1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

Compare commits

..

5 Commits

Author SHA1 Message Date
atereshi
70c8ac8511 // Precision::Angular() -> 1.0e-10 2022-11-24 11:15:21 +03:00
atereshi
b0974ca788 0033187: Modeling Algorithms - Crash in postprocessing of imported shape
Problem: Desynchronization of behaviors of GeomAdaptor_Curve::NbIntervals and
 GeomAdaptor_Curve::Intervals functions. First calculates number of intervals, then
 array is created and second fills the array. In some cases the size of array
 is less than need for filling.

Change:
1. Added function BSplCLib::Intervals that calculates number of interval and fills
 the array with its (if needed).
2. Simplified the algorithm of intervals calculation.
3. GeomAdaptor_Curve::NbIntervals/Intervals and Geom2dAdaptor_Curve::NbIntervals/Intervals
 use BSplCLib::Intervals.
4. When creating an adapter for the base curve, the boundaries of the adapter for the offset curve are applied.
5. Test for problem shape was created: bugs modalg_8 bug33187.

Result: The new approach eliminates the problem of writing outside the array bounds.
2022-11-24 11:15:21 +03:00
smoskvin
eeba62cbd3 Increment OCCT version up to 7.8.0dev 2022-11-12 01:20:10 +03:00
dpasukhi
185d29b92f 0033198: Using a third-party Draco to compile in DEBUG mode
Added new CMake variables to build using DRACO
Windows OS works with Debug and Release configuration DRACO
Linux works with Release configuration DRACO
2022-11-12 01:19:44 +03:00
smoskvin
2923ef0df8 fixed compilation by the genproj tool 2022-11-11 11:26:00 +03:00
18 changed files with 423 additions and 1556 deletions

