// Created on: 1996-09-23 // Created by: Philippe MANGIN // Copyright (c) 1996-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. // Modified: Fri Jul 10 11:23:35 1998 // JCT : Add WithRatio,MinM #include #include #include #include #include #include #include #include #include #include //======================================================================= //function : constructor //purpose : //======================================================================= GeomConvert_CompCurveToBSplineCurve::GeomConvert_CompCurveToBSplineCurve (const Convert_ParameterisationType theParameterisation) : myTol (Precision::Confusion()), myType (theParameterisation) { // } //======================================================================= //function : constructor //purpose : //======================================================================= GeomConvert_CompCurveToBSplineCurve:: GeomConvert_CompCurveToBSplineCurve(const Handle(Geom_BoundedCurve)& BasisCurve, const Convert_ParameterisationType Parameterisation) : myTol(Precision::Confusion()), myType(Parameterisation) { Handle(Geom_BSplineCurve) Bs = Handle(Geom_BSplineCurve)::DownCast(BasisCurve); if (!Bs.IsNull()) { myCurve = Handle(Geom_BSplineCurve)::DownCast(BasisCurve->Copy()); } else { myCurve = GeomConvert::CurveToBSplineCurve (BasisCurve, myType); } } //======================================================================= //function : Add //purpose : //======================================================================= Standard_Boolean GeomConvert_CompCurveToBSplineCurve:: Add(const Handle(Geom_BoundedCurve)& NewCurve, const Standard_Real Tolerance, const Standard_Boolean After, const Standard_Boolean WithRatio, const Standard_Integer MinM) { // conversion Handle(Geom_BSplineCurve) Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve); if (!Bs.IsNull()) { Bs = Handle(Geom_BSplineCurve)::DownCast (NewCurve->Copy()); } else { Bs = GeomConvert::CurveToBSplineCurve (NewCurve, myType); } if (myCurve.IsNull()) { myCurve = Bs; return Standard_True; } Standard_Boolean avant, apres; myTol = Tolerance; Standard_Integer LBs = Bs->NbPoles(), LCb = myCurve->NbPoles(); avant = (( myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol)|| ( myCurve->Pole(1).Distance(Bs->Pole(LBs))< myTol)); apres = (( myCurve->Pole(LCb).Distance(Bs->Pole(1)) < myTol) || ( myCurve->Pole(LCb).Distance(Bs->Pole(LBs))< myTol)); // myCurve est (sera) elle fermee ? if (avant && apres) { // On leve l'ambiguite if (After) avant = Standard_False; else apres = Standard_False; } // Ajout Apres ? if ( apres) { if (myCurve->Pole(LCb).Distance(Bs->Pole(LBs)) < myTol) {Bs->Reverse();} Add(myCurve, Bs, Standard_True, WithRatio, MinM); return Standard_True; } // Ajout avant ? else if (avant) { if (myCurve->Pole(1).Distance(Bs->Pole(1)) < myTol) {Bs->Reverse();} Add(Bs, myCurve, Standard_False, WithRatio, MinM); return Standard_True; } return Standard_False; } void GeomConvert_CompCurveToBSplineCurve::Add( Handle(Geom_BSplineCurve)& FirstCurve, Handle(Geom_BSplineCurve)& SecondCurve, const Standard_Boolean After, const Standard_Boolean WithRatio, const Standard_Integer MinM) { // Harmonisation