mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-21 10:13:43 +03:00
Macros ending on "DEB" are replaced by OCCT_DEBUG across OCCT code; new macros described in documentation. Macros starting with DEB are changed to start with "OCCT_DEBUG_". Some code cleaned.
156 lines
4.4 KiB
C++
156 lines
4.4 KiB
C++
// Copyright (c) 1997-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
/*
|
|
Par Gauss le calcul d'une integrale simple se transforme en sommation des
|
|
valeurs de la fonction donnee aux <Order> points de Gauss affectee des poids
|
|
de Gauss.
|
|
|
|
Les points et poids de Gauss sont stockes dans GaussPoints.cxx.
|
|
Les points sont compris entre les valeurs -1 et +1, ce qui necessite un
|
|
changement de variable pour les faire varier dans l'intervalle [Lower, Upper].
|
|
|
|
|
|
On veut calculer Integrale( f(u)* du) entre a et b.
|
|
|
|
|
|
Etapes du calcul:
|
|
|
|
1- calcul de la fonction au ieme point de Gauss (apres changement de variable).
|
|
|
|
2- multiplication de cette valeur par le ieme poids de Gauss.
|
|
|
|
3- sommation de toutes ces valeurs.
|
|
|
|
4- retour a l'intervalle [Lower, Upper] de notre integrale.
|
|
|
|
*/
|
|
|
|
//#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#define No_Standard_DimensionError
|
|
//#endif
|
|
|
|
#include <math_GaussSingleIntegration.ixx>
|
|
|
|
#include <math.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <math_Function.hxx>
|
|
|
|
math_GaussSingleIntegration::math_GaussSingleIntegration() : Done(Standard_False)
|
|
{
|
|
}
|
|
|
|
math_GaussSingleIntegration::
|
|
math_GaussSingleIntegration(math_Function& F,
|
|
const Standard_Real Lower,
|
|
const Standard_Real Upper,
|
|
const Standard_Integer Order)
|
|
{
|
|
Standard_Integer theOrder = Min(math::GaussPointsMax(), Order);
|
|
Perform(F, Lower, Upper, theOrder);
|
|
}
|
|
|
|
math_GaussSingleIntegration::
|
|
math_GaussSingleIntegration(math_Function& F,
|
|
const Standard_Real Lower,
|
|
const Standard_Real Upper,
|
|
const Standard_Integer Order,
|
|
const Standard_Real Tol)
|
|
{
|
|
Standard_Integer theOrder = Min(math::GaussPointsMax(), Order);
|
|
|
|
const Standard_Integer IterMax = 13; // Max number of iteration
|
|
Standard_Integer NIter = 1; // current number of iteration
|
|
Standard_Integer NbInterval = 1; // current number of subintervals
|
|
Standard_Real dU,OldLen,Len;
|
|
|
|
Perform(F, Lower, Upper, theOrder);
|
|
Len = Val;
|
|
do {
|
|
OldLen = Len;
|
|
Len = 0.;
|
|
NbInterval *= 2;
|
|
dU = (Upper-Lower)/NbInterval;
|
|
for (Standard_Integer i=1; i<=NbInterval; i++) {
|
|
Perform(F, Lower+(i-1)*dU, Lower+i*dU, theOrder);
|
|
if (!Done) return;
|
|
Len += Val;
|
|
}
|
|
NIter++;
|
|
}
|
|
while (fabs(OldLen-Len) > Tol && NIter <= IterMax);
|
|
|
|
Val = Len;
|
|
}
|
|
|
|
void math_GaussSingleIntegration::Perform(math_Function& F,
|
|
const Standard_Real Lower,
|
|
const Standard_Real Upper,
|
|
const Standard_Integer Order)
|
|
{
|
|
Standard_Real xr, xm, dx;
|
|
Standard_Integer j;
|
|
Standard_Real F1, F2;
|
|
Standard_Boolean Ok1;
|
|
math_Vector GaussP(1, Order);
|
|
math_Vector GaussW(1, Order);
|
|
Done = Standard_False;
|
|
|
|
//Recuperation des points de Gauss dans le fichier GaussPoints.
|
|
math::GaussPoints(Order,GaussP);
|
|
math::GaussWeights(Order,GaussW);
|
|
|
|
// Calcul de l'integrale aux points de Gauss :
|
|
|
|
// Changement de variable pour la mise a l'echelle [Lower, Upper] :
|
|
xm = 0.5*(Upper + Lower);
|
|
xr = 0.5*(Upper - Lower);
|
|
Val = 0.;
|
|
|
|
Standard_Integer ind = Order/2, ind1 = (Order+1)/2;
|
|
if(ind1 > ind) { // odder case
|
|
Ok1 = F.Value(xm, Val);
|
|
if (!Ok1) return;
|
|
Val *= GaussW(ind1);
|
|
}
|
|
// Sommation sur tous les points de Gauss: avec utilisation de la symetrie.
|
|
for (j = 1; j <= ind; j++) {
|
|
dx = xr*GaussP(j);
|
|
Ok1 = F.Value(xm-dx, F1);
|
|
if(!Ok1) return;
|
|
Ok1 = F.Value(xm+dx, F2);
|
|
if(!Ok1) return;
|
|
// Multiplication par les poids de Gauss.
|
|
Standard_Real FT = F1+F2;
|
|
Val += GaussW(j)*FT;
|
|
}
|
|
// Mise a l'echelle de l'intervalle [Lower, Upper]
|
|
Val *= xr;
|
|
Done = Standard_True;
|
|
}
|
|
|
|
void math_GaussSingleIntegration::Dump(Standard_OStream& o) const {
|
|
|
|
o <<"math_GaussSingleIntegration ";
|
|
if (Done) {
|
|
o << " Status = Done \n";
|
|
o << "Integration Value = " << Val<<"\n";
|
|
}
|
|
else {
|
|
o << "Status = not Done \n";
|
|
}
|
|
}
|