View File

@@ -3,10 +3,6 @@
OCCT_INCLUDE_CMAKE_FILE ("adm/cmake/occt_macros")
if (NOT DEFINED INSTALL_DRACO)
set (INSTALL_DRACO OFF CACHE BOOL "${INSTALL_DRACO_DESCR}")
endif()
if (NOT DEFINED 3RDPARTY_DRACO_DIR)
set (3RDPARTY_DRACO_DIR "" CACHE PATH "The directory containing Draco")
endif()
@@ -15,14 +11,24 @@ if (NOT DEFINED 3RDPARTY_DRACO_INCLUDE_DIR)
set (3RDPARTY_DRACO_INCLUDE_DIR "" CACHE PATH "The directory containing headers of the Draco")
endif()
if (NOT DEFINED 3RDPARTY_DRACO_LIBRARY OR NOT 3RDPARTY_DRACO_LIBRARY_DIR OR NOT EXISTS "${3RDPARTY_DRACO_LIBRARY_DIR}")
set (3RDPARTY_DRACO_LIBRARY "" CACHE FILEPATH "Draco library" FORCE)
if (NOT DEFINED 3RDPARTY_DRACO_LIBRARY)
set (3RDPARTY_DRACO_LIBRARY "" CACHE FILEPATH "Draco library")
endif()
if (NOT DEFINED 3RDPARTY_DRACO_LIBRARY_DIR)
set (3RDPARTY_DRACO_LIBRARY_DIR "" CACHE PATH "The directory containing Draco library")
endif()
if (WIN32)
if (NOT DEFINED 3RDPARTY_DRACO_LIBRARY_DEBUG)
set (3RDPARTY_DRACO_LIBRARY_DEBUG "" CACHE FILEPATH "Draco debug library")
endif()
if (NOT DEFINED 3RDPARTY_DRACO_LIBRARY_DIR_DEBUG)
set (3RDPARTY_DRACO_LIBRARY_DIR_DEBUG "" CACHE PATH "The directory containing Draco debug library")
endif()
endif()
if (3RDPARTY_DIR AND EXISTS "${3RDPARTY_DIR}")
if (NOT 3RDPARTY_DRACO_DIR OR NOT EXISTS "${3RDPARTY_DRACO_DIR}")
FIND_PRODUCT_DIR("${3RDPARTY_DIR}" draco DRACO_DIR_NAME)
@@ -32,20 +38,19 @@ if (3RDPARTY_DIR AND EXISTS "${3RDPARTY_DIR}")
endif()
endif()
if (3RDPARTY_DRACO_DIR AND EXISTS "${3RDPARTY_DRACO_DIR}")
set (DRACO_INCLUDE_PATH "${3RDPARTY_DRACO_DIR}/include")
set (DRACO_LIBRARY_PATH "${3RDPARTY_DRACO_DIR}/lib")
endif()
# header
if (NOT 3RDPARTY_DRACO_INCLUDE_DIR OR NOT EXISTS "${3RDPARTY_DRACO_INCLUDE_DIR}")
set (HEADER_NAMES draco)
if (NOT 3RDPARTY_DRACO_INCLUDE_DIR)
if (DRACO_INCLUDE_PATH AND EXISTS "${DRACO_INCLUDE_PATH}")
set (3RDPARTY_DRACO_INCLUDE_DIR "${DRACO_INCLUDE_PATH}" CACHE FILEPATH "The directory containing headers of DRACO" FORCE)
endif()
endif()
# set 3RDPARTY_DRACO_INCLUDE_DIR as notfound, otherwise find_path can't assign a new value to 3RDPARTY_DRACO_INCLUDE_DIR
set (3RDPARTY_DRACO_INCLUDE_DIR "3RDPARTY_DRACO_INCLUDE_DIR-NOTFOUND" CACHE FILEPATH "The directory containing headers of the Draco" FORCE)
if (NOT 3RDPARTY_DRACO_LIBRARY_DIR)
if (DRACO_LIBRARY_PATH AND EXISTS "${DRACO_LIBRARY_PATH}")
set (3RDPARTY_DRACO_LIBRARY_DIR "${DRACO_LIBRARY_PATH}" CACHE FILEPATH "The directory containing DRACO library" FORCE)
if (3RDPARTY_DRACO_DIR AND EXISTS "${3RDPARTY_DRACO_DIR}")
find_path (3RDPARTY_DRACO_INCLUDE_DIR NAMES ${HEADER_NAMES}
PATHS ${3RDPARTY_DRACO_DIR}
PATH_SUFFIXES "include"
CMAKE_FIND_ROOT_PATH_BOTH
NO_DEFAULT_PATH)
endif()
endif()
@@ -57,11 +62,11 @@ endif()
if (3RDPARTY_DRACO_DIR AND EXISTS "${3RDPARTY_DRACO_DIR}")
if (NOT 3RDPARTY_DRACO_LIBRARY OR NOT EXISTS "${3RDPARTY_DRACO_LIBRARY}")
set (CMAKE_FIND_LIBRARY_SUFFIXES .lib .so .dylib .a)
set (CMAKE_FIND_LIBRARY_SUFFIXES .lib .a)
set (3RDPARTY_DRACO_LIBRARY "3RDPARTY_DRACO_LIBRARY-NOTFOUND" CACHE FILEPATH "The path to Draco library" FORCE)
find_library (3RDPARTY_DRACO_LIBRARY NAMES ${CSF_Draco}
PATHS "${3RDPARTY_DRACO_LIBRARY_DIR}"
PATHS "${3RDPARTY_DRACO_DIR}"
PATH_SUFFIXES lib
CMAKE_FIND_ROOT_PATH_BOTH
NO_DEFAULT_PATH)
@@ -70,27 +75,19 @@ if (3RDPARTY_DRACO_DIR AND EXISTS "${3RDPARTY_DRACO_DIR}")
set (3RDPARTY_DRACO_LIBRARY_DIR "${3RDPARTY_DRACO_LIBRARY_DIR}" CACHE FILEPATH "The directory containing Draco library" FORCE)
endif()
endif()
endif()
if (3RDPARTY_DRACO_LIBRARY_DIR AND EXISTS "${3RDPARTY_DRACO_LIBRARY_DIR}")
list (APPEND 3RDPARTY_LIBRARY_DIRS "${3RDPARTY_DRACO_LIBRARY_DIR}")
else()
list (APPEND 3RDPARTY_NO_LIBS 3RDPARTY_DRACO_LIBRARY_DIR)
endif()
if (WIN32 AND (NOT 3RDPARTY_DRACO_LIBRARY_DEBUG OR NOT EXISTS "${3RDPARTY_DRACO_LIBRARY_DEBUG}"))
set (CMAKE_FIND_LIBRARY_SUFFIXES .lib .a)
set (3RDPARTY_DRACO_LIBRARY_DEBUG "3RDPARTY_DRACO_LIBRARY_DEBUG-NOTFOUND" CACHE FILEPATH "The path to debug Draco library" FORCE)
if (INSTALL_DRACO)
get_filename_component(3RDPARTY_DRACO_LIBRARY_REALPATH ${3RDPARTY_DRACO_LIBRARY} REALPATH)
if (SINGLE_GENERATOR)
install (FILES ${3RDPARTY_DRACO_LIBRARY_REALPATH} DESTINATION "${INSTALL_DIR_LIB}")
else()
install (FILES ${3RDPARTY_DRACO_LIBRARY_REALPATH}
CONFIGURATIONS Release
DESTINATION "${INSTALL_DIR_LIB}")
install (FILES ${3RDPARTY_DRACO_LIBRARY_REALPATH}
CONFIGURATIONS RelWithDebInfo
DESTINATION "${INSTALL_DIR_LIB}i")
install (FILES ${3RDPARTY_DRACO_LIBRARY_REALPATH}
CONFIGURATIONS Debug
DESTINATION "${INSTALL_DIR_LIB}d")
find_library (3RDPARTY_DRACO_LIBRARY_DEBUG NAMES ${CSF_Draco}
PATHS "${3RDPARTY_DRACO_DIR}"
PATH_SUFFIXES libd
CMAKE_FIND_ROOT_PATH_BOTH
NO_DEFAULT_PATH)
if (3RDPARTY_DRACO_LIBRARY_DEBUG AND EXISTS "${3RDPARTY_DRACO_LIBRARY_DEBUG}")
get_filename_component (3RDPARTY_DRACO_LIBRARY_DIR_DEBUG "${3RDPARTY_DRACO_LIBRARY_DEBUG}" PATH)
set (3RDPARTY_DRACO_LIBRARY_DIR_DEBUG "${3RDPARTY_DRACO_LIBRARY_DIR_DEBUG}" CACHE FILEPATH "The directory containing debug Draco library" FORCE)
endif()
endif()
endif()

