1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/ApproxInt/ApproxInt_KnotTools.cxx
dpasukhi fe1382f3c2 Coding - Add clang-format configuration #246
New clang-format configuration added to determinate code style.
The default version is 16.
Extend CMake to copy config file to build root.
Method/function separator deprecation:
  In case if function/method has declaration in header,
    definition must not have related comment.
    Only //==== [100 chars] ==== is allowed as a not connected
    separator.
  In case if function/method has  NOT declaration in header,
    definition must have related comment in doxygen style:
    // Descriptions
    // @param
    // @return
    Or just function/method separator:
    //==== [100 chars] ====
  All old separators with no description must be replaced to
    //==== [100 chars] ====
2025-01-14 23:07:40 +00:00

815 lines
24 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <ApproxInt_KnotTools.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <GeomInt_TheMultiLineOfWLApprox.hxx>
#include <GeomInt_WLApprox.hxx>
#include <Geom_BSplineCurve.hxx>
#include <NCollection_Sequence.hxx>
#include <NCollection_Vector.hxx>
#include <PLib.hxx>
#include <Precision.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <math_Vector.hxx>
// (Sqrt(5.0) - 1.0) / 4.0
// static const Standard_Real aSinCoeff = 0.30901699437494742410229341718282;
static const Standard_Real aSinCoeff2 = 0.09549150281252627; // aSinCoeff^2 = (3. - Sqrt(5.)) / 8.
static const Standard_Integer aMaxPntCoeff = 15;
//=================================================================================================
// function : EvalCurv
// purpose : Evaluate curvature in dim-dimension point.
//=================================================================================================
static Standard_Real EvalCurv(const Standard_Real dim,
const Standard_Real* V1,
const Standard_Real* V2)
{
// Really V1 and V2 are arrays of size dim;
// V1 is first derivative, V2 is second derivative
// of n-dimension curve
// Curvature is curv = |V1^V2|/|V1|^3
// V1^V2 is outer product of two vectors:
// P(i,j) = V1(i)*V2(j) - V1(j)*V2(i);
Standard_Real mp = 0.;
Standard_Integer i, j;
Standard_Real p;
for (i = 1; i < dim; ++i)
{
for (j = 0; j < i; ++j)
{
p = V1[i] * V2[j] - V1[j] * V2[i];
mp += p * p;
}
}
//
Standard_Real q = 0.;
for (i = 0; i < dim; ++i)
{
q += V1[i] * V1[i];
}
if (q < 1 / Precision::Infinite())
{
// Indeed, if q is small then we can
// obtain equivocation of "0/0" type.
// In this case, local curvature can be
// not equal to 0 or Infinity.
// However, it is good solution to insert
// knot in the place with such singularity.
// Therefore, we need imitation of curvature
// jumping. Return of Precision::Infinite() is
// enough for it.
return Precision::Infinite();
}
q = Min(q, Precision::Infinite());
q *= q * q;
//
Standard_Real curv = Sqrt(mp / q);
return curv;
}
//=================================================================================================
void ApproxInt_KnotTools::BuildCurvature(const NCollection_LocalArray<Standard_Real>& theCoords,
const Standard_Integer theDim,
const math_Vector& thePars,
TColStd_Array1OfReal& theCurv,
Standard_Real& theMaxCurv)
{
// Arrays are allocated for max theDim = 7: 1 3d curve + 2 2d curves.
