// Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include // (Sqrt(5.0) - 1.0) / 4.0 // static const Standard_Real aSinCoeff = 0.30901699437494742410229341718282; static const Standard_Real aSinCoeff2 = 0.09549150281252627; // aSinCoeff^2 = (3. - Sqrt(5.)) / 8. static const Standard_Integer aMaxPntCoeff = 15; //================================================================================================= // function : EvalCurv // purpose : Evaluate curvature in dim-dimension point. //================================================================================================= static Standard_Real EvalCurv(const Standard_Real dim, const Standard_Real* V1, const Standard_Real* V2) { // Really V1 and V2 are arrays of size dim; // V1 is first derivative, V2 is second derivative // of n-dimension curve // Curvature is curv = |V1^V2|/|V1|^3 // V1^V2 is outer product of two vectors: // P(i,j) = V1(i)*V2(j) - V1(j)*V2(i); Standard_Real mp = 0.; Standard_Integer i, j; Standard_Real p; for (i = 1; i < dim; ++i) { for (j = 0; j < i; ++j) { p = V1[i] * V2[j] - V1[j] * V2[i]; mp += p * p; } } // Standard_Real q = 0.; for (i = 0; i < dim; ++i) { q += V1[i] * V1[i]; } if (q < 1 / Precision::Infinite()) { // Indeed, if q is small then we can // obtain equivocation of "0/0" type. // In this case, local curvature can be // not equal to 0 or Infinity. // However, it is good solution to insert // knot in the place with such singularity. // Therefore, we need imitation of curvature // jumping. Return of Precision::Infinite() is // enough for it. return Precision::Infinite(); } q = Min(q, Precision::Infinite()); q *= q * q; // Standard_Real curv = Sqrt(mp / q); return curv; } //================================================================================================= void ApproxInt_KnotTools::BuildCurvature(const NCollection_LocalArray& theCoords, const Standard_Integer theDim, const math_Vector& thePars, TColStd_Array1OfReal& theCurv, Standard_Real& theMaxCurv) { // Arrays are allocated for max theDim = 7: 1 3d curve + 2 2d curves. Standard_Real Val[21], Par[3], Res[21]; Standard_Integer i, j, m, ic; Standard_Integer dim = theDim; // theMaxCurv = 0.; if (theCurv.Length() < 3) { theCurv.Init(0.); return; } i = theCurv.Lower(); for (j = 0; j < 3; ++j) { Standard_Integer k = i + j; ic = (k - theCurv.Lower()) * dim; Standard_Integer l = dim * j; for (m = 0; m < dim; ++m) { Val[l + m] = theCoords[ic + m]; } Par[j] = thePars(k); } PLib::EvalLagrange(Par[0], 2, 2, dim, *Val, *Par, *Res); // theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]); // if (theCurv(i) > theMaxCurv) { theMaxCurv = theCurv(i); } // for (i = theCurv.Lower() + 1; i < theCurv.Upper(); ++i) { for (j = 0; j < 3; ++j) { Standard_Integer k = i + j - 1; ic = (k - theCurv.Lower()) * dim; Standard_Integer l = dim * j; for (m = 0; m < dim; ++m) { Val[l + m] = theCoords[ic + m]; } Par[j] = thePars(k); } PLib::EvalLagrange(Par[1], 2, 2, dim, *Val, *Par, *Res); // theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]); if (theCurv(i) > theMaxCurv) { theMaxCurv = theCurv(i); } } // i = theCurv.Upper(); for (j = 0; j < 3; ++j) { Standard_Integer k = i + j - 2; ic = (k - theCurv.Lower()) * dim; Standard_Integer l = dim * j; for (m = 0; m < dim; ++m) { Val[l + m] = theCoords[ic + m]; } Par[j] = thePars(k); } PLib::EvalLagrange(Par[2], 2, 2, dim, *Val, *Par, *Res); // theCurv(i) = EvalCurv(dim, &Res[dim], &Res[2 * dim]); if (theCurv(i) > theMaxCurv) { theMaxCurv = theCurv(i); } } //================================================================================================= void ApproxInt_KnotTools::ComputeKnotInds(const NCollection_LocalArray& theCoords, const Standard_Integer theDim, const math_Vector& thePars, NCollection_Sequence& theInds) { // I: Create discrete curvature. NCollection_Sequence aFeatureInds; TColStd_Array1OfReal aCurv(thePars.Lower(), thePars.Upper()); Standard_Real aMaxCurv = 0.; BuildCurvature(theCoords, theDim, thePars, aCurv, aMaxCurv); // Standard_Integer i, j, dim = theDim; #ifdef APPROXINT_KNOTTOOLS_DEBUG std::cout << "Discrete curvature array is" << std::endl; for (i = aCurv.Lower(); i <= aCurv.Upper(); ++i) { std::cout << i << " " << aCurv(i) << std::endl; } #endif theInds.Append(aCurv.Lower()); if (aMaxCurv <= Precision::Confusion()) { // Linear case. theInds.Append(aCurv.Upper()); return; } // II: Find extremas of curvature. // Not used Precision::PConfusion, by different from "param space" eps nature. Standard_Real eps = 1.0e-9, eps1 = 1.0e3 * eps; for (i = aCurv.Lower() + 1; i < aCurv.Upper(); ++i) { Standard_Real d1 = aCurv(i) - aCurv(i - 1), d2 = aCurv(i) - aCurv(i + 1), ad1 = Abs(d1), ad2 = Abs(d2); if (d1 * d2 > 0. && ad1 > eps && ad2 > eps) { if (i != theInds.Last()) { theInds.Append(i); aFeatureInds.Append(i); } } else if ((ad1 < eps && ad2 > eps1) || (ad1 > eps1 && ad2 < eps)) { if (i != theInds.Last()) { theInds.Append(i); aFeatureInds.Append(i); } } } if (aCurv.Upper() != theInds.Last()) { theInds.Append(aCurv.Upper()); } #if defined(APPROXINT_KNOTTOOLS_DEBUG) { std::cout << "Feature indices new: " << std::endl; i; for (i = theInds.Lower(); i <= theInds.Upper(); ++i) { std::cout << i << " : " << theInds(i) << std::endl; } } #endif // III: Put knots in monotone intervals of curvature. Standard_Boolean Ok; i = 1; do { i++; // Ok = InsKnotBefI(i, aCurv, theCoords, dim, theInds, Standard_True); if (Ok) { i--; } } while (i < theInds.Length()); // IV: Checking feature points. j = 2; for (i = 1; i <= aFeatureInds.Length(); ++i) { Standard_Integer anInd = aFeatureInds(i); for (; j <= theInds.Length() - 1;) { if (theInds(j) == anInd) { Standard_Integer anIndPrev = theInds(j - 1); Standard_Integer anIndNext = theInds(j + 1); Standard_Integer ici = (anIndPrev - aCurv.Lower()) * theDim, ici1 = (anIndNext - aCurv.Lower()) * theDim, icm = (anInd - aCurv.Lower()) * theDim; NCollection_LocalArray V1(theDim), V2(theDim); Standard_Real mp = 0., m1 = 0., m2 = 0.; Standard_Real p; for (Standard_Integer k = 0; k < theDim; ++k) { V1[k] = theCoords[icm + k] - theCoords[ici + k]; m1 += V1[k] * V1[k]; V2[k] = theCoords[ici1 + k] - theCoords[icm + k]; m2 += V2[k] * V2[k]; } for (Standard_Integer k = 1; k < theDim; ++k) { for (Standard_Integer l = 0; l < k; ++l) { p = V1[k] * V2[l] - V1[l] * V2[k]; mp += p * p; } } // mp *= 2.; //P(j,i) = -P(i,j); // if (mp > aSinCoeff2 * m1 * m2) // Sqrt (mp/(m1*m2)) > aSinCoeff { // Insert new knots Standard_Real d1 = Abs(aCurv(anInd) - aCurv(anIndPrev)); Standard_Real d2 = Abs(aCurv(anInd) - aCurv(anIndNext)); if (d1 > d2) { Ok = InsKnotBefI(j, aCurv, theCoords, dim, theInds, Standard_False); if (Ok) { j++; } else { break; } } else { Ok = InsKnotBefI(j + 1, aCurv, theCoords, dim, theInds, Standard_False); if (!Ok) { break; } } } else { j++; break; } } else { j++; } } } // } //================================================================================================= void