// Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // szv#4 S4163 #include #include #include #include #include #include #include #include #include #include //================================================================================================= Standard_Boolean ShapeAnalysis_Geom::NearestPlane(const TColgp_Array1OfPnt& Pnts, gp_Pln& aPln, Standard_Real& Dmax) { // szv#4:S4163:12Mar99 warning GProp_PGProps Pmat(Pnts); gp_Pnt g = Pmat.CentreOfMass(); Standard_Real Xg, Yg, Zg; g.Coord(Xg, Yg, Zg); GProp_PrincipalProps Pp = Pmat.PrincipalProperties(); gp_Vec V1 = Pp.FirstAxisOfInertia(); Standard_Real Xv1, Yv1, Zv1; V1.Coord(Xv1, Yv1, Zv1); gp_Vec V2 = Pp.SecondAxisOfInertia(); Standard_Real Xv2, Yv2, Zv2; V2.Coord(Xv2, Yv2, Zv2); gp_Vec V3 = Pp.ThirdAxisOfInertia(); Standard_Real Xv3, Yv3, Zv3; V3.Coord(Xv3, Yv3, Zv3); Standard_Real D, X, Y, Z; Standard_Real Dmx1 = RealFirst(); Standard_Real Dmn1 = RealLast(); Standard_Real Dmx2 = RealFirst(); Standard_Real Dmn2 = RealLast(); Standard_Real Dmx3 = RealFirst(); Standard_Real Dmn3 = RealLast(); Standard_Integer ilow = Pnts.Lower(), iup = Pnts.Upper(); Standard_Integer i; // svv Jan11 2000 : porting on DEC for (i = ilow; i <= iup; i++) { Pnts(i).Coord(X, Y, Z); D = (X - Xg) * Xv1 + (Y - Yg) * Yv1 + (Z - Zg) * Zv1; if (D > Dmx1) Dmx1 = D; if (D < Dmn1) Dmn1 = D; D = (X - Xg) * Xv2 + (Y - Yg) * Yv2 + (Z - Zg) * Zv2; if (D > Dmx2) Dmx2 = D; if (D < Dmn2) Dmn2 = D; D = (X - Xg) * Xv3 + (Y - Yg) * Yv3 + (Z - Zg) * Zv3; if (D > Dmx3) Dmx3 = D; if (D < Dmn3) Dmn3 = D; } // szv#4:S4163:12Mar99 optimized Standard_Real Dev1 = Dmx1 - Dmn1, Dev2 = Dmx2 - Dmn2, Dev3 = Dmx3 - Dmn3; Standard_Integer It = (Dev1 < Dev2) ? ((Dev1 < Dev3) ? 1 : 3) : ((Dev2 < Dev3) ? 2 : 3); switch (It) { case 1: { // szv#4:S4163:12Mar99 optimized if ((2. * Dev1 > Dev2) || (2. * Dev1 > Dev3)) It = 0; else aPln = gp_Pln(g, V1); break; } case 2: { // szv#4:S4163:12Mar99 optimized if ((2. * Dev2 > Dev1) || (2. * Dev2 > Dev3)) It = 0; else aPln = gp_Pln(g, V2); break; } case 3: { // szv#4:S4163:12Mar99 optimized if ((2. * Dev3 > Dev2) || (2. * Dev3 > Dev1)) It = 0; else aPln = gp_Pln(g, V3); break; } } Dmax = RealFirst(); if (It != 0) // szv#4:S4163:12Mar99 anti-exception for (i = ilow; i <= iup; i++) { D = aPln.Distance(Pnts(i)); if (Dmax < D) Dmax = D; } return (It != 0); } //================================================================================================= Standard_Boolean ShapeAnalysis_Geom::PositionTrsf(const Handle(TColStd_HArray2OfReal)& coefs, gp_Trsf& trsf, const Standard_Real unit, const Standard_Real prec) { Standard_Boolean result = Standard_True; trsf = gp_Trsf(); // szv#4:S4163:12Mar99 moved if (coefs.IsNull()) return Standard_True; // szv#4:S4163:12Mar99 moved gp_GTrsf gtrsf; for (Standard_Integer i = 1; i <= 3; i++) { for (Standard_Integer j = 1; j <= 4; j++) { gtrsf.SetValue(i, j, coefs->Value(i, j)); } } // try { //szv#4:S4163:12Mar99 waste try //// trsf = gtrsf.Trsf(); // --- Prec et Unit ont ete lues suite aux StepFile_Read // Valables pour tous les composants d un assemblage transmis // trsf = gp_Trsf(); // Identite forcee au depart //szv#4:S4163:12Mar99 not needed // On prend le contenu de . Attention a l adressage gp_XYZ v1(gtrsf.Value(1, 1), gtrsf.Value(2, 1), gtrsf.Value(3, 1)); gp_XYZ v2(gtrsf.Value(1, 2), gtrsf.Value(2, 2), gtrsf.Value(3, 2)); gp_XYZ v3(gtrsf.Value(1, 3), gtrsf.Value(2, 3), gtrsf.Value(3, 3)); // A-t-on affaire a une similitude ? Standard_Real m1 = v1.Modulus(); Standard_Real m2 = v2.Modulus(); Standard_Real m3 = v3.Modulus(); // D abord est-elle singuliere cette matrice ? if (m1 < prec || m2 < prec || m3 < prec) return Standard_False; Standard_Real mm = (m1 + m2 + m3) / 3.; // voici la Norme moyenne, cf Scale // szv#4:S4163:12Mar99 optimized Standard_Real pmm = prec * mm; if (Abs(m1 - mm) > pmm || Abs(m2 - mm) > pmm || Abs(m3 - mm) > pmm) return Standard_False; // szv#4:S4163:12Mar99 warning v1.Divide(m1); v2.Divide(m2); v3.Divide(m3); // szv#4:S4163:12Mar99 optimized if (Abs(v1.Dot(v2)) > prec || Abs(v2.Dot(v3)) > prec || Abs(v3.Dot(v1)) > prec) return Standard_False; // Ici, Orthogonale et memes normes. En plus on l a Normee // On isole le cas de l Identite (tellement facile et avantageux) if (v1.X() != 1 || v1.Y() != 0 || v1.Z() != 0 || v2.X() != 0 || v2.Y() != 1 || v2.Z() != 0 || v3.X() != 0 || v3.Y() != 0 || v3.Z() != 1) { // Pas Identite : vraie construction depuis un Ax3 gp_Dir d1(v1); gp_Dir d2(v2); gp_Dir d3(v3); gp_Ax3 axes(gp_Pnt(0, 0, 0), d3, d1); d3.Cross(d1); if (d3.Dot(d2) < 0) axes.YReverse(); trsf.SetTransformation(axes); } // Restent les autres caracteristiques : if (Abs(mm - 1.) > prec) trsf.SetScale(gp_Pnt(0, 0, 0), mm); // szv#4:S4163:12Mar99 optimized gp_Vec tp(gtrsf.TranslationPart()); if (unit != 1.) tp.Multiply(unit); if (tp.X() != 0 || tp.Y() != 0 || tp.Z() != 0) trsf.SetTranslationPart(tp); /* } catch(Standard_Failure) { trsf = gp_Trsf(); result = Standard_False; } */ return result; }