Standard_Real Val[21], Par[3], Res[21];
Standard_Integer i, j, m, ic;
Standard_Integer dim = theDim;
//
theMaxCurv = 0.;
if (theCurv.Length() < 3)
{
theCurv.Init(0.);
return;
}
i = theCurv.Lower();
for (j = 0; j < 3; ++j)
{
Standard_Integer k = i + j;
ic = (k - theCurv.Lower()) * dim;
Standard_Integer l = dim * j;
for (m = 0; m < dim; ++m)
{
Val[l + m] = theCoords[ic + m];
}
Par[j] = thePars(k);
}
PLib::EvalLagrange(Par[0], 2, 2, dim, *Val, *Par, *Res);
//
theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]);
//
if (theCurv(i) > theMaxCurv)
{
theMaxCurv = theCurv(i);
}
//
for (i = theCurv.Lower() + 1; i < theCurv.Upper(); ++i)
{
for (j = 0; j < 3; ++j)
{
Standard_Integer k = i + j - 1;
ic = (k - theCurv.Lower()) * dim;
Standard_Integer l = dim * j;
for (m = 0; m < dim; ++m)
{
Val[l + m] = theCoords[ic + m];
}
Par[j] = thePars(k);
}
PLib::EvalLagrange(Par[1], 2, 2, dim, *Val, *Par, *Res);
//
theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]);
if (theCurv(i) > theMaxCurv)
{
theMaxCurv = theCurv(i);
}
}
//
i = theCurv.Upper();
for (j = 0; j < 3; ++j)
{
Standard_Integer k = i + j - 2;
ic = (k - theCurv.Lower()) * dim;
Standard_Integer l = dim * j;
for (m = 0; m < dim; ++m)
{
Val[l + m] = theCoords[ic + m];
}
Par[j] = thePars(k);
}
PLib::EvalLagrange(Par[2], 2, 2, dim, *Val, *Par, *Res);
//
theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]);
if (theCurv(i) > theMaxCurv)
{
theMaxCurv = theCurv(i);
}
}
//=================================================================================================
void ApproxInt_KnotTools::ComputeKnotInds(const NCollection_LocalArray<Standard_Real>& theCoords,
const Standard_Integer theDim,
const math_Vector& thePars,
NCollection_Sequence<Standard_Integer>& theInds)
{
// I: Create discrete curvature.
NCollection_Sequence<Standard_Integer> aFeatureInds;
TColStd_Array1OfReal aCurv(thePars.Lower(), thePars.Upper());
Standard_Real aMaxCurv = 0.;
BuildCurvature(theCoords, theDim, thePars, aCurv, aMaxCurv);
//
Standard_Integer i, j, dim = theDim;
#ifdef APPROXINT_KNOTTOOLS_DEBUG
std::cout << "Discrete curvature array is" << std::endl;
for (i = aCurv.Lower(); i <= aCurv.Upper(); ++i)
{
std::cout << i << " " << aCurv(i) << std::endl;
}
#endif
theInds.Append(aCurv.Lower());
if (aMaxCurv <= Precision::Confusion())
{
// Linear case.
theInds.Append(aCurv.Upper());
return;
}
// II: Find extremas of curvature.
// Not used Precision::PConfusion, by different from "param space" eps nature.
Standard_Real eps = 1.0e-9, eps1 = 1.0e3 * eps;
for (i = aCurv.Lower() + 1; i < aCurv.Upper(); ++i)
{
Standard_Real d1 = aCurv(i) - aCurv(i - 1), d2 = aCurv(i) - aCurv(i + 1), ad1 = Abs(d1),
ad2 = Abs(d2);
if (d1 * d2 > 0. && ad1 > eps && ad2 > eps)
{
if (i != theInds.Last())
{
theInds.Append(i);
aFeatureInds.Append(i);
}
}
else if ((ad1 < eps && ad2 > eps1) || (ad1 > eps1 && ad2 < eps))
{
if (i != theInds.Last())
{
theInds.Append(i);
aFeatureInds.Append(i);
}
}
}
if (aCurv.Upper() != theInds.Last())
{
theInds.Append(aCurv.Upper());
}
#if defined(APPROXINT_KNOTTOOLS_DEBUG)
{
std::cout << "Feature indices new: " << std::endl;
i;
for (i = theInds.Lower(); i <= theInds.Upper(); ++i)
{
std::cout << i << " : " << theInds(i) << std::endl;
}
}
#endif
// III: Put knots in monotone intervals of curvature.
