mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
"endl" manipulator for Message_Messenger is renamed to "Message_EndLine". The following entities from std namespace are now used with std:: explicitly specified (from Standard_Stream.hxx): std::istream,std::ostream,std::ofstream,std::ifstream,std::fstream, std::filebuf,std::streambuf,std::streampos,std::ios,std::cout,std::cerr, std::cin,std::endl,std::ends,std::flush,std::setw,std::setprecision, std::hex,std::dec.
563 lines
18 KiB
C++
563 lines
18 KiB
C++
// Created on: 1992-06-30
|
|
// Created by: Laurent BUCHARD
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef OCCT_DEBUG
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------
|
|
//-- Differents constructeurs sont proposes qui correspondent aux
|
|
//-- polynomes en Z :
|
|
//-- A(Sin(Theta),Cos(Theta)) Z**2
|
|
//-- + B(Sin(Theta),Cos(Theta)) Z
|
|
//-- + C(Sin(Theta),Cos(Theta))
|
|
//--
|
|
//-- Une Courbe est definie sur un domaine
|
|
//--
|
|
//-- Value retourne le point de parametre U(Theta),V(Theta)
|
|
//-- ou V est la solution du polynome A V**2 + B V + C
|
|
//-- (Selon les cas, on prend V+ ou V-)
|
|
//--
|
|
//-- D1u calcule le vecteur tangent a la courbe
|
|
//-- et retourne le booleen Standard_False si ce calcul ne peut
|
|
//-- pas etre mene a bien.
|
|
//----------------------------------------------------------------------
|
|
|
|
#include <algorithm>
|
|
|
|
#include <ElSLib.hxx>
|
|
#include <gp_Cone.hxx>
|
|
#include <gp_Cylinder.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <gp_Vec.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
#include <IntAna_Curve.hxx>
|
|
#include <math_DirectPolynomialRoots.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_DomainError.hxx>
|
|
|
|
//=======================================================================
|
|
//function : IntAna_Curve
|
|
//purpose :
|
|
//=======================================================================
|
|
IntAna_Curve::IntAna_Curve()
|
|
{
|
|
typequadric=GeomAbs_OtherSurface;
|
|
firstbounded=Standard_False;
|
|
lastbounded=Standard_False;
|
|
}
|
|
//=======================================================================
|
|
//function : SetConeQuadValues
|
|
//purpose : Description de l intersection Cone Quadrique
|
|
//=======================================================================
|
|
void IntAna_Curve::SetConeQuadValues(const gp_Cone& Cone,
|
|
const Standard_Real Qxx,
|
|
const Standard_Real Qyy,
|
|
const Standard_Real Qzz,
|
|
const Standard_Real Qxy,
|
|
const Standard_Real Qxz,
|
|
const Standard_Real Qyz,
|
|
const Standard_Real Qx,
|
|
const Standard_Real Qy,
|
|
const Standard_Real Qz,
|
|
const Standard_Real Q1,
|
|
const Standard_Real TOL,
|
|
const Standard_Real DomInf,
|
|
const Standard_Real DomSup,
|
|
const Standard_Boolean twocurves,
|
|
const Standard_Boolean takezpositive)
|
|
{
|
|
|
|
Ax3 = Cone.Position();
|
|
RCyl = Cone.RefRadius();
|
|
|
|
Angle = Cone.SemiAngle();
|
|
Standard_Real UnSurTgAngle = 1.0/(Tan(Cone.SemiAngle()));
|
|
|
|
typequadric= GeomAbs_Cone;
|
|
|
|
TwoCurves = twocurves; //-- deux Z pour un meme parametre
|
|
TakeZPositive = takezpositive; //-- Prendre sur la courbe le Z Positif
|
|
//-- ( -B + Sqrt()) et non (-B - Sqrt())
|
|
|
|
|
|
Z0Cte = Q1; //-- Attention On a Z?Cos Cos(t)
|
|
Z0Sin = 0.0; //-- et Non 2 Z?Cos Cos(t) !!!