ApproxInt_KnotTools::FilterKnots(NCollection_Sequence& theInds, const Standard_Integer theMinNbPnts, NCollection_Vector& theLKnots) { // Maximum number of points per knot interval. Standard_Integer aMaxNbPnts = aMaxPntCoeff * theMinNbPnts; Standard_Integer i = 1; Standard_Integer aMinNbStep = theMinNbPnts / 2; // I: Filter too big number of points per knot interval. while (i < theInds.Length()) { Standard_Integer nbint = theInds(i + 1) - theInds(i) + 1; if (nbint <= aMaxNbPnts) { ++i; continue; } else { Standard_Integer ind = theInds(i) + nbint / 2; theInds.InsertAfter(i, ind); } } // II: Filter points with too small amount of points per knot interval. i = 1; theLKnots.Append(theInds(i)); Standard_Integer anIndsPrev = theInds(i); for (i = 2; i <= theInds.Length(); ++i) { if (theInds(i) - anIndsPrev <= theMinNbPnts) { if (i != theInds.Length()) { Standard_Integer anIdx = i + 1; for (; anIdx <= theInds.Length(); ++anIdx) { if (theInds(anIdx) - anIndsPrev >= theMinNbPnts) break; } anIdx--; Standard_Integer aMidIdx = (theInds(anIdx) + anIndsPrev) / 2; if (aMidIdx - anIndsPrev < theMinNbPnts && aMidIdx - theInds(anIdx) < theMinNbPnts && theInds(anIdx) - anIndsPrev >= aMinNbStep) { if (theInds(anIdx) - anIndsPrev > 2 * theMinNbPnts) { // Bad distribution points merge into one knot interval. theLKnots.Append(anIndsPrev + theMinNbPnts); anIndsPrev = anIndsPrev + theMinNbPnts; i = anIdx - 1; } else { if (theInds(anIdx - 1) - anIndsPrev >= theMinNbPnts / 2) { // Bad distribution points merge into one knot interval. theLKnots.Append(theInds(anIdx - 1)); anIndsPrev = theInds(anIdx - 1); i = anIdx - 1; if (theInds(anIdx) - theInds(anIdx - 1) <= theMinNbPnts / 2) { theLKnots.SetValue(theLKnots.Upper(), theInds(anIdx)); anIndsPrev = theInds(anIdx); i = anIdx; } } else { // Bad distribution points merge into one knot interval. theLKnots.Append(theInds(anIdx)); anIndsPrev = theInds(anIdx); i = anIdx; } } } else if (anIdx == theInds.Upper() && // Last point obtained. theLKnots.Length() >= 2) // It is possible to modify last item. { // Current bad interval from i to last. // Trying to add knot to divide sequence on two parts: // Last good index -> Last index - theMinNbPnts -> Last index Standard_Integer aLastGoodIdx = theLKnots.Value(theLKnots.Upper() - 1); if (theInds.Last() - 2 * theMinNbPnts >= aLastGoodIdx) { theLKnots(theLKnots.Upper()) = theInds.Last() - theMinNbPnts; theLKnots.Append(theInds.Last()); anIndsPrev = theInds(anIdx); i = anIdx; } } } // if (i != theInds.Length()) continue; } else { theLKnots.Append(theInds(i)); anIndsPrev = theInds(i); } } // III: Fill Last Knot. if (theLKnots.Length() < 2) { theLKnots.Append(theInds.Last()); } else { if (theLKnots.Last() < theInds.Last()) { theLKnots(theLKnots.Upper()) = theInds.Last(); } } } //================================================================================================= Standard_Boolean ApproxInt_KnotTools::InsKnotBefI( const Standard_Integer theI, const TColStd_Array1OfReal& theCurv, const NCollection_LocalArray& theCoords, const Standard_Integer theDim, NCollection_Sequence& theInds, const Standard_Boolean ChkCurv) { Standard_Integer anInd1 = theInds(theI); Standard_Integer anInd = theInds(theI - 1); // if ((anInd1 - anInd) == 1) { return Standard_False; } // Standard_Real curv = 0.5 * (theCurv(anInd) + theCurv(anInd1)); Standard_Integer mid = 0, j, jj; const Standard_Real aLimitCurvatureChange = 3.0; for (j = anInd + 1; j < anInd1; ++j) { mid = 0; // I: Curvature change criteria: // Non-null curvature. if (theCurv(j) > Precision::Confusion() && theCurv(anInd) > Precision::Confusion()) { if (theCurv(j) / theCurv(anInd) > aLimitCurvatureChange || theCurv(j) / theCurv(anInd) < 1.0 / aLimitCurvatureChange) { // Curvature on current interval changed more than 3 times. mid = j; theInds.InsertBefore(theI, mid); return Standard_True; } } // II: Angular criteria: Standard_Real ac = theCurv(j - 1), ac1 = theCurv(j); if ((curv >= ac && curv <= ac1) || (curv >= ac1 && curv <= ac)) { if (Abs(curv - ac) < Abs(curv - ac1)) { mid = j - 1; } else { mid = j; } } if (mid == anInd) { mid++; } if (mid == anInd1) { mid--; } if (mid > 0) { if (ChkCurv) { Standard_Integer ici = (anInd - theCurv.Lower()) * theDim, ici1 = (anInd1 - theCurv.Lower()) * theDim, icm = (mid - theCurv.Lower()) * theDim; NCollection_LocalArray V1(theDim), V2(theDim); Standard_Integer i; Standard_Real mp = 0., m1 = 0., m2 = 0.; Standard_Real p; for (i = 0; i < theDim; ++i) { V1[i] = theCoords[icm + i] - theCoords[ici + i]; m1 += V1[i] * V1[i]; V2[i] = theCoords[ici1 + i] - theCoords[icm + i]; m2 += V2[i] * V2[i]; } for (i = 1; i < theDim; ++i) { for (jj = 0; jj < i; ++jj) { p = V1[i] * V2[jj] - V1[jj] * V2[i]; mp += p * p; } } // mp *= 2.; //P(j,i) = -P(i,j); // if (mp > aSinCoeff2 * m1 * m2) // Sqrt (mp / m1m2) > aSinCoeff { theInds.InsertBefore(theI, mid); return Standard_True; } } else { theInds.InsertBefore(theI, mid); return Standard_True; } } } return Standard_False; } //================================================================================================= void ApproxInt_KnotTools::BuildKnots(const TColgp_Array1OfPnt& thePntsXYZ, const TColgp_Array1OfPnt2d& thePntsU1V1, const TColgp_Array1OfPnt2d& thePntsU2V2, const math_Vector& thePars, const Standard_Boolean theApproxXYZ, const Standard_Boolean theApproxU1V1, const Standard_Boolean theApproxU2V2, const Standard_Integer theMinNbPnts, NCollection_Vector& theKnots) { NCollection_Sequence aKnots; Standard_Integer aDim = 0; // I: Convert input data to the corresponding format. if (theApproxXYZ) aDim += 3; if (theApproxU1V1) aDim += 2; if (theApproxU2V2) aDim += 2; NCollection_LocalArray aCoords(thePars.Length() * aDim); Standard_Integer i, j; for (i = thePars.Lower(); i <= thePars.Upper(); ++i) { j = (i - thePars.Lower()) * aDim; if (theApproxXYZ) { aCoords[j] = thePntsXYZ.Value(i).X(); ++j; aCoords[j] = thePntsXYZ.Value(i).Y(); ++j; aCoords[j] = thePntsXYZ.Value(i).Z(); ++j; } if (theApproxU1V1) { aCoords[j] = thePntsU1V1.Value(i).X(); ++j; aCoords[j] = thePntsU1V1.Value(i).Y(); ++j; } if (theApproxU2V2) { aCoords[j] = thePntsU2V2.Value(i).X(); ++j; aCoords[j] = thePntsU2V2.Value(i).Y(); ++j; } } // II: Build draft knot sequence. ComputeKnotInds(aCoords, aDim, thePars, aKnots); #if defined(APPROXINT_KNOTTOOLS_DEBUG) std::cout << "Draft knot sequence: " << std::endl; for (i = aKnots.Lower(); i <= aKnots.Upper(); ++i) { std::cout << i << " : " << aKnots(i) << std::endl; } #endif // III: Build output knot sequence. FilterKnots(aKnots, theMinNbPnts, theKnots); #if defined(APPROXINT_KNOTTOOLS_DEBUG) std::cout << "Result knot sequence: " << std::endl; for (i = theKnots.Lower(); i <= theKnots.Upper(); ++i) { std::cout << i << " : " << theKnots(i) << std::endl; } #endif } //================================================================================================= static