1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/GeomConvert/GeomConvert_CompCurveToBSplineCurve.cxx
azv 9140163ba8 0032066: Modeling Algorithms - Incorrect result of Boolean CUT operation
Do not limit the normalization factor of the highly anisotropic parametric space when filtering start points in the algorithm of walking line construction.
Additionally check the knots are in the increasing orders when merging two B-spline curves
2022-03-17 18:42:34 +03:00

244 lines
7.6 KiB
C++

// Created on: 1996-09-23
// Created by: Philippe MANGIN
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// Modified: Fri Jul 10 11:23:35 1998
// JCT : Add WithRatio,MinM
#include <Geom_BoundedCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <GeomConvert.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <gp_Pnt.hxx>
#include <gp_Vec.hxx>
#include <Precision.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
GeomConvert_CompCurveToBSplineCurve::GeomConvert_CompCurveToBSplineCurve (const Convert_ParameterisationType theParameterisation)
: myTol (Precision::Confusion()),
myType (theParameterisation)
{
//
}
//=======================================================================
//function : constructor
//purpose :
//=======================================================================
GeomConvert_CompCurveToBSplineCurve::
GeomConvert_CompCurveToBSplineCurve(const Handle(Geom_BoundedCurve)& BasisCurve,
const Convert_ParameterisationType Parameterisation) :
myTol(Precision::Confusion()),
myType(Parameterisation)
{
Handle(Geom_BSplineCurve) Bs =
Handle(Geom_BSplineCurve)::DownCast(BasisCurve);
if (!Bs.IsNull()) {
myCurve = Handle(Geom_BSplineCurve)::DownCast(BasisCurve->Copy());
}
else {
myCurve = GeomConvert::CurveToBSplineCurve (BasisCurve, myType);
}
}
//=======================================================================
//function : Add
//purpose :
//=======================================================================
Standard_Boolean GeomConvert_CompCurveToBSplineCurve::
Add(const Handle(Geom_BoundedCurve)& NewCurve,
const Standard_Real Tolerance,
const Standard_Boolean After,
const Standard_Boolean WithRatio,
const Standard_Integer MinM)
{
// conversion
Handle(Geom_BSplineCurve) Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve);
if (!Bs.IsNull())
{
Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve->Copy());
}
else
{
Bs = GeomConvert::CurveToBSplineCurve (NewCurve, myType);
}
if (myCurve.IsNull())
{
myCurve = Bs;
return Standard_True;
}
Standard_Boolean avant, apres;
myTol = Tolerance;
Standard_Integer LBs = Bs->NbPoles(), LCb = myCurve->NbPoles();
avant = (( myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol)||
( myCurve->Pole(1).Distance(Bs->Pole(LBs))< myTol));
apres = (( myCurve->Pole(LCb).Distance(Bs->Pole(1)) < myTol) ||
( myCurve->Pole(LCb).Distance(Bs->Pole(LBs))< myTol));
// myCurve est (sera) elle fermee ?
if (avant && apres) { // On leve l'ambiguite
if (After) avant = Standard_False;
else apres = Standard_False;
}
// Ajout Apres ?
if ( apres) {
if (myCurve->Pole(LCb).Distance(Bs->Pole(LBs)) < myTol) {Bs->Reverse();}
Add(myCurve, Bs, Standard_True, WithRatio, MinM);
return Standard_True;
}
// Ajout avant ?
else if (avant) {
if (myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol) {Bs->Reverse();}
Add(Bs, myCurve, Standard_False, WithRatio, MinM);
return Standard_True;
}
return Standard_False;
}
void GeomConvert_CompCurveToBSplineCurve::Add(
Handle(Geom_BSplineCurve)& FirstCurve,
Handle(Geom_BSplineCurve)& SecondCurve,
const Standard_Boolean After,
const Standard_Boolean WithRatio,
const Standard_Integer MinM)
{
// Harmonisation des degres.