|
|
Z0Cos = 0.0; //-- Ce pour tous les Parametres
|
|
Z0CosCos = 0.0; //-- ie pas de Coefficient 2
|
|
Z0SinSin = 0.0; //-- devant les termes CS C S
|
|
Z0CosSin = 0.0;
|
|
|
|
Z1Cte = 2.0*(UnSurTgAngle)*Qz;
|
|
Z1Sin = Qy+Qy;
|
|
Z1Cos = Qx+Qx;
|
|
Z1CosCos = 0.0;
|
|
Z1SinSin = 0.0;
|
|
Z1CosSin = 0.0;
|
|
|
|
Z2Cte = Qzz * UnSurTgAngle*UnSurTgAngle;
|
|
Z2Sin = (UnSurTgAngle+UnSurTgAngle)*Qyz;
|
|
Z2Cos = (UnSurTgAngle+UnSurTgAngle)*Qxz;
|
|
Z2CosCos = Qxx;
|
|
Z2SinSin = Qyy;
|
|
Z2CosSin = Qxy;
|
|
|
|
Tolerance = TOL;
|
|
DomainInf = DomInf;
|
|
DomainSup = DomSup;
|
|
|
|
RestrictedInf = RestrictedSup = Standard_True; //-- Le Domaine est Borne
|
|
firstbounded = lastbounded = Standard_False;
|
|
|
|
myFirstParameter = DomainInf;
|
|
myLastParameter = (TwoCurves) ? DomainSup + DomainSup - DomainInf :
|
|
DomainSup;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SetCylinderQuadValues
|
|
//purpose : Description de l intersection Cylindre Quadrique
|
|
//=======================================================================
|
|
void IntAna_Curve::SetCylinderQuadValues(const gp_Cylinder& Cyl,
|
|
const Standard_Real Qxx,
|
|
const Standard_Real Qyy,
|
|
const Standard_Real Qzz,
|
|
const Standard_Real Qxy,
|
|
const Standard_Real Qxz,
|
|
const Standard_Real Qyz,
|
|
const Standard_Real Qx,
|
|
const Standard_Real Qy,
|
|
const Standard_Real Qz,
|
|
const Standard_Real Q1,
|
|
const Standard_Real TOL,
|
|
const Standard_Real DomInf,
|
|
const Standard_Real DomSup,
|
|
const Standard_Boolean twocurves,
|
|
const Standard_Boolean takezpositive)
|
|
{
|
|
|
|
Ax3 = Cyl.Position();
|
|
RCyl = Cyl.Radius();
|
|
typequadric= GeomAbs_Cylinder;
|
|
|
|
TwoCurves = twocurves; //-- deux Z pour un meme parametre
|
|
TakeZPositive = takezpositive; //-- Prendre sur la courbe le Z Positif
|
|
Standard_Real RCylmul2 = RCyl+RCyl; //-- ( -B + Sqrt())
|
|
|
|
Z0Cte = Q1;
|
|
Z0Sin = RCylmul2*Qy;
|
|
Z0Cos = RCylmul2*Qx;
|
|
Z0CosCos = Qxx*RCyl*RCyl;
|
|
Z0SinSin = Qyy*RCyl*RCyl;
|
|
Z0CosSin = RCyl*RCyl*Qxy;
|
|
|
|
Z1Cte = Qz+Qz;
|
|
Z1Sin = RCylmul2*Qyz;
|
|
Z1Cos = RCylmul2*Qxz;
|
|
Z1CosCos = 0.0;
|
|
Z1SinSin = 0.0;
|
|
Z1CosSin = 0.0;
|
|
|
|
Z2Cte = Qzz;
|
|
Z2Sin = 0.0;
|
|
Z2Cos = 0.0;
|
|
Z2CosCos = 0.0;
|
|
Z2SinSin = 0.0;
|
|
Z2CosSin = 0.0;
|
|
|
|
Tolerance = TOL;
|
|
DomainInf = DomInf;
|
|
DomainSup = DomSup;
|
|
|
|
RestrictedInf = RestrictedSup = Standard_True;
|
|
firstbounded = lastbounded = Standard_False;
|
|
|
|
myFirstParameter = DomainInf;
|
|
myLastParameter = (TwoCurves) ? DomainSup + DomainSup - DomainInf :
|
|
DomainSup;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsOpen
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntAna_Curve::IsOpen() const
|
|
{
|
|
return(RestrictedInf && RestrictedSup);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Domain
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntAna_Curve::Domain(Standard_Real& theFirst,
|
|
Standard_Real& theLast) const
|
|
{
|
|
if (RestrictedInf && RestrictedSup)
|
|
{
|
|
theFirst = myFirstParameter;
|
|
theLast = myLastParameter;
|
|
}
|
|
else
|
|
{
|
|
throw Standard_DomainError("IntAna_Curve::Domain");
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : IsConstant
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntAna_Curve::IsConstant() const
|
|
{
|
|
//-- ??? Pas facile de decider a la seule vue des Param.