Standard_Real MaxParamRatio(const math_Vector& thePars) { Standard_Integer i; Standard_Real aMaxRatio = 0.; // for (i = thePars.Lower() + 1; i < thePars.Upper(); ++i) { Standard_Real aRat = (thePars(i + 1) - thePars(i)) / (thePars(i) - thePars(i - 1)); if (aRat < 1.) aRat = 1. / aRat; aMaxRatio = Max(aMaxRatio, aRat); } return aMaxRatio; } //================================================================================================= Approx_ParametrizationType ApproxInt_KnotTools::DefineParType(const Handle(IntPatch_WLine)& theWL, const Standard_Integer theFpar, const Standard_Integer theLpar, const Standard_Boolean theApproxXYZ, const Standard_Boolean theApproxU1V1, const Standard_Boolean theApproxU2V2) { if (theLpar - theFpar == 1) return Approx_IsoParametric; const Standard_Integer nbp3d = theApproxXYZ ? 1 : 0, nbp2d = (theApproxU1V1 ? 1 : 0) + (theApproxU2V2 ? 1 : 0); GeomInt_TheMultiLineOfWLApprox aTestLine(theWL, nbp3d, nbp2d, theApproxU1V1, theApproxU2V2, 0., 0., 0., 0., 0., 0., 0., theApproxU1V1, theFpar, theLpar); TColgp_Array1OfPnt aTabPnt3d(1, Max(1, nbp3d)); TColgp_Array1OfPnt2d aTabPnt2d(1, Max(1, nbp2d)); TColgp_Array1OfPnt aPntXYZ(theFpar, theLpar); TColgp_Array1OfPnt2d aPntU1V1(theFpar, theLpar); TColgp_Array1OfPnt2d aPntU2V2(theFpar, theLpar); Standard_Integer i, j; for (i = theFpar; i <= theLpar; ++i) { if (nbp3d != 0 && nbp2d != 0) aTestLine.Value(i, aTabPnt3d, aTabPnt2d); else if (nbp2d != 0) aTestLine.Value(i, aTabPnt2d); else if (nbp3d != 0) aTestLine.Value(i, aTabPnt3d); // if (nbp3d > 0) { aPntXYZ(i) = aTabPnt3d(1); } if (nbp2d > 1) { aPntU1V1(i) = aTabPnt2d(1); aPntU2V2(i) = aTabPnt2d(2); } else if (nbp2d > 0) { if (theApproxU1V1) { aPntU1V1(i) = aTabPnt2d(1); } else { aPntU2V2(i) = aTabPnt2d(1); } } } Standard_Integer aDim = 0; if (theApproxXYZ) aDim += 3; if (theApproxU1V1) aDim += 2; if (theApproxU2V2) aDim += 2; Standard_Integer aLength = theLpar - theFpar + 1; NCollection_LocalArray aCoords(aLength * aDim); for (i = theFpar; i <= theLpar; ++i) { j = (i - theFpar) * aDim; if (theApproxXYZ) { aCoords[j] = aPntXYZ.Value(i).X(); ++j; aCoords[j] = aPntXYZ.Value(i).Y(); ++j; aCoords[j] = aPntXYZ.Value(i).Z(); ++j; } if (theApproxU1V1) { aCoords[j] = aPntU1V1.Value(i).X(); ++j; aCoords[j] = aPntU1V1.Value(i).Y(); ++j; } if (theApproxU2V2) { aCoords[j] = aPntU2V2.Value(i).X(); ++j; aCoords[j] = aPntU2V2.Value(i).Y(); ++j; } } // Analysis of curvature const Standard_Real aCritRat = 500.; const Standard_Real aCritParRat = 100.; math_Vector aPars(theFpar, theLpar); Approx_ParametrizationType aParType = Approx_ChordLength; GeomInt_WLApprox::Parameters(aTestLine, theFpar, theLpar, aParType, aPars); TColStd_Array1OfReal aCurv(aPars.Lower(), aPars.Upper()); Standard_Real aMaxCurv = 0.; BuildCurvature(aCoords, aDim, aPars, aCurv, aMaxCurv); if (aMaxCurv < Precision::PConfusion() || Precision::IsPositiveInfinite(aMaxCurv)) { // Linear case return aParType; } Standard_Real aMidCurv = 0.; Standard_Real eps = Epsilon(1.); j = 0; for (i = aCurv.Lower(); i <= aCurv.Upper(); ++i) { if (aMaxCurv - aCurv(i) < eps) { continue; } ++j; aMidCurv += aCurv(i); } if (j > 1) { aMidCurv /= j; } if (aMidCurv <= eps) return aParType; Standard_Real aRat = aMaxCurv / aMidCurv; if (aRat > aCritRat) { if (aRat > 5. * aCritRat) aParType = Approx_Centripetal; else { Standard_Real aParRat = MaxParamRatio(aPars); if (aParRat > aCritParRat) aParType = Approx_Centripetal; } } return aParType; }