mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-05-11 10:44:53 +03:00
85 lines
2.4 KiB
C++
Executable File
85 lines
2.4 KiB
C++
Executable File
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2012 OPEN CASCADE SAS
|
|
//
|
|
// The content of this file is subject to the Open CASCADE Technology Public
|
|
// License Version 6.5 (the "License"). You may not use the content of this file
|
|
// except in compliance with the License. Please obtain a copy of the License
|
|
// at http://www.opencascade.org and read it completely before using this file.
|
|
//
|
|
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
|
|
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
|
|
//
|
|
// The Original Code and all software distributed under the License is
|
|
// distributed on an "AS IS" basis, without warranty of any kind, and the
|
|
// Initial Developer hereby disclaims all such warranties, including without
|
|
// limitation, any warranties of merchantability, fitness for a particular
|
|
// purpose or non-infringement. Please see the License for the specific terms
|
|
// and conditions governing the rights and limitations under the License.
|
|
|
|
//============================================ IntAna2d_AnaIntersection_7.cxx
|
|
//============================================================================
|
|
#include <IntAna2d_AnaIntersection.jxx>
|
|
|
|
#include <IntAna2d_Outils.hxx>
|
|
|
|
void IntAna2d_AnaIntersection::Perform(const gp_Parab2d& P,
|
|
const IntAna2d_Conic& Conic)
|
|
{
|
|
Standard_Boolean PIsDirect = P.IsDirect();
|
|
Standard_Real A,B,C,D,E,F;
|
|
Standard_Real px4,px3,px2,px1,px0;
|
|
Standard_Integer i;
|
|
Standard_Real tx,ty,S;
|
|
Standard_Real un_sur_2p=0.5/(P.Parameter());
|
|
gp_Ax2d Axe_rep(P.MirrorAxis());
|
|
|
|
done = Standard_False;
|
|
nbp = 0;
|
|
para = Standard_False;
|
|
empt = Standard_False;
|
|
iden = Standard_False;
|
|
|
|
Conic.Coefficients(A,B,C,D,E,F);
|
|
Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep);
|
|
|
|
//-------- 'Parametre' y avec y=y x=y^2/(2 p)
|
|
|
|
px0=F;
|
|
px1=E+E;
|
|
px2=B + un_sur_2p*(D+D);
|
|
px3=(C+C)*un_sur_2p;
|
|
px4=A*(un_sur_2p*un_sur_2p);
|
|
|
|
MyDirectPolynomialRoots Sol(px4,px3,px2,px1,px0);
|
|
|
|
if(!Sol.IsDone()) {
|
|
done=Standard_False;
|
|
}
|
|
else {
|
|
if(Sol.InfiniteRoots()) {
|
|
iden=Standard_True;
|
|
done=Standard_True;
|
|
}
|
|
nbp=Sol.NbSolutions();
|
|
for(i=1;i<=nbp;i++) {
|
|
S = Sol.Value(i);
|
|
tx=un_sur_2p*S*S;
|
|
ty=S;
|
|
Coord_Ancien_Repere(tx,ty,Axe_rep);
|
|
if(!PIsDirect)
|
|
S =-S;
|
|
lpnt[i-1].SetValue(tx,ty,S);
|
|
}
|
|
Traitement_Points_Confondus(nbp,lpnt);
|
|
}
|
|
done=Standard_True;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|