1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-02 17:46:22 +03:00
occt/src/GeomLib/GeomLib_IsPlanarSurface.cxx
ifv cc164fd7dc 0033170: Modeling Algorithms - Checking for canonical geometry: plane detection problems
GeomLib_IsPlanarSurface.cxx - using poles for checking BSpline, Bezier curves and surface changed
                              on checking by curve, surface points.

BRepOffset_MakeOffset.cxx - set normal of plane surface according to normal of initial face surface

tests/cr/bugs/bug33170 - new test case added
2022-11-21 19:44:10 +03:00

269 lines
6.5 KiB
C++

// Created on: 1998-11-23
// Created by: Philippe MANGIN
// Copyright (c) 1998-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom_BezierCurve.hxx>
#include <Geom_BezierSurface.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_BSplineSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Surface.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomLib.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <gp_Pln.hxx>
#include <StdFail_NotDone.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_HArray1OfPnt.hxx>
static Standard_Boolean Controle(const TColgp_Array1OfPnt& Poles,
const Standard_Real Tol,
const Handle(Geom_Surface)& S,
gp_Pln& Plan)
{
Standard_Boolean IsPlan = Standard_False;
Standard_Real gx,gy,gz;
gp_Pnt Bary;
gp_Dir DX, DY;
Standard_Real aTolSingular = Precision::Confusion();
GeomLib::Inertia(Poles, Bary, DX, DY, gx, gy, gz);
if (gz < Tol && gy > aTolSingular) {
gp_Pnt P;
gp_Vec DU, DV;
Standard_Real umin, umax, vmin, vmax;
S->Bounds(umin, umax, vmin, vmax);
S->D1((umin + umax) / 2, (vmin + vmax) / 2, P, DU, DV);
// On prend DX le plus proche possible de DU
gp_Dir du(DU);
Standard_Real Angle1 = du.Angle(DX);
Standard_Real Angle2 = du.Angle(DY);
if (Angle1 > M_PI / 2) Angle1 = M_PI - Angle1;
if (Angle2 > M_PI / 2) Angle2 = M_PI - Angle2;
if (Angle2 < Angle1) {
du = DY; DY = DX; DX = du;
}
if (DX.Angle(DU) > M_PI / 2) DX.Reverse();
if (DY.Angle(DV) > M_PI / 2) DY.Reverse();
gp_Ax3 axe(Bary, DX^DY, DX);
Plan.SetPosition(axe);
Plan.SetLocation(Bary);
IsPlan = Standard_True;
}
return IsPlan;
}
static Standard_Boolean Controle(const Handle(Geom_Curve)& C,
const gp_Pln& Plan,
const Standard_Real Tol)
{
Standard_Boolean B = Standard_True;
Standard_Integer ii, Nb;
GeomAbs_CurveType Type;
GeomAdaptor_Curve AC(C);
Type = AC.GetType();
switch (Type) {
case GeomAbs_Line :
{
Nb = 2;
break;
}
case GeomAbs_Circle:
{
Nb = 3;
break;
}
case GeomAbs_Ellipse:
case GeomAbs_Hyperbola:
case GeomAbs_Parabola:
{
Nb = 5;
break;
}
case GeomAbs_BezierCurve:
{
Nb = AC.NbPoles();
break;
}
case GeomAbs_BSplineCurve:
{
Nb = AC.NbPoles();
break;
}
default :
{
Nb = 8 + 3*AC.NbIntervals(GeomAbs_CN);
}
}
Standard_Real u, du, f, l, d;
f = AC.FirstParameter();
l = AC.LastParameter();
du = (l - f) / (Nb - 1);
for (ii = 1; ii <= Nb && B; ii++) {
u = (ii - 1)*du + f;