Standard_Integer Deg = Max(FirstCurve->Degree(), SecondCurve->Degree());
if (FirstCurve->Degree() < Deg) { FirstCurve->IncreaseDegree(Deg); }
if (SecondCurve->Degree() < Deg) { SecondCurve->IncreaseDegree(Deg); }
// Declarationd
Standard_Real L1, L2;
Standard_Integer ii, jj;
Standard_Real Ratio=1, Ratio1, Ratio2, Delta1, Delta2;
Standard_Integer NbP1 = FirstCurve->NbPoles(), NbP2 = SecondCurve->NbPoles();
Standard_Integer NbK1 = FirstCurve->NbKnots(), NbK2 = SecondCurve->NbKnots();
TColStd_Array1OfReal Noeuds (1, NbK1+NbK2-1);
TColgp_Array1OfPnt Poles (1, NbP1+ NbP2-1);
TColStd_Array1OfReal Poids (1, NbP1+ NbP2-1);
TColStd_Array1OfInteger Mults (1, NbK1+NbK2-1);
// Ratio de reparametrisation (C1 si possible)
if (WithRatio) {
L1 = FirstCurve->DN(FirstCurve->LastParameter(), 1).Magnitude();
L2 = SecondCurve->DN(SecondCurve->FirstParameter(), 1). Magnitude();
if ( (L1 > Precision::Confusion()) && (L2 > Precision::Confusion()) ) {
Ratio = L1 / L2;
}
if ( (Ratio < Precision::Confusion()) || (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;}
}
if (After) {
// On ne bouge pas la premiere courbe
Ratio1 = 1;
Delta1 = 0;
Ratio2 = 1/Ratio;
Delta2 = Ratio2*SecondCurve->Knot(1) - FirstCurve->Knot(NbK1);
}
else {
// On ne bouge pas la seconde courbe
Ratio1 = Ratio;
Delta1 = Ratio1*FirstCurve->Knot(NbK1) - SecondCurve->Knot(1);
Ratio2 = 1;
Delta2 = 0;
}
// Les Noeuds
Standard_Real eps;
for (ii=1; ii<=NbK1; ii++) {
Noeuds(ii) = Ratio1*FirstCurve->Knot(ii) - Delta1;
if(ii > 1) {
eps = Epsilon (Abs(Noeuds(ii-1)));
if( eps < 5.e-10 ) eps = 5.e-10;
if(Noeuds(ii) - Noeuds(ii-1) <= eps) {
Noeuds(ii) += eps;
}
}
Mults(ii) = FirstCurve->Multiplicity(ii);
}
Mults(NbK1) = FirstCurve->Degree();
for (ii=2, jj=NbK1+1; ii<=NbK2; ii++, jj++) {
Noeuds(jj) = Ratio2*SecondCurve->Knot(ii) - Delta2;
eps = Epsilon (Abs(Noeuds(jj-1)));
if( eps < 5.e-10 ) eps = 5.e-10;
if(Noeuds(jj) - Noeuds(jj-1) <= eps) {
Noeuds(jj) += eps;
}
Mults(jj) = SecondCurve->Multiplicity(ii);
}
Ratio = FirstCurve->Weight(NbP1) ;
Ratio /= SecondCurve->Weight(1) ;
// Les Poles et Poids
for (ii=1; ii<NbP1; ii++) {
Poles(ii) = FirstCurve->Pole(ii);
Poids(ii) = FirstCurve->Weight(ii);
}
for (ii=1, jj=NbP1; ii<=NbP2; ii++, jj++) {
Poles(jj) = SecondCurve->Pole(ii);
//
// attentiion les poids ne se raccord pas forcement C0
// d'ou Ratio
//
Poids(jj) = Ratio * SecondCurve->Weight(ii);
}
// Creation de la BSpline
myCurve = new (Geom_BSplineCurve) (Poles, Poids, Noeuds, Mults, Deg);
// Reduction eventuelle de la multiplicite jusqu'a MinM
Standard_Boolean Ok = Standard_True;
Standard_Integer M = Mults(NbK1);
while ( (M>MinM) && Ok) {
M--;
Ok = myCurve->RemoveKnot(NbK1, M, myTol);
}
}
//=======================================================================
//function : BSplineCurve
//purpose :
//=======================================================================
Handle(Geom_BSplineCurve) GeomConvert_CompCurveToBSplineCurve::BSplineCurve() const
{
return myCurve;
}
//=======================================================================
//function : Clear
//purpose :
//=======================================================================
void GeomConvert_CompCurveToBSplineCurve::Clear()
{
myCurve.Nullify();
}