mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
216 lines
7.9 KiB
C++
216 lines
7.9 KiB
C++
// Created on: 1992-01-02
|
|
// Created by: Remi GILET
|
|
// Copyright (c) 1992-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <ElCLib.hxx>
|
|
#include <GccAna_Circ2d2TanOn.hxx>
|
|
#include <GccAna_LinPnt2dBisec.hxx>
|
|
#include <GccEnt_BadQualifier.hxx>
|
|
#include <GccEnt_QualifiedLin.hxx>
|
|
#include <GccInt_Bisec.hxx>
|
|
#include <GccInt_IType.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
#include <gp_Dir2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Pnt2d.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <IntAna2d_Conic.hxx>
|
|
#include <IntAna2d_IntPoint.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
//=========================================================================
|
|
// Creation of a circle Tangent to : 1 straight line L1. +
|
|
// Passing by : 1 point Point2. +
|
|
// Centered on : 1 straight line OnLine. +
|
|
// with a Tolerance of precision : Tolerance. +
|
|
// +
|
|
// We start by making difference with various boundary cases that will be +
|
|
// processed separately. +
|
|
// For the general case: +
|
|
// ==================== +
|
|
// We calculate bissectrices to L1 and Point2 that give us +
|
|
// all possible locations of centers of all circles +
|
|
// tangent to L1 and passing through Point2. +
|
|
// We intersect these bissectrices with straight line OnLine which gives us +
|
|
// the points among which we'll choose the solutions. +
|
|
// The choices are made basing on Qualifieurs of L1. +
|
|
//=========================================================================
|
|
GccAna_Circ2d2TanOn::
|
|
GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin& Qualified1 ,
|
|
const gp_Pnt2d& Point2 ,
|
|
const gp_Lin2d& OnLine ,
|
|
const Standard_Real Tolerance ):
|
|
cirsol(1,4) ,
|
|
qualifier1(1,4) ,
|
|
qualifier2(1,4),
|
|
TheSame1(1,4) ,
|
|
TheSame2(1,4) ,
|
|
pnttg1sol(1,4) ,
|
|
pnttg2sol(1,4) ,
|
|
pntcen(1,4) ,
|
|
par1sol(1,4) ,
|
|
par2sol(1,4) ,
|
|
pararg1(1,4) ,
|
|
pararg2(1,4) ,
|
|
parcen3(1,4)
|
|
{
|
|
TheSame1.Init(0);
|
|
TheSame2.Init(0);
|
|
WellDone = Standard_False;
|
|
NbrSol = 0;
|
|
if (!(Qualified1.IsEnclosed() ||
|
|
Qualified1.IsOutside() || Qualified1.IsUnqualified())) {
|
|
throw GccEnt_BadQualifier();
|
|
return;
|
|
}
|
|
Standard_Real Tol = Abs(Tolerance);
|
|
gp_Dir2d dirx(1.,0.);
|
|
gp_Lin2d L1 = Qualified1.Qualified();
|
|
gp_Pnt2d originL1(L1.Location());
|
|
gp_Dir2d dirL1(L1.Direction());
|
|
gp_Dir2d normal(-dirL1.Y(),dirL1.X());
|
|
|
|
//=========================================================================
|
|
// Processing of boundary cases. +
|
|
//=========================================================================
|
|
|
|
if (dirL1.IsEqual(OnLine.Direction(),Precision::Confusion()) &&
|
|
OnLine.Distance(originL1)<Precision::Confusion()) {
|
|
// POP : l2s 2 straight line are identic : no Sol
|
|
NbrSol = 0;
|
|
return ;
|
|
}
|
|
|
|
|
|
Standard_Real dp2l = OnLine.Distance(Point2);
|
|
gp_Dir2d donline(OnLine.Direction());
|
|
gp_Pnt2d pinterm(Point2.XY()+dp2l*gp_XY(-donline.Y(),donline.X()));
|
|
if (OnLine.Distance(pinterm) > Tol) {
|
|
pinterm = gp_Pnt2d(Point2.XY()-dp2l*gp_XY(-donline.Y(),donline.X()));
|
|
}
|
|
Standard_Real dist = L1.Distance(pinterm);
|
|
if (Abs(dist-dp2l) <= Tol) {
|
|
gp_Dir2d dirbid(originL1.XY()-pinterm.XY());
