pNMHDR, LRESULT* pResult);
afx_msg void OnDeltaposSpinfoc(NMHDR* pNMHDR, LRESULT* pResult);
afx_msg void OnChangeApperture();
afx_msg void OnChangeFocdist();
virtual BOOL OnInitDialog();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};
//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately before the previous line.
#endif // !defined(AFX_TUNE_H__D7E45B53_AAD2_11D2_9E97_0800362A0F04__INCLUDED_)

View File

@@ -35,7 +35,7 @@ END_MESSAGE_MAP()
BOOL OCC_App::InitApplication()
{
OSD::SetSignal (Standard_True);
OSD::SetSignal (false);
SampleName = "";
SetSamplePath (NULL);
try

View File

@@ -46,7 +46,7 @@ void Sample2D_Face::DrawMarker(const Handle(Geom2d_TrimmedCurve)& theCurve, cons
anArrow->AddVertex(aPoint);
anArrow->AddVertex(aRight);
Prs3d_Root::CurrentGroup(thePresentation)->AddPrimitiveArray(anArrow);
thePresentation->CurrentGroup()->AddPrimitiveArray(anArrow);
}
}
@@ -212,19 +212,19 @@ void Sample2D_Face::Compute (const Handle(PrsMgr_PresentationManager3d)& /*thePr
{
case TopAbs_FORWARD: {
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_FORWARD);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_FORWARD);
DrawMarker(aTrimmedCurve, thePresentation);
break;
}
case TopAbs_REVERSED: {
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_REVERSED);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_REVERSED);
DrawMarker(aTrimmedCurve, thePresentation);
break;
}
case TopAbs_INTERNAL: {
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_INTERNAL);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_INTERNAL);
DrawMarker(aTrimmedCurve, thePresentation);
mySeq_INTERNAL.Append(aCurve3d);
@@ -232,7 +232,7 @@ void Sample2D_Face::Compute (const Handle(PrsMgr_PresentationManager3d)& /*thePr
}
case TopAbs_EXTERNAL: {
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_EXTERNAL);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_EXTERNAL);
DrawMarker(aTrimmedCurve, thePresentation);
break;
}
@@ -242,17 +242,17 @@ void Sample2D_Face::Compute (const Handle(PrsMgr_PresentationManager3d)& /*thePr
ex.Next();
}
//add all primitives to the presentation
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_FORWARD);
Prs3d_Root::CurrentGroup(thePresentation)->AddPrimitiveArray(myForwardArray);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_FORWARD);
thePresentation->CurrentGroup()->AddPrimitiveArray(myForwardArray);
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_REVERSED);
Prs3d_Root::CurrentGroup(thePresentation)->AddPrimitiveArray(myReversedArray);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_REVERSED);
thePresentation->CurrentGroup()->AddPrimitiveArray(myReversedArray);
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_INTERNAL);
Prs3d_Root::CurrentGroup(thePresentation)->AddPrimitiveArray(myInternalArray);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_INTERNAL);
thePresentation->CurrentGroup()->AddPrimitiveArray(myInternalArray);
Prs3d_Root::CurrentGroup(thePresentation)->SetPrimitivesAspect(aLineAspect_EXTERNAL);
Prs3d_Root::CurrentGroup(thePresentation)->AddPrimitiveArray(myExternalArray);
thePresentation->CurrentGroup()->SetPrimitivesAspect(aLineAspect_EXTERNAL);
thePresentation->CurrentGroup()->AddPrimitiveArray(myExternalArray);
}
//Method for advanced customizable selection of picked object
@@ -275,8 +275,7 @@ void Sample2D_Face::HilightSelected
aSelectionPrs->Clear();
FillData();
Prs3d_Root::NewGroup ( aSelectionPrs );
Handle (Graphic3d_Group) aSelectGroup = Prs3d_Root::CurrentGroup ( aSelectionPrs);
Handle (Graphic3d_Group) aSelectGroup = aSelectionPrs->NewGroup();
for(Standard_Integer i=1; i<=aLength; ++i)
{
@@ -344,8 +343,7 @@ void Sample2D_Face::HilightOwnerWithColor ( const Handle(PrsMgr_PresentationMana
FillData();
//Direct highlighting
Prs3d_Root::NewGroup ( aHighlightPrs );
Handle (Graphic3d_Group) aHilightGroup = Prs3d_Root::CurrentGroup(aHighlightPrs);
Handle (Graphic3d_Group) aHilightGroup = aHighlightPrs->NewGroup();
Handle(Graphic3d_AspectLine3d) aLineAspect =
new Graphic3d_AspectLine3d(theStyle->Color(), Aspect_TOL_SOLID,2);
switch(theOwner->Priority())