d = Plan.Distance(C->Value(u));
B = d < Tol;
}
return B;
}
GeomLib_IsPlanarSurface::GeomLib_IsPlanarSurface(const Handle(Geom_Surface)& S,
const Standard_Real Tol)
{
GeomAdaptor_Surface AS(S);
GeomAbs_SurfaceType Type;
Type = AS.GetType();
switch (Type) {
case GeomAbs_Plane :
{
IsPlan = Standard_True;
myPlan = AS.Plane();
break;
}
case GeomAbs_Cylinder :
case GeomAbs_Cone :
case GeomAbs_Sphere :
case GeomAbs_Torus :
{
IsPlan = Standard_False;
break;
}
case GeomAbs_SurfaceOfRevolution :
{
Standard_Boolean Essai = Standard_True;
gp_Pnt P;
gp_Vec DU, DV, Dn;
gp_Dir Dir = AS.AxeOfRevolution().Direction();
Standard_Real Umin, Umax, Vmin, Vmax;
S->Bounds(Umin, Umax, Vmin, Vmax);
S->D1((Umin+Umax)/2, (Vmin+Vmax)/2, P, DU, DV);
if (DU.Magnitude() <= gp::Resolution() ||
DV.Magnitude() <= gp::Resolution())
{
Standard_Real NewU = (Umin+Umax)/2 + (Umax-Umin)*0.1;
Standard_Real NewV = (Vmin+Vmax)/2 + (Vmax-Vmin)*0.1;
S->D1( NewU, NewV, P, DU, DV );
}
Dn = DU^DV;
if (Dn.Magnitude() > 1.e-7) {
Standard_Real angle = Dir.Angle(Dn);
if (angle > M_PI/2) {
angle = M_PI - angle;
Dir.Reverse();
}
Essai = (angle < 0.1);
}
if (Essai) {
gp_Ax3 axe(P, Dir);
axe.SetXDirection(DU);
myPlan.SetPosition(axe);
myPlan.SetLocation(P);
Handle(Geom_Curve) C;
C = S->UIso(Umin);
IsPlan = Controle(C, myPlan, Tol);
}
else
IsPlan = Standard_False;
break;
}
case GeomAbs_SurfaceOfExtrusion :
{
Standard_Boolean Essai = Standard_False;
Standard_Real Umin, Umax, Vmin, Vmax;
Standard_Real norm;
gp_Vec Du, Dv, Dn;
gp_Pnt P;
S->Bounds(Umin, Umax, Vmin, Vmax);
S->D1((Umin+Umax)/2, (Vmin+Vmax)/2, P, Du, Dv);
if (Du.Magnitude() <= gp::Resolution() ||
Dv.Magnitude() <= gp::Resolution())
{
Standard_Real NewU = (Umin+Umax)/2 + (Umax-Umin)*0.1;
Standard_Real NewV = (Vmin+Vmax)/2 + (Vmax-Vmin)*0.1;
S->D1( NewU, NewV, P, Du, Dv );
}
Dn = Du^Dv;
norm = Dn.Magnitude();
if (norm > 1.e-15) {
Dn /= norm;
Standard_Real angmax = Tol / (Vmax-Vmin);
gp_Dir D(Dn);
Essai = (D.IsNormal(AS.Direction(), angmax));
}
if (Essai) {
gp_Ax3 axe(P, Dn, Du);
myPlan.SetPosition(axe);
myPlan.SetLocation(P);
Handle(Geom_Curve) C;
C = S->VIso((Vmin+Vmax)/2);
IsPlan = Controle(C, myPlan, Tol);
}
else
IsPlan = Standard_False;
break;
}
default :
{
Standard_Integer NbU,NbV, ii, jj, kk;
NbU = 8 + 3*AS.NbUIntervals(GeomAbs_CN);
NbV = 8 + 3*AS.NbVIntervals(GeomAbs_CN);
Standard_Real Umin, Umax, Vmin, Vmax, du, dv, U, V;
S->Bounds(Umin, Umax, Vmin, Vmax);
du = (Umax-Umin)/(NbU-1);
dv = (Vmax-Vmin)/(NbV-1);
TColgp_Array1OfPnt Pnts(1, NbU*NbV);
for(ii=0, kk=1; ii<NbU; ii++) {
U = Umin + du*ii;
for(jj=0; jj<NbV; jj++,kk++) {
V = Vmin + dv*jj;
S->D0(U,V, Pnts(kk));
}
}
IsPlan = Controle(Pnts, Tol, S, myPlan);
}
}
}
Standard_Boolean GeomLib_IsPlanarSurface::IsPlanar() const
{
return IsPlan;
}
const gp_Pln& GeomLib_IsPlanarSurface::Plan() const
{
if (!IsPlan) throw StdFail_NotDone(" GeomLib_IsPlanarSurface");
return myPlan;
}