Standard_Boolean Ok;
i = 1;
do
{
i++;
//
Ok = InsKnotBefI(i, aCurv, theCoords, dim, theInds, Standard_True);
if (Ok)
{
i--;
}
} while (i < theInds.Length());
// IV: Checking feature points.
j = 2;
for (i = 1; i <= aFeatureInds.Length(); ++i)
{
Standard_Integer anInd = aFeatureInds(i);
for (; j <= theInds.Length() - 1;)
{
if (theInds(j) == anInd)
{
Standard_Integer anIndPrev = theInds(j - 1);
Standard_Integer anIndNext = theInds(j + 1);
Standard_Integer ici = (anIndPrev - aCurv.Lower()) * theDim,
ici1 = (anIndNext - aCurv.Lower()) * theDim,
icm = (anInd - aCurv.Lower()) * theDim;
NCollection_LocalArray<Standard_Real> V1(theDim), V2(theDim);
Standard_Real mp = 0., m1 = 0., m2 = 0.;
Standard_Real p;
for (Standard_Integer k = 0; k < theDim; ++k)
{
V1[k] = theCoords[icm + k] - theCoords[ici + k];
m1 += V1[k] * V1[k];
V2[k] = theCoords[ici1 + k] - theCoords[icm + k];
m2 += V2[k] * V2[k];
}
for (Standard_Integer k = 1; k < theDim; ++k)
{
for (Standard_Integer l = 0; l < k; ++l)
{
p = V1[k] * V2[l] - V1[l] * V2[k];
mp += p * p;
}
}
// mp *= 2.; //P(j,i) = -P(i,j);
//
if (mp > aSinCoeff2 * m1 * m2) // Sqrt (mp/(m1*m2)) > aSinCoeff
{
// Insert new knots
Standard_Real d1 = Abs(aCurv(anInd) - aCurv(anIndPrev));
Standard_Real d2 = Abs(aCurv(anInd) - aCurv(anIndNext));
if (d1 > d2)
{
Ok = InsKnotBefI(j, aCurv, theCoords, dim, theInds, Standard_False);
if (Ok)
{
j++;
}
else
{
break;
}
}
else
{
Ok = InsKnotBefI(j + 1, aCurv, theCoords, dim, theInds, Standard_False);
if (!Ok)
{
break;
}
}
}
else
{
j++;
break;
}
}
else
{
j++;
}
}
}
//
}
//=================================================================================================
void ApproxInt_KnotTools::FilterKnots(NCollection_Sequence<Standard_Integer>& theInds,
const Standard_Integer theMinNbPnts,
NCollection_Vector<Standard_Integer>& theLKnots)
{
// Maximum number of points per knot interval.
Standard_Integer aMaxNbPnts = aMaxPntCoeff * theMinNbPnts;
Standard_Integer i = 1;
Standard_Integer aMinNbStep = theMinNbPnts / 2;
// I: Filter too big number of points per knot interval.
while (i < theInds.Length())
{
Standard_Integer nbint = theInds(i + 1) - theInds(i) + 1;
if (nbint <= aMaxNbPnts)
{
++i;
continue;
}
else
{
Standard_Integer ind = theInds(i) + nbint / 2;
theInds.InsertAfter(i, ind);
}
}
// II: Filter points with too small amount of points per knot interval.
i = 1;
theLKnots.Append(theInds(i));
Standard_Integer anIndsPrev = theInds(i);
for (i = 2; i <= theInds.Length(); ++i)
{
if (theInds(i) - anIndsPrev <= theMinNbPnts)
{
if (i != theInds.Length())
{
Standard_Integer anIdx = i + 1;
for (; anIdx <= theInds.Length(); ++anIdx)
{
if (theInds(anIdx) - anIndsPrev >= theMinNbPnts)
break;
}
anIdx--;
Standard_Integer aMidIdx = (theInds(anIdx) + anIndsPrev) / 2;
if (aMidIdx - anIndsPrev < theMinNbPnts && aMidIdx - theInds(anIdx) < theMinNbPnts
&& theInds(anIdx) - anIndsPrev >= aMinNbStep)
{
if (theInds(anIdx) - anIndsPrev > 2 * theMinNbPnts)
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(anIndsPrev + theMinNbPnts);
anIndsPrev = anIndsPrev + theMinNbPnts;
i = anIdx - 1;
}
else
{
if (theInds(anIdx - 1) - anIndsPrev >= theMinNbPnts / 2)
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(theInds(anIdx - 1));
anIndsPrev = theInds(anIdx - 1);
i = anIdx - 1;
if (theInds(anIdx) - theInds(anIdx - 1) <= theMinNbPnts / 2)
{
theLKnots.SetValue(theLKnots.Upper(), theInds(anIdx));
anIndsPrev = theInds(anIdx);
i = anIdx;
}
}
else
{
// Bad distribution points merge into one knot interval.
theLKnots.Append(theInds(anIdx));
anIndsPrev = theInds(anIdx);
i = anIdx;
}
}
}
else if (anIdx == theInds.Upper() && // Last point obtained.
theLKnots.Length() >= 2) // It is possible to modify last item.
