1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-01 17:36:21 +03:00

0033170: Modeling Algorithms - Checking for canonical geometry: plane detection problems

GeomLib_IsPlanarSurface.cxx - using poles for checking BSpline, Bezier curves and surface changed
                              on checking by curve, surface points.

BRepOffset_MakeOffset.cxx - set normal of plane surface according to normal of initial face surface

tests/cr/bugs/bug33170 - new test case added
This commit is contained in:
ifv 2022-10-14 12:59:06 +03:00 committed by Vadim Glukhikh
parent d7d89acb39
commit cc164fd7dc
4 changed files with 117 additions and 105 deletions

View File

@ -4953,6 +4953,53 @@ Standard_Boolean BRepOffset_MakeOffset::IsPlanar()
if (aPlanarityChecker.IsPlanar())
{
gp_Pln aPln = aPlanarityChecker.Plan();
Standard_Real u1, u2, v1, v2, um, vm;
aSurf->Bounds(u1, u2, v1, v2);
Standard_Boolean isInf1 = Precision::IsInfinite(u1), isInf2 = Precision::IsInfinite(u2);
if (!isInf1 && !isInf2)
{
um = (u1 + u2) / 2.;
}
else if(isInf1 && !isInf2)
{
um = u2 - 1.;
}
else if(!isInf1 && isInf2)
{
um = u1 + 1.;
}
else //isInf1 && isInf2
{
um = 0.;
}
isInf1 = Precision::IsInfinite(v1), isInf2 = Precision::IsInfinite(v2);
if (!isInf1 && !isInf2)
{
vm = (v1 + v2) / 2.;
}
else if (isInf1 && !isInf2)
{
vm = v2 - 1.;
}
else if(!isInf1 && isInf2)
{
vm = v1 + 1.;
}
else //isInf1 && isInf2
{
vm = 0.;
}
gp_Pnt aP;
gp_Vec aD1, aD2;
aBAS.D1(um, vm, aP, aD1, aD2);
gp_Vec aNorm = aD1.Crossed(aD2);
gp_Dir aPlnNorm = aPln.Position().Direction();
if (aNorm.Dot(aPlnNorm) < 0.)
{
aPlnNorm.Reverse();
gp_Ax1 anAx(aPln.Position().Location(), aPlnNorm);
aPln.SetAxis(anAx);
}
Handle(Geom_Plane) aPlane = new Geom_Plane(aPln);
TopoDS_Face aPlanarFace;
aBB.MakeFace(aPlanarFace, aPlane, aTolForFace);

