1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-05-21 10:55:33 +03:00
occt/src/SelectMgr/SelectMgr_Frustum.hxx
mzernova 7aaed2ce3b 0032547: Visualization, Select3D_SensitiveCylinder - implement picking of a hollow cylinder
Select3D_SensitiveCircle now inherits directly from Select3D_SensitiveEntity.
The sensitive circle sector is created using the Select3D_SensitivePoly class directly.

Added appropriate methods for selecting sensitive circles.
Added parameter myIsHollow to Select3D_SensitiveCylinder class.
It allows you to search for intersections with cylinders without covers.

The Draw vcircle command has been extended with UStart and UEnd parameters
to create a sector of a circle.

Added tests: vselect/cone_cylinder/circle_sector
             vselect/cone_cylinder/circle_wire
             vselect/cone_cylinder/filled_circle
             vselect/cone_cylinder/transformed
             vselect/cone_cylinder/hollow_cone_cyl
2022-08-26 17:38:19 +03:00

166 lines
8.5 KiB
C++

// Created on: 2015-03-16
// Created by: Varvara POSKONINA
// Copyright (c) 2005-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _SelectMgr_Frustum_HeaderFile
#define _SelectMgr_Frustum_HeaderFile
#include <SelectMgr_BaseFrustum.hxx>
//! This is an internal class containing representation of rectangular selecting frustum, created in case
//! of point and box selection, and algorithms for overlap detection between selecting
//! frustum and sensitive entities. The principle of frustum calculation:
//! - for point selection: on a near view frustum plane rectangular neighborhood of
//! user-picked point is created according to the pixel tolerance
//! given and then this rectangle is projected onto far view frustum
//! plane. This rectangles define the parallel bases of selecting frustum;
//! - for box selection: box points are projected onto near and far view frustum planes.
//! These 2 projected rectangles define parallel bases of selecting frustum.
//! Overlap detection tests are implemented according to the terms of separating axis
//! theorem (SAT).
//! Vertex order:
//! - for triangular frustum: V0_Near, V1_Near, V2_Near,
//! V0_Far, V1_Far, V2_Far;
//! - for rectangular frustum: LeftTopNear, LeftTopFar,
//! LeftBottomNear,LeftBottomFar,
//! RightTopNear, RightTopFar,
//! RightBottomNear, RightBottomFar.
//! Plane order in array:
//! - for triangular frustum: V0V1, V1V2, V0V2, Near, Far;
//! - for rectangular frustum: Top, Bottom, Left, Right, Near, Far.
//! Uncollinear edge directions order:
//! - for rectangular frustum: Horizontal, Vertical,
//! LeftLower, RightLower,
//! LeftUpper, RightUpper;
//! - for triangular frustum: V0_Near - V0_Far, V1_Near - V1_Far, V2_Near - V2_Far,
//! V1_Near - V0_Near, V2_Near - V1_Near, V2_Near - V0_Near.
template <int N>
class SelectMgr_Frustum : public SelectMgr_BaseFrustum
{
public:
SelectMgr_Frustum() : SelectMgr_BaseFrustum()
{
memset (myMaxOrthoVertsProjections, 0, sizeof (myMaxOrthoVertsProjections));
memset (myMinOrthoVertsProjections, 0, sizeof (myMinOrthoVertsProjections));
memset (myMaxVertsProjections, 0, sizeof (myMaxVertsProjections));
memset (myMinVertsProjections, 0, sizeof (myMinVertsProjections));
}
//! Dumps the content of me into the stream
inline virtual void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const Standard_OVERRIDE;
protected:
// SAT Tests for different objects
//! Returns true if selecting volume is overlapped by axis-aligned bounding box
//! with minimum corner at point theMinPt and maximum at point theMaxPt
Standard_Boolean hasBoxOverlap (const SelectMgr_Vec3& theBoxMin,
const SelectMgr_Vec3& theBoxMax,
Standard_Boolean* theInside = NULL) const;