View File

@@ -3,6 +3,7 @@
#include "Sample2D_Image.h"
#include <Graphic3d_Texture2Dmanual.hxx>
#include <Image_AlienPixMap.hxx>
IMPLEMENT_STANDARD_RTTIEXT(Sample2D_Image,AIS_Shape)
@@ -19,10 +20,13 @@ Sample2D_Image::Sample2D_Image(TCollection_AsciiString& aFileName,
}
void Sample2D_Image::MakeShape()
{
Handle(Graphic3d_Texture1D) anImageTexture =
new Graphic3d_Texture1Dsegment(myFilename);
Standard_Real coeff = (Standard_Real)(anImageTexture->GetImage()->Height())/
(anImageTexture->GetImage()->Width())*myScale;
Standard_Real coeff = 1.0;
Handle(Image_AlienPixMap) anImage = new Image_AlienPixMap();
if (anImage->Load (myFilename))
{
coeff = Standard_Real(anImage->Height()) / Standard_Real(anImage->Width()) * myScale;
}
TopoDS_Edge E1 = BRepBuilderAPI_MakeEdge(gp_Pnt(myX,myY,0.), gp_Pnt(100*myScale+myX,myY,0.));
TopoDS_Edge E2 = BRepBuilderAPI_MakeEdge(gp_Pnt(100*myScale+myX,myY,0.), gp_Pnt(100*myScale+myX,100*coeff+myY,0.));
TopoDS_Edge E3 = BRepBuilderAPI_MakeEdge(gp_Pnt(100*myScale+myX,100*coeff+myY,0.), gp_Pnt(myX,100*coeff+myY,0.));

View File

@@ -43,15 +43,15 @@ void Sample2D_Markers::Compute (const Handle(PrsMgr_PresentationManager3d)& /*aP
if(myMarkerType == Aspect_TOM_USERDEFINED)
{
Handle(Graphic3d_AspectMarker3d) aMarker = new Graphic3d_AspectMarker3d(Aspect_TOM_POINT,myColor,myIndex);
Prs3d_Root::CurrentGroup(aPresentation)->SetGroupPrimitivesAspect(aMarker);
Prs3d_Root::CurrentGroup(aPresentation)->AddPrimitiveArray (myArrayOfPoints);
aPresentation->CurrentGroup()->SetGroupPrimitivesAspect(aMarker);
aPresentation->CurrentGroup()->AddPrimitiveArray (myArrayOfPoints);
}
else
{
Handle(Graphic3d_AspectMarker3d) aMarker = new Graphic3d_AspectMarker3d(myMarkerType,myColor,myIndex);
Prs3d_Root::CurrentGroup (aPresentation)->SetPrimitivesAspect(aMarker);
aPresentation->CurrentGroup()->SetPrimitivesAspect(aMarker);
Handle(Graphic3d_ArrayOfPoints) anArrayOfPoints = new Graphic3d_ArrayOfPoints (1);
anArrayOfPoints->AddVertex (myXPosition, myYPosition, 0);
Prs3d_Root::CurrentGroup(aPresentation)->AddPrimitiveArray (anArrayOfPoints);
aPresentation->CurrentGroup()->AddPrimitiveArray (anArrayOfPoints);
}
}

View File

@@ -66,7 +66,6 @@
#include <gp_Pnt2d.hxx>
#include <OpenGl_GraphicDriver.hxx>
#include <Prs3d_Root.hxx>
#include <Prs3d_Drawer.hxx>
#include <Prs3d_IsoAspect.hxx>
#include <Prs3d_ShadingAspect.hxx>

Some files were not shown because too many files have changed in this diff Show More