{
// Current bad interval from i to last.
// Trying to add knot to divide sequence on two parts:
// Last good index -> Last index - theMinNbPnts -> Last index
Standard_Integer aLastGoodIdx = theLKnots.Value(theLKnots.Upper() - 1);
if (theInds.Last() - 2 * theMinNbPnts >= aLastGoodIdx)
{
theLKnots(theLKnots.Upper()) = theInds.Last() - theMinNbPnts;
theLKnots.Append(theInds.Last());
anIndsPrev = theInds(anIdx);
i = anIdx;
}
}
} // if (i != theInds.Length())
continue;
}
else
{
theLKnots.Append(theInds(i));
anIndsPrev = theInds(i);
}
}
// III: Fill Last Knot.
if (theLKnots.Length() < 2)
{
theLKnots.Append(theInds.Last());
}
else
{
if (theLKnots.Last() < theInds.Last())
{
theLKnots(theLKnots.Upper()) = theInds.Last();
}
}
}
//=================================================================================================
Standard_Boolean ApproxInt_KnotTools::InsKnotBefI(
const Standard_Integer theI,
const TColStd_Array1OfReal& theCurv,
const NCollection_LocalArray<Standard_Real>& theCoords,
const Standard_Integer theDim,
NCollection_Sequence<Standard_Integer>& theInds,
const Standard_Boolean ChkCurv)
{
Standard_Integer anInd1 = theInds(theI);
Standard_Integer anInd = theInds(theI - 1);
//
if ((anInd1 - anInd) == 1)
{
return Standard_False;
}
//
Standard_Real curv = 0.5 * (theCurv(anInd) + theCurv(anInd1));
Standard_Integer mid = 0, j, jj;
const Standard_Real aLimitCurvatureChange = 3.0;
for (j = anInd + 1; j < anInd1; ++j)
{
mid = 0;
// I: Curvature change criteria:
// Non-null curvature.
if (theCurv(j) > Precision::Confusion() && theCurv(anInd) > Precision::Confusion())
{
if (theCurv(j) / theCurv(anInd) > aLimitCurvatureChange
|| theCurv(j) / theCurv(anInd) < 1.0 / aLimitCurvatureChange)
{
// Curvature on current interval changed more than 3 times.
mid = j;
theInds.InsertBefore(theI, mid);
return Standard_True;
}
}
// II: Angular criteria:
Standard_Real ac = theCurv(j - 1), ac1 = theCurv(j);
if ((curv >= ac && curv <= ac1) || (curv >= ac1 && curv <= ac))
{
if (Abs(curv - ac) < Abs(curv - ac1))
{
mid = j - 1;
}
else
{
mid = j;
}
}
if (mid == anInd)
{
mid++;
}
if (mid == anInd1)
{
mid--;
}
if (mid > 0)
{
if (ChkCurv)
{
Standard_Integer ici = (anInd - theCurv.Lower()) * theDim,
ici1 = (anInd1 - theCurv.Lower()) * theDim,
icm = (mid - theCurv.Lower()) * theDim;
NCollection_LocalArray<Standard_Real> V1(theDim), V2(theDim);
Standard_Integer i;
Standard_Real mp = 0., m1 = 0., m2 = 0.;
Standard_Real p;
for (i = 0; i < theDim; ++i)
{
V1[i] = theCoords[icm + i] - theCoords[ici + i];
m1 += V1[i] * V1[i];
V2[i] = theCoords[ici1 + i] - theCoords[icm + i];
m2 += V2[i] * V2[i];
}
for (i = 1; i < theDim; ++i)
{
for (jj = 0; jj < i; ++jj)
{
p = V1[i] * V2[jj] - V1[jj] * V2[i];
mp += p * p;
}
}
// mp *= 2.; //P(j,i) = -P(i,j);
//
if (mp > aSinCoeff2 * m1 * m2) // Sqrt (mp / m1m2) > aSinCoeff
{
theInds.InsertBefore(theI, mid);
return Standard_True;
}
}
else
{
theInds.InsertBefore(theI, mid);
return Standard_True;
}
}
}
return Standard_False;
}
//=================================================================================================
void ApproxInt_KnotTools::BuildKnots(const TColgp_Array1OfPnt& thePntsXYZ,
const TColgp_Array1OfPnt2d& thePntsU1V1,
const TColgp_Array1OfPnt2d& thePntsU2V2,
const math_Vector& thePars,
const Standard_Boolean theApproxXYZ,
const Standard_Boolean theApproxU1V1,
const Standard_Boolean theApproxU2V2,
const Standard_Integer theMinNbPnts,
NCollection_Vector<Standard_Integer>& theKnots)
{
NCollection_Sequence<Standard_Integer> aKnots;
Standard_Integer aDim = 0;
// I: Convert input data to the corresponding format.