des degres. Standard_Integer Deg = Max(FirstCurve->Degree(), SecondCurve->Degree()); if (FirstCurve->Degree() < Deg) { FirstCurve->IncreaseDegree(Deg); } if (SecondCurve->Degree() < Deg) { SecondCurve->IncreaseDegree(Deg); } // Declarationd Standard_Real L1, L2; Standard_Integer ii, jj; Standard_Real Ratio=1, Ratio1, Ratio2, Delta1, Delta2; Standard_Integer NbP1 = FirstCurve->NbPoles(), NbP2 = SecondCurve->NbPoles(); Standard_Integer NbK1 = FirstCurve->NbKnots(), NbK2 = SecondCurve->NbKnots(); TColStd_Array1OfReal Noeuds (1, NbK1+NbK2-1); TColgp_Array1OfPnt Poles (1, NbP1+ NbP2-1); TColStd_Array1OfReal Poids (1, NbP1+ NbP2-1); TColStd_Array1OfInteger Mults (1, NbK1+NbK2-1); // Ratio de reparametrisation (C1 si possible) if (WithRatio) { L1 = FirstCurve->DN(FirstCurve->LastParameter(), 1).Magnitude(); L2 = SecondCurve->DN(SecondCurve->FirstParameter(), 1). Magnitude(); if ( (L1 > Precision::Confusion()) && (L2 > Precision::Confusion()) ) { Ratio = L1 / L2; } if ( (Ratio < Precision::Confusion()) || (Ratio > 1/Precision::Confusion()) ) {Ratio = 1;} } if (After) { // On ne bouge pas la premiere courbe Ratio1 = 1; Delta1 = 0; Ratio2 = 1/Ratio; Delta2 = Ratio2*SecondCurve->Knot(1) - FirstCurve->Knot(NbK1); } else { // On ne bouge pas la seconde courbe Ratio1 = Ratio; Delta1 = Ratio1*FirstCurve->Knot(NbK1) - SecondCurve->Knot(1); Ratio2 = 1; Delta2 = 0; } // Les Noeuds Standard_Real eps; for (ii=1; ii<=NbK1; ii++) { Noeuds(ii) = Ratio1*FirstCurve->Knot(ii) - Delta1; if(ii > 1) { eps = Epsilon (Abs(Noeuds(ii-1))); if( eps < 5.e-10 ) eps = 5.e-10; if(Noeuds(ii) - Noeuds(ii-1) <= eps) { Noeuds(ii) += eps; } } Mults(ii) = FirstCurve->Multiplicity(ii); } Mults(NbK1) = FirstCurve->Degree(); for (ii=2, jj=NbK1+1; ii<=NbK2; ii++, jj++) { Noeuds(jj) = Ratio2*SecondCurve->Knot(ii) - Delta2; eps = Epsilon (Abs(Noeuds(jj-1))); if( eps < 5.e-10 ) eps = 5.e-10; if(Noeuds(jj) - Noeuds(jj-1) <= eps) { Noeuds(jj) += eps; } Mults(jj) = SecondCurve->Multiplicity(ii); } Ratio = FirstCurve->Weight(NbP1) ; Ratio /= SecondCurve->Weight(1) ; // Les Poles et Poids for (ii=1; iiPole(ii); Poids(ii) = FirstCurve->Weight(ii); } for (ii=1, jj=NbP1; ii<=NbP2; ii++, jj++) { Poles(jj) = SecondCurve->Pole(ii); // // attentiion les poids ne se raccord pas forcement C0 // d'ou Ratio // Poids(jj) = Ratio * SecondCurve->Weight(ii); } // Creation de la BSpline myCurve = new (Geom_BSplineCurve) (Poles, Poids, Noeuds, Mults, Deg); // Reduction eventuelle de la multiplicite jusqu'a MinM Standard_Boolean Ok = Standard_True; Standard_Integer M = Mults(NbK1); while ( (M>MinM) && Ok) { M--; Ok = myCurve->RemoveKnot(NbK1, M, myTol); } } //======================================================================= //function : BSplineCurve //purpose : //======================================================================= Handle(Geom_BSplineCurve) GeomConvert_CompCurveToBSplineCurve::BSplineCurve() const { return myCurve; } //======================================================================= //function : Clear //purpose : //======================================================================= void GeomConvert_CompCurveToBSplineCurve::Clear() { myCurve.Nullify(); }