View File

@ -30,18 +30,6 @@
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_HArray1OfPnt.hxx>
static Standard_Boolean Controle(const TColgp_Array1OfPnt& P,
const gp_Pln& Plan,
const Standard_Real Tol)
{
Standard_Integer ii;
Standard_Boolean B=Standard_True;
for (ii=1; ii<=P.Length() && B; ii++)
B = (Plan.Distance(P(ii)) < Tol);
return B;
}
static Standard_Boolean Controle(const TColgp_Array1OfPnt& Poles,
const Standard_Real Tol,
@ -49,51 +37,36 @@ static Standard_Boolean Controle(const TColgp_Array1OfPnt& Poles,
gp_Pln& Plan)
{
Standard_Boolean IsPlan = Standard_False;
Standard_Boolean Essai = Standard_True;
Standard_Real gx,gy,gz;
Standard_Integer Nb = Poles.Length();
gp_Pnt Bary;
gp_Pnt Bary;
gp_Dir DX, DY;
Standard_Real aTolSingular = Precision::Confusion();
if (Nb > 10) {
// Test allege (pour une rejection rapide)
TColgp_Array1OfPnt Aux(1,5);
Aux(1) = Poles(1);
Aux(2) = Poles(Nb/3);
Aux(3) = Poles(Nb/2);
Aux(4) = Poles(Nb/2+Nb/3);
Aux(5) = Poles(Nb);
GeomLib::Inertia(Aux, Bary, DX, DY, gx, gy, gz);
Essai = (gz<Tol);
}
if (Essai) { // Test Grandeur nature...
GeomLib::Inertia(Poles, Bary, DX, DY, gx, gy, gz);
if (gz<Tol && gy>Tol) {
gp_Pnt P;
gp_Vec DU, DV;
Standard_Real umin, umax, vmin, vmax;
S->Bounds(umin, umax, vmin, vmax);
S->D1( (umin+umax)/2, (vmin+vmax)/2, P, DU, DV);
// On prend DX le plus proche possible de DU
gp_Dir du(DU);
Standard_Real Angle1 = du.Angle(DX);
Standard_Real Angle2 = du.Angle(DY);
if (Angle1 > M_PI/2) Angle1 = M_PI-Angle1;
if (Angle2 > M_PI/2) Angle2 = M_PI-Angle2;
if (Angle2 < Angle1) {
du = DY; DY = DX; DX = du;
}
if (DX.Angle(DU) > M_PI/2) DX.Reverse();
if (DY.Angle(DV) > M_PI/2) DY.Reverse();
gp_Ax3 axe(Bary, DX^DY, DX);
Plan.SetPosition(axe);
Plan.SetLocation(Bary);
IsPlan = Standard_True;
GeomLib::Inertia(Poles, Bary, DX, DY, gx, gy, gz);
if (gz < Tol && gy > aTolSingular) {
gp_Pnt P;
gp_Vec DU, DV;
Standard_Real umin, umax, vmin, vmax;
S->Bounds(umin, umax, vmin, vmax);
S->D1((umin + umax) / 2, (vmin + vmax) / 2, P, DU, DV);
// On prend DX le plus proche possible de DU
gp_Dir du(DU);
Standard_Real Angle1 = du.Angle(DX);
Standard_Real Angle2 = du.Angle(DY);
if (Angle1 > M_PI / 2) Angle1 = M_PI - Angle1;
if (Angle2 > M_PI / 2) Angle2 = M_PI - Angle2;
if (Angle2 < Angle1) {
du = DY; DY = DX; DX = du;
}
}
if (DX.Angle(DU) > M_PI / 2) DX.Reverse();
if (DY.Angle(DV) > M_PI / 2) DY.Reverse();
gp_Ax3 axe(Bary, DX^DY, DX);
Plan.SetPosition(axe);
Plan.SetLocation(Bary);
IsPlan = Standard_True;
}
return IsPlan;
}
@ -106,8 +79,6 @@ static Standard_Boolean Controle(const Handle(Geom_Curve)& C,
GeomAbs_CurveType Type;
GeomAdaptor_Curve AC(C);
Type = AC.GetType();
Handle(TColgp_HArray1OfPnt) TabP;
TabP.Nullify();
switch (Type) {
case GeomAbs_Line :
@ -131,40 +102,27 @@ static Standard_Boolean Controle(const Handle(Geom_Curve)& C,
case GeomAbs_BezierCurve:
{
Nb = AC.NbPoles();
Handle (Geom_BezierCurve) BZ = AC.Bezier();
TabP = new (TColgp_HArray1OfPnt) (1, AC.NbPoles());
for (ii=1; ii<=Nb; ii++)
TabP->SetValue(ii, BZ->Pole(ii));
break;
}
case GeomAbs_BSplineCurve:
{
Nb = AC.NbPoles();
Handle (Geom_BSplineCurve) BZ = AC.BSpline();
TabP = new (TColgp_HArray1OfPnt) (1, AC.NbPoles());
for (ii=1; ii<=Nb; ii++)
TabP->SetValue(ii, BZ->Pole(ii));
break;
}
default :
{
Nb = 8 + 3*AC.NbIntervals(GeomAbs_CN);
}
}
if (TabP.IsNull()) {
Standard_Real u, du, f, l, d;
f = AC.FirstParameter();
l = AC.LastParameter();
du = (l-f)/(Nb-1);
for (ii=1; ii<=Nb && B ; ii++) {
u = (ii-1)*du + f;
d = Plan.Distance(C->Value(u));
B = (d < Tol);
default :
{
Nb = 8 + 3*AC.NbIntervals(GeomAbs_CN);
}
}
else {
B = Controle(TabP->Array1(), Plan, Tol);
Standard_Real u, du, f, l, d;
f = AC.FirstParameter();
l = AC.LastParameter();
du = (l - f) / (Nb - 1);
for (ii = 1; ii <= Nb && B; ii++) {
u = (ii - 1)*du + f;
d = Plan.Distance(C->Value(u));
B = d < Tol;
}
return B;
@ -196,30 +154,6 @@ GeomLib_IsPlanarSurface::GeomLib_IsPlanarSurface(const Handle(Geom_Surface)& S,
IsPlan = Standard_False;
break;
}
case GeomAbs_BezierSurface :
case GeomAbs_BSplineSurface :
{
Standard_Integer ii, jj, kk,
NbU = AS.NbUPoles(), NbV = AS.NbVPoles();
TColgp_Array1OfPnt Poles(1, NbU*NbV);
if (Type == GeomAbs_BezierSurface) {
Handle(Geom_BezierSurface) BZ;
BZ = AS.Bezier();
for(ii=1, kk=1; ii<=NbU; ii++)
for(jj=1; jj<=NbV; jj++,kk++)
Poles(kk) = BZ->Pole(ii,jj);
}
else {
Handle(Geom_BSplineSurface) BS;
BS = AS.BSpline();
for(ii=1, kk=1; ii<=NbU; ii++)
for(jj=1; jj<=NbV; jj++,kk++)
Poles(kk) = BS->Pole(ii,jj);
}
IsPlan = Controle(Poles, Tol, S, myPlan);
break;
}
case GeomAbs_SurfaceOfRevolution :
{
@ -299,7 +233,7 @@ GeomLib_IsPlanarSurface::GeomLib_IsPlanarSurface(const Handle(Geom_Surface)& S,
break;
}
default :
default :
{
Standard_Integer NbU,NbV, ii, jj, kk;
NbU = 8 + 3*AS.NbUIntervals(GeomAbs_CN);

30
tests/cr/bugs/bug33170 Normal file
View File

@ -0,0 +1,30 @@
puts "============"
puts "0033170: Modeling Algorithms - Checking for canonical geometry: plane detection problems"
puts "============"
puts ""
set ExpectGap 0.0051495320504590563
brestore [locate_data_file bug33170.brep] f
set log1 [getanasurf asurf1 f pln 0.006]
regexp {Gap = +([-0-9.+eE]+)} $log1 full gap1
if {[isdraw asurf1]} {
set log [dump asurf1]
if { [regexp {Plane} $log ] != 1 } {
puts "Error: surface is not a plane"
}
} else {
puts "Error: required surface is not got"
}
checkreal FoundGap1 $gap1 $ExpectGap 1.0e-9 0.0
#
set log2 [getanasurf asurf2 f pln 1.]
regexp {Gap = +([-0-9.+eE]+)} $log1 full gap2
if {[isdraw asurf2]} {
set log [dump asurf2]
if { [regexp {Plane} $log ] != 1 } {
puts "Error: surface is not a plane"
}
} else {
puts "Error: required surface is not got"
}
checkreal FoundGap2 $gap2 $ExpectGap 1.0e-9 0.0

View File

@ -1,2 +1,3 @@
001 base
002 approx
003 bugs