// Copyright (c) 1991-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #ifndef _gp_Sphere_HeaderFile #define _gp_Sphere_HeaderFile #include #include #include //! Describes a sphere. //! A sphere is defined by its radius and positioned in space //! with a coordinate system (a gp_Ax3 object). The origin of //! the coordinate system is the center of the sphere. This //! coordinate system is the "local coordinate system" of the sphere. //! Note: when a gp_Sphere sphere is converted into a //! Geom_SphericalSurface sphere, some implicit //! properties of its local coordinate system are used explicitly: //! - its origin, "X Direction", "Y Direction" and "main //! Direction" are used directly to define the parametric //! directions on the sphere and the origin of the parameters, //! - its implicit orientation (right-handed or left-handed) //! gives the orientation (direct, indirect) to the //! Geom_SphericalSurface sphere. //! See Also //! gce_MakeSphere which provides functions for more //! complex sphere constructions //! Geom_SphericalSurface which provides additional //! functions for constructing spheres and works, in //! particular, with the parametric equations of spheres. class gp_Sphere { public: DEFINE_STANDARD_ALLOC //! Creates an indefinite sphere. gp_Sphere() : radius (RealLast()) {} //! Constructs a sphere with radius theRadius, centered on the origin //! of theA3. theA3 is the local coordinate system of the sphere. //! Warnings : //! It is not forbidden to create a sphere with null radius. //! Raises ConstructionError if theRadius < 0.0 gp_Sphere (const gp_Ax3& theA3, const Standard_Real theRadius) : pos (theA3), radius (theRadius) { Standard_ConstructionError_Raise_if (theRadius < 0.0, "gp_Sphere() - radius should be >= 0"); } //! Changes the center of the sphere. void SetLocation (const gp_Pnt& theLoc) { pos.SetLocation (theLoc); } //! Changes the local coordinate system of the sphere. void SetPosition (const gp_Ax3& theA3) { pos = theA3; } //! Assigns theR the radius of the Sphere. //! Warnings : //! It is not forbidden to create a sphere with null radius. //! Raises ConstructionError if theR < 0.0 void SetRadius (const Standard_Real theR) { Standard_ConstructionError_Raise_if (theR < 0.0, "gp_Sphere::SetRadius() - radius should be >= 0"); radius = theR; } //! Computes the area of the sphere. Standard_Real Area() const { return 4.0 * M_PI * radius * radius; } //! Computes the coefficients of the implicit equation of the quadric //! in the absolute cartesian coordinates system : //! @code //! theA1.X**2 + theA2.Y**2 + theA3.Z**2 + 2.(theB1.X.Y + theB2.X.Z + theB3.Y.Z) + //! 2.(theC1.X + theC2.Y + theC3.Z) + theD = 0.0 //! @endcode Standard_EXPORT void Coefficients (Standard_Real& theA1, Standard_Real& theA2, Standard_Real& theA3, Standard_Real& theB1, Standard_Real& theB2, Standard_Real& theB3, Standard_Real& theC1, Standard_Real& theC2, Standard_Real& theC3, Standard_Real& theD) const; //! Reverses the U parametrization of the sphere //! reversing the YAxis. void UReverse() { pos.YReverse(); } //! Reverses the V parametrization of the sphere //! reversing the ZAxis. void VReverse() { pos.ZReverse(); } //! Returns true if the local coordinate system of this sphere //! is right-handed. Standard_Boolean Direct() const { return pos.Direct(); } //! --- Purpose ; //! Returns the center of the sphere. const gp_Pnt& Location() const { return pos.Location(); } //! Returns the local coordinates system of the sphere. const gp_Ax3& Position() const { return pos; } //! Returns the radius of the sphere. Standard_Real Radius() const { return radius; } //! Computes the volume of the sphere Standard_Real Volume() const { return (4.0 * M_PI * radius * radius * radius) / 3.0; } //! Returns the axis X of the sphere. gp_Ax1 XAxis() const { return gp_Ax1 (pos.Location(), pos.XDirection()); } //! Returns the axis Y of the sphere. gp_Ax1 YAxis() const { return gp_Ax1 (pos.Location(), pos.YDirection()); } Standard_EXPORT void Mirror (const gp_Pnt& theP); //! Performs the symmetrical transformation of a sphere //! with respect to the point theP which is the center of the //! symmetry. Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Pnt& theP) const; Standard_EXPORT void Mirror (const gp_Ax1& theA1); //! Performs the symmetrical transformation of a sphere with //! respect to an axis placement which is the axis of the //! symmetry. Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Ax1& theA1) const; Standard_EXPORT void Mirror (const gp_Ax2& theA2); //! Performs the symmetrical transformation of a sphere with respect //! to a plane. The axis placement theA2 locates the plane of the //! of the symmetry : (Location, XDirection, YDirection). Standard_NODISCARD Standard_EXPORT gp_Sphere Mirrored (const gp_Ax2& theA2) const; void Rotate (const gp_Ax1& theA1, const Standard_Real theAng) { pos.Rotate (theA1, theAng); } //! Rotates a sphere. theA1 is the axis of the rotation. //! theAng is the angular value of the rotation in radians. Standard_NODISCARD gp_Sphere Rotated (const gp_Ax1& theA1, const Standard_Real theAng) const { gp_Sphere aC = *this; aC.pos.Rotate (theA1, theAng); return aC; } void Scale (const gp_Pnt& theP, const Standard_Real theS); //! Scales a sphere. theS is the scaling value. //! The absolute value of S is used to scale the sphere Standard_NODISCARD gp_Sphere Scaled (const gp_Pnt& theP, const Standard_Real theS) const; void Transform (const gp_Trsf& theT); //! Transforms a sphere with the transformation theT from class Trsf. Standard_NODISCARD gp_Sphere Transformed (const gp_Trsf& theT) const; void Translate (const gp_Vec& theV) { pos.Translate (theV); } //! Translates a sphere in the direction of the vector theV. //! The magnitude of the translation is the vector's magnitude. Standard_NODISCARD gp_Sphere Translated (const gp_Vec& theV) const { gp_Sphere aC = *this; aC.pos.Translate (theV); return aC; } void Translate (const gp_Pnt& theP1, const gp_Pnt& theP2) { pos.Translate (theP1, theP2); } //! Translates a sphere from the point theP1 to the point theP2. Standard_NODISCARD gp_Sphere Translated (const gp_Pnt& theP1, const gp_Pnt& theP2) const { gp_Sphere aC = *this; aC.pos.Translate (theP1, theP2); return aC; } private: gp_Ax3 pos; Standard_Real radius; }; //======================================================================= //function : Scale // purpose : //======================================================================= inline void gp_Sphere::Scale (const gp_Pnt& theP, const Standard_Real theS) { pos.Scale (theP, theS); radius *= theS; if (radius < 0) { radius = -radius; } } //======================================================================= //function : Scaled // purpose : //======================================================================= inline gp_Sphere gp_Sphere::Scaled (const gp_Pnt& theP, const Standard_Real theS) const { gp_Sphere aC = *this; aC.pos.Scale (theP, theS); aC.radius *= theS; if (aC.radius < 0) { aC.radius = -aC.radius; } return aC; } //======================================================================= //function : Transform // purpose : //======================================================================= inline void gp_Sphere::Transform (const gp_Trsf& theT) { pos.Transform(theT); radius *= theT.ScaleFactor(); if (radius < 0) { radius = -radius; } } //======================================================================= //function : Transformed // purpose : //======================================================================= inline gp_Sphere gp_Sphere::Transformed (const gp_Trsf& theT) const { gp_Sphere aC = *this; aC.pos.Transform (theT); aC.radius *= theT.ScaleFactor(); if (aC.radius < 0) { aC.radius = -aC.radius; } return aC; } #endif // _gp_Sphere_HeaderFile