if (theApproxXYZ)
aDim += 3;
if (theApproxU1V1)
aDim += 2;
if (theApproxU2V2)
aDim += 2;
NCollection_LocalArray<Standard_Real> aCoords(thePars.Length() * aDim);
Standard_Integer i, j;
for (i = thePars.Lower(); i <= thePars.Upper(); ++i)
{
j = (i - thePars.Lower()) * aDim;
if (theApproxXYZ)
{
aCoords[j] = thePntsXYZ.Value(i).X();
++j;
aCoords[j] = thePntsXYZ.Value(i).Y();
++j;
aCoords[j] = thePntsXYZ.Value(i).Z();
++j;
}
if (theApproxU1V1)
{
aCoords[j] = thePntsU1V1.Value(i).X();
++j;
aCoords[j] = thePntsU1V1.Value(i).Y();
++j;
}
if (theApproxU2V2)
{
aCoords[j] = thePntsU2V2.Value(i).X();
++j;
aCoords[j] = thePntsU2V2.Value(i).Y();
++j;
}
}
// II: Build draft knot sequence.
ComputeKnotInds(aCoords, aDim, thePars, aKnots);
#if defined(APPROXINT_KNOTTOOLS_DEBUG)
std::cout << "Draft knot sequence: " << std::endl;
for (i = aKnots.Lower(); i <= aKnots.Upper(); ++i)
{
std::cout << i << " : " << aKnots(i) << std::endl;
}
#endif
// III: Build output knot sequence.
FilterKnots(aKnots, theMinNbPnts, theKnots);
#if defined(APPROXINT_KNOTTOOLS_DEBUG)
std::cout << "Result knot sequence: " << std::endl;
for (i = theKnots.Lower(); i <= theKnots.Upper(); ++i)
{
std::cout << i << " : " << theKnots(i) << std::endl;
}
#endif
}
//=================================================================================================
static Standard_Real MaxParamRatio(const math_Vector& thePars)
{
Standard_Integer i;
Standard_Real aMaxRatio = 0.;
//
for (i = thePars.Lower() + 1; i < thePars.Upper(); ++i)
{
Standard_Real aRat = (thePars(i + 1) - thePars(i)) / (thePars(i) - thePars(i - 1));
if (aRat < 1.)