//! SAT intersection test between defined volume and given point
Standard_Boolean hasPointOverlap (const gp_Pnt& thePnt) const;
//! SAT intersection test between defined volume and given segment
Standard_Boolean hasSegmentOverlap (const gp_Pnt& thePnt1,
const gp_Pnt& thePnt2) const;
//! SAT intersection test between frustum given and planar convex polygon represented as ordered point set
Standard_Boolean hasPolygonOverlap (const TColgp_Array1OfPnt& theArrayOfPnts,
gp_Vec& theNormal) const;
//! SAT intersection test between defined volume and given triangle
Standard_Boolean hasTriangleOverlap (const gp_Pnt& thePnt1,
const gp_Pnt& thePnt2,
const gp_Pnt& thePnt3,
gp_Vec& theNormal) const;
//! Intersection test between defined volume and given sphere
Standard_Boolean hasSphereOverlap (const gp_Pnt& thePnt1,
const Standard_Real theRadius,
Standard_Boolean* theInside = NULL) const;
//! Intersection test between defined volume and given cylinder (or cone).
Standard_Boolean hasCylinderOverlap (const Standard_Real theBottomRad,
const Standard_Real theTopRad,
const Standard_Real theHeight,
const gp_Trsf& theTrsf,
const Standard_Boolean theIsHollow,
Standard_Boolean* theInside = NULL) const;
//! Intersection test between defined volume and given circle.
Standard_Boolean hasCircleOverlap (const Standard_Real theRadius,
const gp_Trsf& theTrsf,
const Standard_Boolean theIsFilled,
Standard_Boolean* theInside = NULL) const;
//! Returns True if all vertices (theVertices) are inside the top and bottom sides of the cylinder.
Standard_Boolean isInsideCylinderEndFace (const Standard_Real theBottomRad,
const Standard_Real theTopRad,
const Standard_Real theHeight,
const gp_Trsf& theTrsf,
const TColgp_Array1OfPnt& theVertices) const;
//! Checking whether the point thePnt is inside the shape with borders theVertices.
//! thePnt and theVertices lie in the same plane.
Standard_Boolean isDotInside (const gp_Pnt& thePnt,
const TColgp_Array1OfPnt& theVertices) const;
private:
//! Return true if one segment enclosed between the points thePnt1Seg1 and thePnt2Seg1
//! intersects another segment that enclosed between thePnt1Seg2 and thePnt2Seg2.
Standard_Boolean isSegmentsIntersect (const gp_Pnt& thePnt1Seg1,
const gp_Pnt& thePnt2Seg1,
const gp_Pnt& thePnt1Seg2,
const gp_Pnt& thePnt2Seg2) const;
//! Checking whether the borders theVertices of the shape intersect
//! the cylinder (or cone) end face with the center theCenter and radius theRadius
Standard_Boolean isIntersectCircle (const Standard_Real theRadius,
const gp_Pnt& theCenter,
const gp_Trsf& theTrsf,
const TColgp_Array1OfPnt& theVertices) const;
//! Checks if AABB and frustum are separated along the given axis
Standard_Boolean isSeparated (const SelectMgr_Vec3& theBoxMin,
const SelectMgr_Vec3& theBoxMax,
const gp_XYZ& theDirect,
Standard_Boolean* theInside) const;
//! Checks if triangle and frustum are separated along the given axis
Standard_Boolean isSeparated (const gp_Pnt& thePnt1,
const gp_Pnt& thePnt2,
const gp_Pnt& thePnt3,
const gp_XYZ& theAxis) const;
protected:
gp_Vec myPlanes[N + 2]; //!< Plane equations
gp_Pnt myVertices[N * 2]; //!< Vertices coordinates
Standard_Real myMaxVertsProjections[N + 2]; //!< Cached projections of vertices onto frustum plane directions
Standard_Real myMinVertsProjections[N + 2]; //!< Cached projections of vertices onto frustum plane directions
Standard_Real myMaxOrthoVertsProjections[3]; //!< Cached projections of vertices onto directions of ortho unit vectors
Standard_Real myMinOrthoVertsProjections[3]; //!< Cached projections of vertices onto directions of ortho unit vectors
gp_Vec myEdgeDirs[6]; //!< Cached edge directions
};
#include <SelectMgr_Frustum.lxx>
#endif // _SelectMgr_Frustum_HeaderFile