// Copyright (c) 1997-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. /* Par Gauss le calcul d'une integrale simple se transforme en sommation des valeurs de la fonction donnee aux points de Gauss affectee des poids de Gauss. Les points et poids de Gauss sont stockes dans GaussPoints.cxx. Les points sont compris entre les valeurs -1 et +1, ce qui necessite un changement de variable pour les faire varier dans l'intervalle [Lower, Upper]. On veut calculer Integrale( f(u)* du) entre a et b. Etapes du calcul: 1- calcul de la fonction au ieme point de Gauss (apres changement de variable). 2- multiplication de cette valeur par le ieme poids de Gauss. 3- sommation de toutes ces valeurs. 4- retour a l'intervalle [Lower, Upper] de notre integrale. */ //#ifndef OCCT_DEBUG #define No_Standard_RangeError #define No_Standard_OutOfRange #define No_Standard_DimensionError //#endif #include #include #include #include math_GaussSingleIntegration::math_GaussSingleIntegration() : Done(Standard_False) { } math_GaussSingleIntegration:: math_GaussSingleIntegration(math_Function& F, const Standard_Real Lower, const Standard_Real Upper, const Standard_Integer Order) { Standard_Integer theOrder = Min(math::GaussPointsMax(), Order); Perform(F, Lower, Upper, theOrder); } math_GaussSingleIntegration:: math_GaussSingleIntegration(math_Function& F, const Standard_Real Lower, const Standard_Real Upper, const Standard_Integer Order, const Standard_Real Tol) { Standard_Integer theOrder = Min(math::GaussPointsMax(), Order); const Standard_Integer IterMax = 13; // Max number of iteration Standard_Integer NIter = 1; // current number of iteration Standard_Integer NbInterval = 1; // current number of subintervals Standard_Real dU,OldLen,Len; Perform(F, Lower, Upper, theOrder); Len = Val; do { OldLen = Len; Len = 0.; NbInterval *= 2; dU = (Upper-Lower)/NbInterval; for (Standard_Integer i=1; i<=NbInterval; i++) { Perform(F, Lower+(i-1)*dU, Lower+i*dU, theOrder); if (!Done) return; Len += Val; } NIter++; } while (fabs(OldLen-Len) > Tol && NIter <= IterMax); Val = Len; } void math_GaussSingleIntegration::Perform(math_Function& F, const Standard_Real Lower, const Standard_Real Upper, const Standard_Integer Order) { Standard_Real xr, xm, dx; Standard_Integer j; Standard_Real F1, F2; Standard_Boolean Ok1; math_Vector GaussP(1, Order); math_Vector GaussW(1, Order); Done = Standard_False; //Recuperation des points de Gauss dans le fichier GaussPoints. math::GaussPoints(Order,GaussP); math::GaussWeights(Order,GaussW); // Calcul de l'integrale aux points de Gauss : // Changement de variable pour la mise a l'echelle [Lower, Upper] : xm = 0.5*(Upper + Lower); xr = 0.5*(Upper - Lower); Val = 0.; Standard_Integer ind = Order/2, ind1 = (Order+1)/2; if(ind1 > ind) { // odder case Ok1 = F.Value(xm, Val); if (!Ok1) return; Val *= GaussW(ind1); } // Sommation sur tous les points de Gauss: avec utilisation de la symetrie. for (j = 1; j <= ind; j++) { dx = xr*GaussP(j); Ok1 = F.Value(xm-dx, F1); if(!Ok1) return; Ok1 = F.Value(xm+dx, F2); if(!Ok1) return; // Multiplication par les poids de Gauss. Standard_Real FT = F1+F2; Val += GaussW(j)*FT; } // Mise a l'echelle de l'intervalle [Lower, Upper] Val *= xr; Done = Standard_True; } void math_GaussSingleIntegration::Dump(Standard_OStream& o) const { o <<"math_GaussSingleIntegration "; if (Done) { o << " Status = Done \n"; o << "Integration Value = " << Val<<"\n"; } else { o << "Status = not Done \n"; } }