aRat = 1. / aRat;
aMaxRatio = Max(aMaxRatio, aRat);
}
return aMaxRatio;
}
//=================================================================================================
Approx_ParametrizationType ApproxInt_KnotTools::DefineParType(const Handle(IntPatch_WLine)& theWL,
const Standard_Integer theFpar,
const Standard_Integer theLpar,
const Standard_Boolean theApproxXYZ,
const Standard_Boolean theApproxU1V1,
const Standard_Boolean theApproxU2V2)
{
if (theLpar - theFpar == 1)
return Approx_IsoParametric;
const Standard_Integer nbp3d = theApproxXYZ ? 1 : 0,
nbp2d = (theApproxU1V1 ? 1 : 0) + (theApproxU2V2 ? 1 : 0);
GeomInt_TheMultiLineOfWLApprox aTestLine(theWL,
nbp3d,
nbp2d,
theApproxU1V1,
theApproxU2V2,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
theApproxU1V1,
theFpar,
theLpar);
TColgp_Array1OfPnt aTabPnt3d(1, Max(1, nbp3d));
TColgp_Array1OfPnt2d aTabPnt2d(1, Max(1, nbp2d));
TColgp_Array1OfPnt aPntXYZ(theFpar, theLpar);
TColgp_Array1OfPnt2d aPntU1V1(theFpar, theLpar);
TColgp_Array1OfPnt2d aPntU2V2(theFpar, theLpar);
Standard_Integer i, j;
for (i = theFpar; i <= theLpar; ++i)
{
if (nbp3d != 0 && nbp2d != 0)
aTestLine.Value(i, aTabPnt3d, aTabPnt2d);
else if (nbp2d != 0)
aTestLine.Value(i, aTabPnt2d);
else if (nbp3d != 0)
aTestLine.Value(i, aTabPnt3d);
//
if (nbp3d > 0)
{
aPntXYZ(i) = aTabPnt3d(1);
}
if (nbp2d > 1)
{
aPntU1V1(i) = aTabPnt2d(1);
aPntU2V2(i) = aTabPnt2d(2);
}
else if (nbp2d > 0)
{
if (theApproxU1V1)
{
aPntU1V1(i) = aTabPnt2d(1);
}
else
{
aPntU2V2(i) = aTabPnt2d(1);
}
}
}
Standard_Integer aDim = 0;
if (theApproxXYZ)
aDim += 3;
if (theApproxU1V1)
aDim += 2;
if (theApproxU2V2)
aDim += 2;
Standard_Integer aLength = theLpar - theFpar + 1;
NCollection_LocalArray<Standard_Real> aCoords(aLength * aDim);
for (i = theFpar; i <= theLpar; ++i)
{
j = (i - theFpar) * aDim;
if (theApproxXYZ)
{
aCoords[j] = aPntXYZ.Value(i).X();
++j;
aCoords[j] = aPntXYZ.Value(i).Y();
++j;
aCoords[j] = aPntXYZ.Value(i).Z();
++j;
}
if (theApproxU1V1)
{
aCoords[j] = aPntU1V1.Value(i).X();
++j;
aCoords[j] = aPntU1V1.Value(i).Y();
++j;
}
if (theApproxU2V2)
{
aCoords[j] = aPntU2V2.Value(i).X();
++j;
aCoords[j] = aPntU2V2.Value(i).Y();
++j;
}
}
// Analysis of curvature
const Standard_Real aCritRat = 500.;
const Standard_Real aCritParRat = 100.;
math_Vector aPars(theFpar, theLpar);
Approx_ParametrizationType aParType = Approx_ChordLength;
GeomInt_WLApprox::Parameters(aTestLine, theFpar, theLpar, aParType, aPars);
TColStd_Array1OfReal aCurv(aPars.Lower(), aPars.Upper());
Standard_Real aMaxCurv = 0.;
BuildCurvature(aCoords, aDim, aPars, aCurv, aMaxCurv);
if (aMaxCurv < Precision::PConfusion() || Precision::IsPositiveInfinite(aMaxCurv))
{
// Linear case
return aParType;
}
Standard_Real aMidCurv = 0.;
Standard_Real eps = Epsilon(1.);
j = 0;
for (i = aCurv.Lower(); i <= aCurv.Upper(); ++i)
{
if (aMaxCurv - aCurv(i) < eps)
{
continue;
}
++j;
aMidCurv += aCurv(i);
}
if (j > 1)
{
aMidCurv /= j;
}
if (aMidCurv <= eps)
return aParType;
Standard_Real aRat = aMaxCurv / aMidCurv;
if (aRat > aCritRat)
{
if (aRat > 5. * aCritRat)
aParType = Approx_Centripetal;
else
{
Standard_Real aParRat = MaxParamRatio(aPars);
if (aParRat > aCritParRat)
aParType = Approx_Centripetal;
}
}
return aParType;
}