// Copyright (c) 1995-1999 Matra Datavision // Copyright (c) 1999-2012 OPEN CASCADE SAS // // The content of this file is subject to the Open CASCADE Technology Public // License Version 6.5 (the "License"). You may not use the content of this file // except in compliance with the License. Please obtain a copy of the License // at http://www.opencascade.org and read it completely before using this file. // // The Initial Developer of the Original Code is Open CASCADE S.A.S., having its // main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France. // // The Original Code and all software distributed under the License is // distributed on an "AS IS" basis, without warranty of any kind, and the // Initial Developer hereby disclaims all such warranties, including without // limitation, any warranties of merchantability, fitness for a particular // purpose or non-infringement. Please see the License for the specific terms // and conditions governing the rights and limitations under the License. //============================================ IntAna2d_AnaIntersection_7.cxx //============================================================================ #include #include void IntAna2d_AnaIntersection::Perform(const gp_Parab2d& P, const IntAna2d_Conic& Conic) { Standard_Boolean PIsDirect = P.IsDirect(); Standard_Real A,B,C,D,E,F; Standard_Real px4,px3,px2,px1,px0; Standard_Integer i; Standard_Real tx,ty,S; Standard_Real un_sur_2p=0.5/(P.Parameter()); gp_Ax2d Axe_rep(P.MirrorAxis()); done = Standard_False; nbp = 0; para = Standard_False; empt = Standard_False; iden = Standard_False; Conic.Coefficients(A,B,C,D,E,F); Conic.NewCoefficients(A,B,C,D,E,F,Axe_rep); //-------- 'Parametre' y avec y=y x=y^2/(2 p) px0=F; px1=E+E; px2=B + un_sur_2p*(D+D); px3=(C+C)*un_sur_2p; px4=A*(un_sur_2p*un_sur_2p); MyDirectPolynomialRoots Sol(px4,px3,px2,px1,px0); if(!Sol.IsDone()) { done=Standard_False; } else { if(Sol.InfiniteRoots()) { iden=Standard_True; done=Standard_True; } nbp=Sol.NbSolutions(); for(i=1;i<=nbp;i++) { S = Sol.Value(i); tx=un_sur_2p*S*S; ty=S; Coord_Ancien_Repere(tx,ty,Axe_rep); if(!PIsDirect) S =-S; lpnt[i-1].SetValue(tx,ty,S); } Traitement_Points_Confondus(nbp,lpnt); } done=Standard_True; }