View File

@@ -370,6 +370,10 @@ foreach (USED_ITEM ${USED_EXTERNLIB_AND_TOOLKITS})
add_definitions (-DHAVE_GLES2)
endif()
if ("${CURRENT_CSF}" STREQUAL "${CSF_Draco}")
set (CURRENT_CSF "")
set (USED_DRACO 1)
endif()
set (LIBRARY_FROM_CACHE 0)
separate_arguments (CURRENT_CSF)
foreach (CSF_LIBRARY ${CURRENT_CSF})
@@ -397,7 +401,7 @@ foreach (USED_ITEM ${USED_EXTERNLIB_AND_TOOLKITS})
endforeach()
endforeach()
if (NOT ${LIBRARY_FROM_CACHE})
if (NOT ${LIBRARY_FROM_CACHE} AND NOT "${CURRENT_CSF}" STREQUAL "")
# prepare a list from a string with whitespaces
separate_arguments (CURRENT_CSF)
list (APPEND USED_EXTERNAL_LIBS_BY_CURRENT_PROJECT ${CURRENT_CSF})
@@ -408,6 +412,28 @@ foreach (USED_ITEM ${USED_EXTERNLIB_AND_TOOLKITS})
endif()
endforeach()
if (USE_DRACO)
if (USED_DRACO)
set (USED_LIB_RELEASE ${3RDPARTY_DRACO_LIBRARY})
if (WIN32)
set (USED_LIB_DEBUG ${3RDPARTY_DRACO_LIBRARY_DEBUG})
else()
set (USED_LIB_DEBUG ${3RDPARTY_DRACO_LIBRARY})
endif()
set (USED_LIB_CONF)
if (EXISTS ${USED_LIB_DEBUG})
set (USED_LIB_CONF "$<$<CONFIG:DEBUG>:${USED_LIB_DEBUG}>;${USED_LIB_CONF}")
endif()
if (EXISTS ${USED_LIB_RELEASE})
set (USED_LIB_CONF "$<$<CONFIG:RELEASE>:${USED_LIB_RELEASE}>;${USED_LIB_CONF}")
set (USED_LIB_CONF "$<$<CONFIG:RELWITHDEBINFO>:${USED_LIB_RELEASE}>;${USED_LIB_CONF}")
endif()
if (DEFINED USED_LIB_CONF)
set_property (TARGET ${PROJECT_NAME} APPEND PROPERTY LINK_LIBRARIES "${USED_LIB_CONF}")
endif()
endif()
endif()
if (APPLE)
list (FIND USED_EXTERNAL_LIBS_BY_CURRENT_PROJECT X11 IS_X11_FOUND)
if (NOT ${IS_X11_FOUND} EQUAL -1)