|
|
return(Standard_False);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsFirstOpen
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntAna_Curve::IsFirstOpen() const
|
|
{
|
|
return(firstbounded);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : IsLastOpen
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntAna_Curve::IsLastOpen() const
|
|
{
|
|
return(lastbounded);
|
|
}
|
|
//=======================================================================
|
|
//function : SetIsFirstOpen
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntAna_Curve::SetIsFirstOpen(const Standard_Boolean Flag)
|
|
{
|
|
firstbounded = Flag;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : SetIsLastOpen
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntAna_Curve::SetIsLastOpen(const Standard_Boolean Flag)
|
|
{
|
|
lastbounded = Flag;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : InternalUVValue
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntAna_Curve::InternalUVValue(const Standard_Real theta,
|
|
Standard_Real& Param1,
|
|
Standard_Real& Param2,
|
|
Standard_Real& A,
|
|
Standard_Real& B,
|
|
Standard_Real& C,
|
|
Standard_Real& cost,
|
|
Standard_Real& sint,
|
|
Standard_Real& SigneSqrtDis) const
|
|
{
|
|
const Standard_Real aRelTolp = 1.0+Epsilon(1.0), aRelTolm = 1.0-Epsilon(1.0);
|
|
|
|
// Infinitesimal step of increasing curve parameter. See comment below.
|
|
const Standard_Real aDT = 100.0*Epsilon(DomainSup + DomainSup - DomainInf);
|
|
|
|
Standard_Real Theta=theta;
|
|
Standard_Boolean SecondSolution=Standard_False;
|
|
|
|
if ((Theta<DomainInf*aRelTolm) ||
|
|
((Theta>DomainSup*aRelTolp) && (!TwoCurves)) ||
|
|
(Theta>(DomainSup + DomainSup - DomainInf)*aRelTolp))
|
|
{
|
|
SigneSqrtDis = 0.;
|
|
throw Standard_DomainError("IntAna_Curve::Domain");
|
|
}
|
|
|
|
if (Abs(Theta - DomainSup) < aDT)
|
|
{
|
|
// Point of Null-discriminant.
|
|
Theta = DomainSup;
|
|
}
|
|
else if (Theta>DomainSup)
|
|
{
|
|
Theta = DomainSup + DomainSup - Theta;
|
|
SecondSolution=Standard_True;
|
|
}
|
|
|
|
Param1=Theta;
|
|
|
|
if(!TwoCurves) {
|
|
SecondSolution=TakeZPositive;
|
|
}
|
|
//
|
|
cost = Cos(Theta);
|
|
sint = Sin(Theta);
|
|
const Standard_Real aSin2t = Sin(Theta + Theta);
|
|
const Standard_Real aCos2t = Cos(Theta + Theta);
|
|
|
|
A=Z2Cte+sint*(Z2Sin+sint*Z2SinSin)+cost*(Z2Cos+cost*Z2CosCos)
|
|
+ Z2CosSin*aSin2t;
|
|
|
|
const Standard_Real aDA = cost*Z2Sin - sint*Z2Cos +
|
|
aSin2t*(Z2SinSin - Z2CosCos) +
|
|
aCos2t*(Z2CosSin * Z2CosSin);
|
|
|
|
B=Z1Cte+sint*(Z1Sin+sint*Z1SinSin)+cost*(Z1Cos+cost*Z1CosCos)
|
|
+ Z1CosSin*aSin2t;
|
|
|
|
const Standard_Real aDB = Z1Sin*cost - Z1Cos*sint +
|
|
aSin2t*(Z1SinSin - Z1CosCos) +
|
|
aCos2t*(Z1CosSin + Z1CosSin);
|
|
|
|
C=Z0Cte+sint*(Z0Sin+sint*Z0SinSin)+cost*(Z0Cos+cost*Z0CosCos)
|
|
+ Z0CosSin*aSin2t;
|
|
|
|
const Standard_Real aDC = Z0Sin*cost - Z0Cos*sint +
|
|
aSin2t*(Z0SinSin - Z0CosCos) +
|
|
aCos2t*(Z0CosSin + Z0CosSin);
|
|
|
|
Standard_Real aDiscriminant = B*B-4.0*A*C;
|
|
|
|
// We consider that infinitesimal dt = aDT.
|
|
// Error of discriminant computation is equal to
|
|
// (d(Disc)/dt)*dt, where 1st derivative d(Disc)/dt = 2*B*aDB - 4*(A*aDC + C*aDA).
