1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-14 13:30:48 +03:00
Files
occt/src/ShapeAnalysis/ShapeAnalysis_Geom.cxx
dpasukhi a5a7b3185b Coding - Apply .clang-format formatting #286
Update empty method guards to new style with regex (see PR).
Used clang-format 18.1.8.
New actions to validate code formatting is added.
Update .clang-format with disabling of include sorting.
  It is temporary changes, then include will be sorted.
Apply formatting for /src and /tools folder.
The files with .hxx,.cxx,.lxx,.h,.pxx,.hpp,*.cpp extensions.
2025-01-26 00:43:57 +00:00

209 lines
6.5 KiB
C++

// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// szv#4 S4163
#include <gp_GTrsf.hxx>
#include <gp_Pln.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <gp_Vec.hxx>
#include <gp_XYZ.hxx>
#include <GProp_PGProps.hxx>
#include <GProp_PrincipalProps.hxx>
#include <ShapeAnalysis_Geom.hxx>
#include <Standard_ErrorHandler.hxx>
//=================================================================================================
Standard_Boolean ShapeAnalysis_Geom::NearestPlane(const TColgp_Array1OfPnt& Pnts,
gp_Pln& aPln,
Standard_Real& Dmax)
{
// szv#4:S4163:12Mar99 warning
GProp_PGProps Pmat(Pnts);
gp_Pnt g = Pmat.CentreOfMass();
Standard_Real Xg, Yg, Zg;
g.Coord(Xg, Yg, Zg);
GProp_PrincipalProps Pp = Pmat.PrincipalProperties();
gp_Vec V1 = Pp.FirstAxisOfInertia();
Standard_Real Xv1, Yv1, Zv1;
V1.Coord(Xv1, Yv1, Zv1);
gp_Vec V2 = Pp.SecondAxisOfInertia();
Standard_Real Xv2, Yv2, Zv2;
V2.Coord(Xv2, Yv2, Zv2);
gp_Vec V3 = Pp.ThirdAxisOfInertia();
Standard_Real Xv3, Yv3, Zv3;
V3.Coord(Xv3, Yv3, Zv3);
Standard_Real D, X, Y, Z;
Standard_Real Dmx1 = RealFirst();
Standard_Real Dmn1 = RealLast();
Standard_Real Dmx2 = RealFirst();
Standard_Real Dmn2 = RealLast();
Standard_Real Dmx3 = RealFirst();
Standard_Real Dmn3 = RealLast();
Standard_Integer ilow = Pnts.Lower(), iup = Pnts.Upper();
Standard_Integer i; // svv Jan11 2000 : porting on DEC
for (i = ilow; i <= iup; i++)
{
Pnts(i).Coord(X, Y, Z);
D = (X - Xg) * Xv1 + (Y - Yg) * Yv1 + (Z - Zg) * Zv1;
if (D > Dmx1)
Dmx1 = D;
if (D < Dmn1)
Dmn1 = D;
D = (X - Xg) * Xv2 + (Y - Yg) * Yv2 + (Z - Zg) * Zv2;
if (D > Dmx2)
Dmx2 = D;
if (D < Dmn2)
Dmn2 = D;
D = (X - Xg) * Xv3 + (Y - Yg) * Yv3 + (Z - Zg) * Zv3;
if (D > Dmx3)
Dmx3 = D;
if (D < Dmn3)
Dmn3 = D;
}
// szv#4:S4163:12Mar99 optimized
Standard_Real Dev1 = Dmx1 - Dmn1, Dev2 = Dmx2 - Dmn2, Dev3 = Dmx3 - Dmn3;
Standard_Integer It = (Dev1 < Dev2) ? ((Dev1 < Dev3) ? 1 : 3) : ((Dev2 < Dev3) ? 2 : 3);
switch (It)
{
case 1: {
// szv#4:S4163:12Mar99 optimized
if ((2. * Dev1 > Dev2) || (2. * Dev1 > Dev3))
It = 0;
else
aPln = gp_Pln(g, V1);
break;
}
case 2: {
// szv#4:S4163:12Mar99 optimized
if ((2. * Dev2 > Dev1) || (2. * Dev2 > Dev3))
It = 0;
else
aPln = gp_Pln(g, V2);
break;
}
case 3: {
// szv#4:S4163:12Mar99 optimized
if ((2. * Dev3 > Dev2) || (2. * Dev3 > Dev1))