|
|
if (Qualified1.IsEnclosed() && dirbid.Dot(normal)<0.) {
|
|
WellDone = Standard_True;
|
|
}
|
|
else if (Qualified1.IsOutside() && dirbid.Dot(normal) > 0.) {
|
|
WellDone = Standard_True;
|
|
}
|
|
else if (Qualified1.IsUnqualified()) { WellDone = Standard_True; }
|
|
if (WellDone) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),dp2l);
|
|
// ======================================================
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
gp_Dir2d dc2(originL1.XY()-pinterm.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normal) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL1.Y(),
|
|
dirL1.X()));
|
|
dc2 = gp_Dir2d(sign*gp_XY(-dirL1.Y(),dirL1.X()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dp2l*dc2.XY());
|
|
pnttg2sol(NbrSol) = Point2;
|
|
pntcen(NbrSol) = pinterm;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol));
|
|
pararg2(NbrSol) = 0.;
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
|
|
return;
|
|
}
|
|
}
|
|
|
|
//=========================================================================
|
|
// General case. +
|
|
//=========================================================================
|
|
|
|
GccAna_LinPnt2dBisec Bis(L1,Point2);
|
|
if (Bis.IsDone()) {
|
|
Handle(GccInt_Bisec) Sol = Bis.ThisSolution();
|
|
GccInt_IType type = Sol->ArcType();
|
|
IntAna2d_AnaIntersection Intp;
|
|
if (type == GccInt_Lin) {
|
|
Intp.Perform(OnLine,Sol->Line());
|
|
}
|
|
if (type == GccInt_Par) {
|
|
Intp.Perform(OnLine,IntAna2d_Conic(Sol->Parabola()));
|
|
}
|
|
if (Intp.IsDone()) {
|
|
if (!Intp.IsEmpty()) {
|
|
for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) {
|
|
gp_Pnt2d Center(Intp.Point(j).Value());
|
|
Standard_Real Radius = L1.Distance(Center);
|
|
// Standard_Integer nbsol = 1;
|
|
Standard_Boolean ok = Standard_False;
|
|
if (Qualified1.IsEnclosed()) {
|
|
if ((((originL1.X()-Center.X())*(-dirL1.Y()))+
|
|
((originL1.Y()-Center.Y())*(dirL1.X())))<=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsOutside()) {
|
|
if ((((originL1.X()-Center.X())*(-dirL1.Y()))+
|
|
((originL1.Y()-Center.Y())*(dirL1.X())))>=0){
|
|
ok = Standard_True;
|
|
}
|
|
}
|
|
else if (Qualified1.IsUnqualified()) {
|
|
ok = Standard_True;
|
|
}
|
|
if (ok) {
|
|
NbrSol++;
|
|
cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius);
|
|
// =======================================================
|
|
qualifier2(NbrSol) = GccEnt_noqualifier;
|
|
gp_Dir2d dc2(originL1.XY()-Center.XY());
|
|
if (!Qualified1.IsUnqualified()) {
|
|
qualifier1(NbrSol) = Qualified1.Qualifier();
|
|
}
|
|
else if (dc2.Dot(normal) > 0.0) {
|
|
qualifier1(NbrSol) = GccEnt_outside;
|
|
}
|
|
else { qualifier1(NbrSol) = GccEnt_enclosed; }
|
|
TheSame1(NbrSol) = 0;
|
|
TheSame2(NbrSol) = 0;
|
|
gp_Dir2d dc1(originL1.XY()-Center.XY());
|
|
Standard_Real sign = dc1.Dot(gp_Dir2d(normal));
|
|
dc1=gp_Dir2d(sign*(normal.XY()));
|
|
pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY());
|
|
pnttg2sol(NbrSol) = Point2;
|
|
pntcen(NbrSol) = Center;
|
|
par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg1sol(NbrSol));
|
|
pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol));
|
|
par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),
|
|
pnttg2sol(NbrSol));
|
|
pararg2(NbrSol) = 0.;
|
|
parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol));
|
|
}
|
|
}
|
|
}
|
|
WellDone = Standard_True;
|
|
}
|
|
}
|
|
}
|
|
|