View File

@@ -4234,6 +4234,133 @@ void BSplCLib::Resolution( Standard_Real& Poles,
UTolerance = Tolerance3D / RealSmall();
}
//=======================================================================
// function : Intervals
// purpose :
//=======================================================================
Standard_Integer BSplCLib::Intervals (const TColStd_Array1OfReal& theKnots,
const TColStd_Array1OfInteger& theMults,
Standard_Integer theDegree,
Standard_Boolean isPeriodic,
Standard_Integer theContinuity,
Standard_Real theFirst,
Standard_Real theLast,
Standard_Real theTolerance,
TColStd_Array1OfReal* theIntervals)
{
// remove all knots with multiplicity less or equal than (degree - continuity) except first and last
Standard_Integer aFirstIndex = isPeriodic ? 1 : FirstUKnotIndex (theDegree, theMults);
Standard_Integer aLastIndex = isPeriodic ? theKnots.Size() : LastUKnotIndex (theDegree, theMults);
TColStd_Array1OfReal aNewKnots (1, aLastIndex - aFirstIndex + 1);
Standard_Integer aNbNewKnots = 0;
for (Standard_Integer anIndex = aFirstIndex; anIndex <= aLastIndex; anIndex++)
{
if (theMults(anIndex) > (theDegree - theContinuity) ||
anIndex == aFirstIndex ||
anIndex == aLastIndex)
{
aNbNewKnots++;
aNewKnots(aNbNewKnots) = theKnots[anIndex];
}
}
aNewKnots.Resize (1, aNbNewKnots, Standard_True);
// the range boundaries
Standard_Real aCurFirst = theFirst;
Standard_Real aCurLast = theLast;
Standard_Real aPeriod = 0.0;
Standard_Integer aFirstPeriod = 0;
Standard_Integer aLastPeriod = 0;
// move boundaries into period
if (isPeriodic)
{
Standard_Real aLower = theKnots.First();
Standard_Real anUpper = theKnots.Last();
aPeriod = anUpper - aLower;
while (aCurFirst < aLower)
{
aCurFirst += aPeriod;
aFirstPeriod--;
}
while (aCurLast < aLower)
{
aCurLast += aPeriod;
aLastPeriod--;
}
while (aCurFirst >= anUpper)
{
aCurFirst -= aPeriod;
aFirstPeriod += 1;
}
while (aCurLast >= anUpper)
{
aCurLast -= aPeriod;
aLastPeriod += 1;
}
}
// locate the left and nearest knot for boundaries
Standard_Integer anIndex1 = 0;
Standard_Integer anIndex2 = 0;
Standard_Real aDummyDouble;
// we use version of LocateParameter that doesn't need multiplicities
LocateParameter(theDegree, aNewKnots, TColStd_Array1OfInteger(), aCurFirst, Standard_False, 1, aNbNewKnots, anIndex1, aDummyDouble);
LocateParameter(theDegree, aNewKnots, TColStd_Array1OfInteger(), aCurLast, Standard_False, 1, aNbNewKnots, anIndex2, aDummyDouble);
// the case when the beginning of the range coincides with the next knot
if (anIndex1 < aNbNewKnots && Abs(aNewKnots[anIndex1 + 1] - aCurFirst) < theTolerance)
{
anIndex1 += 1;
}
// the case when the ending of the range coincides with the current knot
if (aNbNewKnots && Abs(aNewKnots[anIndex2] - aCurLast) < theTolerance)
{
anIndex2 -= 1;
}
Standard_Integer aNbIntervals = anIndex2 - anIndex1 + 1 + (aLastPeriod - aFirstPeriod) * (aNbNewKnots - 1);
// fill the interval array
if (theIntervals)
{
theIntervals->Resize (1, aNbIntervals + 1, Standard_False);
if (isPeriodic && aLastPeriod != aFirstPeriod)
{
Standard_Integer anIndex = 1;
// part from the begging of range to the end of the first period
for (Standard_Integer i = anIndex1; i < aNewKnots.Size(); i++, anIndex++)
{
theIntervals->ChangeValue(anIndex) = aNewKnots[i] + aFirstPeriod * aPeriod;
}
// full periods
for (Standard_Integer aPeriodNum = aFirstPeriod + 1; aPeriodNum < aLastPeriod; aPeriodNum++)
{
for (Standard_Integer i = 1; i < aNewKnots.Size(); i++, anIndex++)
{
theIntervals->ChangeValue(anIndex) = aNewKnots[i] + aPeriodNum * aPeriod;
}
}
// part from the begging of the last period to the end of range
for (Standard_Integer i = 1; i <= anIndex2; i++, anIndex++)
{
theIntervals->ChangeValue(anIndex) = aNewKnots[i] + aLastPeriod * aPeriod;
}
}
else
{
Standard_Integer anIndex = 1;
for (Standard_Integer i = anIndex1; i <= anIndex2; i++, anIndex++)
{
theIntervals->ChangeValue(anIndex) = aNewKnots[i] + aFirstPeriod * aPeriod;
}
}
// update the first position (the begging of range doesn't coincide with the knot at anIndex1 in general)
theIntervals->ChangeValue(1) = theFirst;
// write the ending of the range (we didn't write it at all)
theIntervals->ChangeValue(aNbIntervals + 1) = theLast;
}
return aNbIntervals;
}
//=======================================================================
// function: FlatBezierKnots
// purpose :