|
|
|
|
const Standard_Real aTolD = 2.0*aDT*Abs(B*aDB - 2.0*(A*aDC + C*aDA));
|
|
|
|
if (aDiscriminant < aTolD)
|
|
aDiscriminant = 0.0;
|
|
|
|
if (Abs(A) <= Precision::PConfusion())
|
|
{
|
|
if (Abs(B) <= Precision::PConfusion())
|
|
{
|
|
Param2 = 0.0;
|
|
}
|
|
else
|
|
{
|
|
Param2 = -C / B;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SigneSqrtDis = (SecondSolution) ? Sqrt(aDiscriminant) : -Sqrt(aDiscriminant);
|
|
Param2 = (-B + SigneSqrtDis) / (A + A);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : Value
|
|
//purpose :
|
|
//=======================================================================
|
|
gp_Pnt IntAna_Curve::Value(const Standard_Real theta)
|
|
{
|
|
Standard_Real A, B, C, U, V, sint, cost, SigneSqrtDis;
|
|
//
|
|
A=0.0; B=0.0; C=0.0;
|
|
U=0.0; V=0.0;
|
|
sint=0.0; cost=0.0;
|
|
SigneSqrtDis=0.0;
|
|
InternalUVValue(theta,U,V,A,B,C,cost,sint,SigneSqrtDis);
|
|
//-- checked the parameter U and Raises Domain Error if Error
|
|
return(InternalValue(U,V));
|
|
}
|
|
//=======================================================================
|
|
//function : D1u
|
|
//purpose :
|
|
//=======================================================================
|
|
Standard_Boolean IntAna_Curve::D1u(const Standard_Real theta,
|
|
gp_Pnt& Pt,
|
|
gp_Vec& Vec)
|
|
{
|
|
//-- Pour detecter le cas ou le calcul est impossible
|
|
Standard_Real A, B, C, U, V, sint, cost, SigneSqrtDis;
|
|
A=0.0; B=0.0; C=0.0;
|
|
U=0.0; V=0.0;
|
|
sint=0.0; cost=0.0;
|
|
//
|
|
InternalUVValue(theta,U,V,A,B,C,cost,sint,SigneSqrtDis);
|
|
//
|
|
Pt = Value(theta);
|
|
if (Abs(A)<1.0e-7 || Abs(SigneSqrtDis)<1.0e-10) return(Standard_False);
|
|
|
|
|
|
//-- Approximation de la derivee (mieux que le calcul mathematique!)
|
|
Standard_Real dtheta = (DomainSup - DomainInf)*1.0e-6;
|
|
Standard_Real theta2 = theta+dtheta;
|
|
if ((theta2<DomainInf) || ((theta2>DomainSup) && (!TwoCurves))
|
|
|| (theta2>(DomainSup + DomainSup - DomainInf + 1.0e-14)))
|
|
{
|
|
dtheta = -dtheta;
|
|
theta2 = theta+dtheta;
|
|
}
|
|
gp_Pnt P2 = Value(theta2);
|
|
dtheta = 1.0/dtheta;
|
|
Vec.SetCoord((P2.X()-Pt.X())*dtheta,
|
|
(P2.Y()-Pt.Y())*dtheta,
|
|
(P2.Z()-Pt.Z())*dtheta);
|
|
|
|
return(Standard_True);
|
|
}
|
|
//=======================================================================
|
|
//function : FindParameter
|
|
//purpose : Projects P to the ALine. Returns the list of parameters as a results
|
|
// of projection.
|
|
// Sometimes aline can be self-intersected line (see bug #29807 where
|
|
// ALine goes through the cone apex).
