1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-10 11:34:06 +03:00
occt/src/gp/gp_Sphere.hxx
mkrylova d5477f8c82 0032137: Coding Rules - merge redundant .lxx files into header files within Package gp
- merged .lxx files into header files within Package gp
- fixed code style
2021-06-03 18:02:58 +03:00

269 lines
8.7 KiB
C++

// Copyright (c) 1991-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _gp_Sphere_HeaderFile
#define _gp_Sphere_HeaderFile
#include <gp_Ax1.hxx>
#include <gp_Ax3.hxx>
#include <Standard_ConstructionError.hxx>
//! Describes a sphere.
//! A sphere is defined by its radius and positioned in space
//! with a coordinate system (a gp_Ax3 object). The origin of
//! the coordinate system is the center of the sphere. This
//! coordinate system is the "local coordinate system" of the sphere.
//! Note: when a gp_Sphere sphere is converted into a
//! Geom_SphericalSurface sphere, some implicit
//! properties of its local coordinate system are used explicitly:
//! - its origin, "X Direction", "Y Direction" and "main
//! Direction" are used directly to define the parametric
//! directions on the sphere and the origin of the parameters,
//! - its implicit orientation (right-handed or left-handed)
//! gives the orientation (direct, indirect) to the
//! Geom_SphericalSurface sphere.
//! See Also
//! gce_MakeSphere which provides functions for more
//! complex sphere constructions
//! Geom_SphericalSurface which provides additional
//! functions for constructing spheres and works, in
//! particular, with the parametric equations of spheres.
class gp_Sphere
{
public:
DEFINE_STANDARD_ALLOC
//! Creates an indefinite sphere.
gp_Sphere()
: radius (RealLast())
{}
//! Constructs a sphere with radius theRadius, centered on the origin
//! of theA3. theA3 is the local coordinate system of the sphere.
//! Warnings :
//! It is not forbidden to create a sphere with null radius.
//! Raises ConstructionError if theRadius < 0.0
gp_Sphere (const gp_Ax3& theA3, const Standard_Real theRadius)
: pos (theA3),
radius (theRadius)
{
Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Sphere() - radius should be >= 0");
}
//! Changes the center of the sphere.
void SetLocation (const gp_Pnt& theLoc) { pos.SetLocation (theLoc); }
//! Changes the local coordinate system of the sphere.
void SetPosition (const gp_Ax3& theA3) { pos = theA3; }
//! Assigns theR the radius of the Sphere.
//! Warnings :
//! It is not forbidden to create a sphere with null radius.
//! Raises ConstructionError if theR < 0.0
void SetRadius (const Standard_Real theR)
{
Standard_ConstructionError_Raise_if (theR < 0.0, "gp_Sphere::SetRadius() - radius should be >= 0");
radius = theR;
}
//! Computes the area of the sphere.
Standard_Real Area() const
{
return 4.0 * M_PI * radius * radius;
}
//! Computes the coefficients of the implicit equation of the quadric
//! in the absolute cartesian coordinates system :
//! @code
//! theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) +
//! 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0
//! @endcode
Standard_EXPORT void Coefficients (Standard_Real& theA1, Standard_Real& theA2, Standard_Real& theA3,
Standard_Real& theB1, Standard_Real& theB2, Standard_Real& theB3,
Standard_Real& theC1, Standard_Real& theC2, Standard_Real& theC3, Standard_Real& theD) const;
//! Reverses the U parametrization of the sphere
//! reversing the YAxis.
void UReverse() { pos.YReverse(); }
//! Reverses the V parametrization of the sphere
//! reversing the ZAxis.
void VReverse() { pos.ZReverse(); }
//! Returns true if the local coordinate system of this sphere
//! is right-handed.
Standard_Boolean Direct() const { return pos.Direct(); }
//! --- Purpose ;
//! Returns the center of the sphere.
const gp_Pnt& Location() const { return pos.Location(); }
//! Returns the local coordinates system of the sphere.
const gp_Ax3& Position() const { return pos; }
//! Returns the radius of the sphere.