It = 0;
else
aPln = gp_Pln(g, V3);
break;
}
}
Dmax = RealFirst();
if (It != 0) // szv#4:S4163:12Mar99 anti-exception
for (i = ilow; i <= iup; i++)
{
D = aPln.Distance(Pnts(i));
if (Dmax < D)
Dmax = D;
}
return (It != 0);
}
//=================================================================================================
Standard_Boolean ShapeAnalysis_Geom::PositionTrsf(const Handle(TColStd_HArray2OfReal)& coefs,
gp_Trsf& trsf,
const Standard_Real unit,
const Standard_Real prec)
{
Standard_Boolean result = Standard_True;
trsf = gp_Trsf(); // szv#4:S4163:12Mar99 moved
if (coefs.IsNull())
return Standard_True; // szv#4:S4163:12Mar99 moved
gp_GTrsf gtrsf;
for (Standard_Integer i = 1; i <= 3; i++)
{
for (Standard_Integer j = 1; j <= 4; j++)
{
gtrsf.SetValue(i, j, coefs->Value(i, j));
}
}
// try { //szv#4:S4163:12Mar99 waste try
//// trsf = gtrsf.Trsf();
// --- Prec et Unit ont ete lues suite aux StepFile_Read
// Valables pour tous les composants d un assemblage transmis
// trsf = gp_Trsf(); // Identite forcee au depart //szv#4:S4163:12Mar99 not needed
// On prend le contenu de <gtrsf>. Attention a l adressage
gp_XYZ v1(gtrsf.Value(1, 1), gtrsf.Value(2, 1), gtrsf.Value(3, 1));
gp_XYZ v2(gtrsf.Value(1, 2), gtrsf.Value(2, 2), gtrsf.Value(3, 2));
gp_XYZ v3(gtrsf.Value(1, 3), gtrsf.Value(2, 3), gtrsf.Value(3, 3));
// A-t-on affaire a une similitude ?
Standard_Real m1 = v1.Modulus();
Standard_Real m2 = v2.Modulus();
Standard_Real m3 = v3.Modulus();
// D abord est-elle singuliere cette matrice ?
if (m1 < prec || m2 < prec || m3 < prec)
return Standard_False;
Standard_Real mm = (m1 + m2 + m3) / 3.; // voici la Norme moyenne, cf Scale
// szv#4:S4163:12Mar99 optimized
Standard_Real pmm = prec * mm;
if (Abs(m1 - mm) > pmm || Abs(m2 - mm) > pmm || Abs(m3 - mm) > pmm)
return Standard_False;
// szv#4:S4163:12Mar99 warning
v1.Divide(m1);
v2.Divide(m2);
v3.Divide(m3);
// szv#4:S4163:12Mar99 optimized
if (Abs(v1.Dot(v2)) > prec || Abs(v2.Dot(v3)) > prec || Abs(v3.Dot(v1)) > prec)
return Standard_False;
// Ici, Orthogonale et memes normes. En plus on l a Normee
// On isole le cas de l Identite (tellement facile et avantageux)
if (v1.X() != 1 || v1.Y() != 0 || v1.Z() != 0 || v2.X() != 0 || v2.Y() != 1 || v2.Z() != 0
|| v3.X() != 0 || v3.Y() != 0 || v3.Z() != 1)
{
// Pas Identite : vraie construction depuis un Ax3
gp_Dir d1(v1);
gp_Dir d2(v2);
gp_Dir d3(v3);
gp_Ax3 axes(gp_Pnt(0, 0, 0), d3, d1);
d3.Cross(d1);
if (d3.Dot(d2) < 0)
axes.YReverse();
trsf.SetTransformation(axes);
}
// Restent les autres caracteristiques :
if (Abs(mm - 1.) > prec)
trsf.SetScale(gp_Pnt(0, 0, 0), mm); // szv#4:S4163:12Mar99 optimized
gp_Vec tp(gtrsf.TranslationPart());
if (unit != 1.)
tp.Multiply(unit);
if (tp.X() != 0 || tp.Y() != 0 || tp.Z() != 0)
trsf.SetTranslationPart(tp);
/* }
catch(Standard_Failure) {
trsf = gp_Trsf();
result = Standard_False;
} */
return result;
}