|
|
//=======================================================================
|
|
void IntAna_Curve::FindParameter(const gp_Pnt& theP,
|
|
TColStd_ListOfReal& theParams) const
|
|
{
|
|
const Standard_Real aPIpPI = M_PI + M_PI,
|
|
anEpsAng = 1.e-8,
|
|
InternalPrecision = 1.e-8, //precision of internal algorithm of values computation
|
|
aSqTolPrecision = Precision::SquareConfusion(); //for boundary points to check their coincidence with others
|
|
|
|
Standard_Real aTheta = 0.0;
|
|
//
|
|
switch (typequadric)
|
|
{
|
|
case GeomAbs_Cylinder:
|
|
{
|
|
Standard_Real aZ;
|
|
ElSLib::CylinderParameters(Ax3, RCyl, theP, aTheta, aZ);
|
|
}
|
|
break;
|
|
|
|
case GeomAbs_Cone:
|
|
{
|
|
Standard_Real aZ;
|
|
ElSLib::ConeParameters(Ax3, RCyl, Angle, theP, aTheta, aZ);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
//
|
|
if (!firstbounded && (DomainInf > aTheta) && ((DomainInf - aTheta) <= anEpsAng))
|
|
{
|
|
aTheta = DomainInf;
|
|
}
|
|
else if (!lastbounded && (aTheta > DomainSup) && ((aTheta - DomainSup) <= anEpsAng))
|
|
{
|
|
aTheta = DomainSup;
|
|
}
|
|
//
|
|
if (aTheta < DomainInf)
|
|
{
|
|
aTheta = aTheta + aPIpPI;
|
|
}
|
|
else if (aTheta > DomainSup)
|
|
{
|
|
aTheta = aTheta - aPIpPI;
|
|
}
|
|
|
|
const Standard_Integer aMaxPar = 5;
|
|
Standard_Real aParams[aMaxPar] = {DomainInf, DomainSup, aTheta,
|
|
(TwoCurves)? DomainSup + DomainSup - aTheta : RealLast(),
|
|
(TwoCurves) ? DomainSup + DomainSup - DomainInf : RealLast()};
|
|
|
|
std::sort(aParams, aParams + aMaxPar - 1);
|
|
|
|
for (Standard_Integer i = 0; i < aMaxPar; i++)
|
|
{
|
|
if (aParams[i] > myLastParameter)
|
|
break;
|
|
|
|
if (aParams[i] < myFirstParameter)
|
|
continue;
|
|
|
|
if (i && (aParams[i] - aParams[i - 1]) < Precision::PConfusion())
|
|
continue;
|
|
|
|
Standard_Real U = 0.0, V= 0.0,
|
|
A = 0.0, B = 0.0, C = 0.0,
|
|
sint = 0.0, cost = 0.0, SigneSqrtDis = 0.0;
|
|
InternalUVValue(aParams[i], U, V, A, B, C,
|
|
cost, sint, SigneSqrtDis);
|
|
const gp_Pnt aP(InternalValue(U, V));
|
|
|
|
Standard_Real aSqTol;
|
|
if (aParams[i] == aTheta ||
|
|
(TwoCurves && aParams[i] == DomainSup + DomainSup - aTheta))
|
|
aSqTol = InternalPrecision;
|
|
else
|
|
aSqTol = aSqTolPrecision;
|
|
|
|
if (aP.SquareDistance(theP) < aSqTol)
|
|
{
|
|
theParams.Append(aParams[i]);
|
|
}
|
|
}
|
|
}
|
|
//=======================================================================
|
|
//function : InternalValue
|
|
//purpose :
|
|
//=======================================================================
|
|
gp_Pnt IntAna_Curve::InternalValue(const Standard_Real U,
|
|
const Standard_Real _V) const
|
|
{
|
|
//-- std::cout<<" ["<<U<<","<<V<<"]";
|
|
Standard_Real V = _V;
|
|
if(V > 100000.0 ) { V= 100000.0; }
|
|
if(V < -100000.0 ) { V=-100000.0; }
|
|
|
|
switch(typequadric) {
|
|
case GeomAbs_Cone:
|
|
{
|
|
//------------------------------------------------
|
|
//-- Parametrage : X = V * Cos(U) ---
|
|
//-- Y = V * Sin(U) ---
|
|
//-- Z = (V-RCyl) / Tan(SemiAngle)--
|
|
//------------------------------------------------
|
|
//-- Angle Vaut Cone.SemiAngle()
|
|
return(ElSLib::ConeValue(U,(V-RCyl)/Sin(Angle),Ax3,RCyl,Angle));
|
|
}
|
|
break;
|
|
|
|
case GeomAbs_Cylinder:
|
|
return(ElSLib::CylinderValue(U,V,Ax3,RCyl));
|
|
case GeomAbs_Sphere:
|
|
return(ElSLib::SphereValue(U,V,Ax3,RCyl));
|
|
default:
|
|
return(gp_Pnt(0.0,0.0,0.0));
|
|
}
|
|
}
|
|
|
|
//
|
|
//=======================================================================
|
|
//function : SetDomain
|
|
//purpose :
|
|
//=======================================================================
|
|
void IntAna_Curve::SetDomain(const Standard_Real theFirst,
|
|
const Standard_Real theLast)
|
|
{
|
|
if (theLast <= theFirst)
|
|
{
|
|
throw Standard_DomainError("IntAna_Curve::Domain");
|
|
}
|
|
//
|
|
myFirstParameter = theFirst;
|
|
myLastParameter = theLast;
|
|
}
|