Standard_Real Radius() const { return radius; }
//! Computes the volume of the sphere
Standard_Real Volume() const
{
return (4.0 * M_PI * radius * radius * radius) / 3.0;
}
//! Returns the axis X of the sphere.
gp_Ax1 XAxis() const
{
return gp_Ax1 (pos.Location(), pos.XDirection());
}
//! Returns the axis Y of the sphere.
gp_Ax1 YAxis() const
{
return gp_Ax1 (pos.Location(), pos.YDirection());
}
Standard_EXPORT void Mirror (const gp_Pnt& theP);
//! Performs the symmetrical transformation of a sphere
//! with respect to the point theP which is the center of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Pnt& theP) const;
Standard_EXPORT void Mirror (const gp_Ax1& theA1);
//! Performs the symmetrical transformation of a sphere with
//! respect to an axis placement which is the axis of the
//! symmetry.
Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Ax1& theA1) const;
Standard_EXPORT void Mirror (const gp_Ax2& theA2);
//! Performs the symmetrical transformation of a sphere with respect
//! to a plane. The axis placement theA2 locates the plane of the
//! of the symmetry : (Location, XDirection, YDirection).
Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Ax2& theA2) const;
void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); }
//! Rotates a sphere. theA1 is the axis of the rotation.
//! theAng is the angular value of the rotation in radians.
Standard_NODISCARD gp_Sphere Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const
{
gp_Sphere aC = *this;
aC.pos.Rotate (theA1, theAng);
return aC;
}
void Scale (const gp_Pnt& theP, const Standard_Real theS);
//! Scales a sphere. theS is the scaling value.
//! The absolute value of S is used to scale the sphere
Standard_NODISCARD gp_Sphere Scaled (const gp_Pnt& theP, const Standard_Real theS) const;
void Transform (const gp_Trsf& theT);
//! Transforms a sphere with the transformation theT from class Trsf.
Standard_NODISCARD gp_Sphere Transformed (const gp_Trsf& theT) const;
void Translate (const gp_Vec& theV) { pos.Translate (theV); }
//! Translates a sphere in the direction of the vector theV.
//! The magnitude of the translation is the vector's magnitude.
Standard_NODISCARD gp_Sphere Translated (const gp_Vec& theV) const
{
gp_Sphere aC = *this;
aC.pos.Translate (theV);
return aC;
}
void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); }
//! Translates a sphere from the point theP1 to the point theP2.
Standard_NODISCARD gp_Sphere Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const
{
gp_Sphere aC = *this;
aC.pos.Translate (theP1, theP2);
return aC;
}
private:
gp_Ax3 pos;
Standard_Real radius;
};
//=======================================================================
//function : Scale
// purpose :
//=======================================================================
inline void gp_Sphere::Scale (const gp_Pnt& theP, const Standard_Real theS)
{
pos.Scale (theP, theS);
radius *= theS;
if (radius < 0)
{
radius = -radius;
}
}
//=======================================================================
//function : Scaled
// purpose :
//=======================================================================
inline gp_Sphere gp_Sphere::Scaled (const gp_Pnt& theP, const Standard_Real theS) const
{
gp_Sphere aC = *this;
aC.pos.Scale (theP, theS);
aC.radius *= theS;
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
return aC;
}
//=======================================================================
//function : Transform
// purpose :
//=======================================================================
inline void gp_Sphere::Transform (const gp_Trsf& theT)
{
pos.Transform(theT);
radius *= theT.ScaleFactor();
if (radius < 0)
{
radius = -radius;
}
}
//=======================================================================
//function : Transformed
// purpose :
//=======================================================================
inline gp_Sphere gp_Sphere::Transformed (const gp_Trsf& theT) const
{
gp_Sphere aC = *this;
aC.pos.Transform (theT);
aC.radius *= theT.ScaleFactor();
if (aC.radius < 0)
{
aC.radius = -aC.radius;
}
return aC;
}
#endif // _gp_Sphere_HeaderFile