// Created on: 1992-01-02 // Created by: Remi GILET // Copyright (c) 1992-1999 Matra Datavision // Copyright (c) 1999-2014 OPEN CASCADE SAS // // This file is part of Open CASCADE Technology software library. // // This library is free software; you can redistribute it and/or modify it under // the terms of the GNU Lesser General Public License version 2.1 as published // by the Free Software Foundation, with special exception defined in the file // OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT // distribution for complete text of the license and disclaimer of any warranty. // // Alternatively, this file may be used under the terms of Open CASCADE // commercial license or contractual agreement. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //========================================================================= // Creation of a circle Tangent to : 1 straight line L1. + // Passing by : 1 point Point2. + // Centered on : 1 straight line OnLine. + // with a Tolerance of precision : Tolerance. + // + // We start by making difference with various boundary cases that will be + // processed separately. + // For the general case: + // ==================== + // We calculate bissectrices to L1 and Point2 that give us + // all possible locations of centers of all circles + // tangent to L1 and passing through Point2. + // We intersect these bissectrices with straight line OnLine which gives us + // the points among which we'll choose the solutions. + // The choices are made basing on Qualifieurs of L1. + //========================================================================= GccAna_Circ2d2TanOn:: GccAna_Circ2d2TanOn (const GccEnt_QualifiedLin& Qualified1 , const gp_Pnt2d& Point2 , const gp_Lin2d& OnLine , const Standard_Real Tolerance ): cirsol(1,4) , qualifier1(1,4) , qualifier2(1,4), TheSame1(1,4) , TheSame2(1,4) , pnttg1sol(1,4) , pnttg2sol(1,4) , pntcen(1,4) , par1sol(1,4) , par2sol(1,4) , pararg1(1,4) , pararg2(1,4) , parcen3(1,4) { TheSame1.Init(0); TheSame2.Init(0); WellDone = Standard_False; NbrSol = 0; if (!(Qualified1.IsEnclosed() || Qualified1.IsOutside() || Qualified1.IsUnqualified())) { throw GccEnt_BadQualifier(); return; } Standard_Real Tol = Abs(Tolerance); gp_Dir2d dirx(1.,0.); gp_Lin2d L1 = Qualified1.Qualified(); gp_Pnt2d originL1(L1.Location()); gp_Dir2d dirL1(L1.Direction()); gp_Dir2d normal(-dirL1.Y(),dirL1.X()); //========================================================================= // Processing of boundary cases. + //========================================================================= if (dirL1.IsEqual(OnLine.Direction(),Precision::Confusion()) && OnLine.Distance(originL1) Tol) { pinterm = gp_Pnt2d(Point2.XY()-dp2l*gp_XY(-donline.Y(),donline.X())); } Standard_Real dist = L1.Distance(pinterm); if (Abs(dist-dp2l) <= Tol) { gp_Dir2d dirbid(originL1.XY()-pinterm.XY()); if (Qualified1.IsEnclosed() && dirbid.Dot(normal)<0.) { WellDone = Standard_True; } else if (Qualified1.IsOutside() && dirbid.Dot(normal) > 0.) { WellDone = Standard_True; } else if (Qualified1.IsUnqualified()) { WellDone = Standard_True; } if (WellDone) { NbrSol++; cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(pinterm,dirx),dp2l); // ====================================================== qualifier2(NbrSol) = GccEnt_noqualifier; gp_Dir2d dc2(originL1.XY()-pinterm.XY()); if (!Qualified1.IsUnqualified()) { qualifier1(NbrSol) = Qualified1.Qualifier(); } else if (dc2.Dot(normal) > 0.0) { qualifier1(NbrSol) = GccEnt_outside; } else { qualifier1(NbrSol) = GccEnt_enclosed; } Standard_Real sign = dc2.Dot(gp_Dir2d(-dirL1.Y(), dirL1.X())); dc2 = gp_Dir2d(sign*gp_XY(-dirL1.Y(),dirL1.X())); pnttg1sol(NbrSol) = gp_Pnt2d(pinterm.XY()+dp2l*dc2.XY()); pnttg2sol(NbrSol) = Point2; pntcen(NbrSol) = pinterm; par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg1sol(NbrSol)); pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol)); par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol),pnttg2sol(NbrSol)); pararg2(NbrSol) = 0.; parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol)); return; } } //========================================================================= // General case. + //========================================================================= GccAna_LinPnt2dBisec Bis(L1,Point2); if (Bis.IsDone()) { Handle(GccInt_Bisec) Sol = Bis.ThisSolution(); GccInt_IType type = Sol->ArcType(); IntAna2d_AnaIntersection Intp; if (type == GccInt_Lin) { Intp.Perform(OnLine,Sol->Line()); } if (type == GccInt_Par) { Intp.Perform(OnLine,IntAna2d_Conic(Sol->Parabola())); } if (Intp.IsDone()) { if (!Intp.IsEmpty()) { for (Standard_Integer j = 1 ; j <= Intp.NbPoints() ; j++) { gp_Pnt2d Center(Intp.Point(j).Value()); Standard_Real Radius = L1.Distance(Center); // Standard_Integer nbsol = 1; Standard_Boolean ok = Standard_False; if (Qualified1.IsEnclosed()) { if ((((originL1.X()-Center.X())*(-dirL1.Y()))+ ((originL1.Y()-Center.Y())*(dirL1.X())))<=0){ ok = Standard_True; } } else if (Qualified1.IsOutside()) { if ((((originL1.X()-Center.X())*(-dirL1.Y()))+ ((originL1.Y()-Center.Y())*(dirL1.X())))>=0){ ok = Standard_True; } } else if (Qualified1.IsUnqualified()) { ok = Standard_True; } if (ok) { NbrSol++; cirsol(NbrSol) = gp_Circ2d(gp_Ax2d(Center,dirx),Radius); // ======================================================= qualifier2(NbrSol) = GccEnt_noqualifier; gp_Dir2d dc2(originL1.XY()-Center.XY()); if (!Qualified1.IsUnqualified()) { qualifier1(NbrSol) = Qualified1.Qualifier(); } else if (dc2.Dot(normal) > 0.0) { qualifier1(NbrSol) = GccEnt_outside; } else { qualifier1(NbrSol) = GccEnt_enclosed; } TheSame1(NbrSol) = 0; TheSame2(NbrSol) = 0; gp_Dir2d dc1(originL1.XY()-Center.XY()); Standard_Real sign = dc1.Dot(gp_Dir2d(normal)); dc1=gp_Dir2d(sign*(normal.XY())); pnttg1sol(NbrSol) = gp_Pnt2d(Center.XY()+Radius*dc1.XY()); pnttg2sol(NbrSol) = Point2; pntcen(NbrSol) = Center; par1sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg1sol(NbrSol)); pararg1(NbrSol)=ElCLib::Parameter(L1,pnttg1sol(NbrSol)); par2sol(NbrSol)=ElCLib::Parameter(cirsol(NbrSol), pnttg2sol(NbrSol)); pararg2(NbrSol) = 0.; parcen3(NbrSol)=ElCLib::Parameter(OnLine,pntcen(NbrSol)); } } } WellDone = Standard_True; } } }