View File

@@ -1456,8 +1456,26 @@ public:
//! we have |f (u1) - f (u0)| < Tolerance3D
Standard_EXPORT static void Resolution (const TColgp_Array1OfPnt2d& Poles, const TColStd_Array1OfReal* Weights, const Standard_Integer NumPoles, const TColStd_Array1OfReal& FlatKnots, const Standard_Integer Degree, const Standard_Real Tolerance3D, Standard_Real& UTolerance);
//! Splits the given range to BSpline intervals of given continuity
//! @param[in] theKnots the knots of BSpline
//! @param[in] theMults the knots' multiplicities
//! @param[in] theDegree the degree of BSpline
//! @param[in] isPeriodic the periodicity of BSpline
//! @param[in] theContinuity the target interval's continuity
//! @param[in] theFirst the begin of the target range
//! @param[in] theLast the end of the target range
//! @param[in] theTolerance the tolerance
//! @param[in,out] theIntervals the array to store intervals if isn't nullptr
//! @return the number of intervals
Standard_EXPORT static Standard_Integer Intervals (const TColStd_Array1OfReal& theKnots,
const TColStd_Array1OfInteger& theMults,
Standard_Integer theDegree,
Standard_Boolean isPeriodic,
Standard_Integer theContinuity,
Standard_Real theFirst,
Standard_Real theLast,
Standard_Real theTolerance,
TColStd_Array1OfReal* theIntervals);
protected:

View File

@@ -58,65 +58,6 @@ static const Standard_Real PosTol = Precision::PConfusion() / 2;
IMPLEMENT_STANDARD_RTTIEXT(Geom2dAdaptor_Curve, Adaptor2d_Curve2d)
static void DefinFPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurFirst,
Standard_Integer &theFPer);
static void DefinLPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurLast,
Standard_Integer &theLPer);
static Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
const TColStd_Array1OfInteger& theTM,
const TColStd_Array1OfInteger& theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theNbInt,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theEps,
const Standard_Boolean thePeriodicCur,
Standard_Integer theNbIntervals,
Standard_Real theLower = 0,
Standard_Real thePeriod = 0,
Standard_Integer theIndex1 = 0,
Standard_Integer theIndex2 = 0);
static void WriteIntervals(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theNbInt,
const Standard_Integer theIndex1,
const Standard_Integer theIndex2,
const Standard_Real theCurPeriod,
const Standard_Boolean theFlagForFirst,
TColStd_Array1OfReal &theT,
TColStd_Array1OfInteger &theFinalIntervals,
Standard_Integer &theNbIntervals,
Standard_Integer &theCurInt);
static void SpreadInt(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theTM,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theFPer,
const Standard_Integer theLPer,
const Standard_Integer theNbInt,
const Standard_Real theLower,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real thePeriod,
const Standard_Real theLastParam,
const Standard_Real theEps,
TColStd_Array1OfReal &theT,
Standard_Integer &theNbIntervals);
//=======================================================================
//function : ShallowCopy
//purpose :
@@ -354,158 +295,6 @@ GeomAbs_Shape Geom2dAdaptor_Curve::Continuity() const
}
}
//=======================================================================
//function : DefinFPeriod
//purpose :
//=======================================================================
void DefinFPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurFirst,
Standard_Integer &theFPer)
{
if (theCurFirst >= theLower)
{
while (theCurFirst >= theUpper)
{
theCurFirst = theCurFirst - thePeriod;
theFPer++;
}
if (Abs(theUpper - theCurFirst) <= theEps)
{
theFPer++;
theCurFirst = theLower;
}
}
else
{
while (theCurFirst < theLower)
{
theCurFirst = theCurFirst + thePeriod;
if (Abs(theLower - theCurFirst) > theEps)
{
theFPer--;
}
}
if (Abs(theUpper - theCurFirst) <= theEps)
{
theCurFirst = theLower;
}
}
}
//=======================================================================
//function : DefinLPeriod
//purpose :
//=======================================================================
void DefinLPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurLast,
Standard_Integer &theLPer)
{
if (theCurLast >= theLower)
{
if ((theCurLast >= theUpper) && (Abs(theCurLast - theUpper) <= theEps))
{
theCurLast = theUpper;
}
else
{
while (theCurLast >= theUpper)
{
theCurLast = theCurLast - thePeriod;
theLPer++;
}
if (Abs(theUpper - theCurLast) <= theEps)
{
theCurLast = theLower;
}
}
}
else
{
while (theCurLast < theLower)
{
theCurLast = theCurLast + thePeriod;
if (Abs(theLower - theCurLast) > theEps)
{
theLPer--;
}
}
if (Abs(theUpper - theCurLast) <= theEps)
{
theCurLast = theLower;
}
}
}
//=======================================================================
//function : LocalNbIntervals
//purpose :
//=======================================================================
Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
const TColStd_Array1OfInteger& theTM,
const TColStd_Array1OfInteger& theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theNbInt,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theEps,
const Standard_Boolean thePeriodicCur,
Standard_Integer theNbIntervals,
Standard_Real theLower,
Standard_Real thePeriod,
Standard_Integer theIndex1,
Standard_Integer theIndex2)
{
Standard_Real aNewFirst = theFirst;
Standard_Real aNewLast = theLast;
if (theIndex1 == 0)
{
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theFirst,
thePeriodicCur, 1, theNb, theIndex1, aNewFirst);
}
if (theIndex2 == 0)
{
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theLast,
thePeriodicCur, 1, theNb, theIndex2, aNewLast);
}
// Protection against theFirst = UFirst - eps, which located as ULast - eps
if (thePeriodicCur && ((aNewLast - aNewFirst) < Precision::PConfusion()))
{
if (Abs(aNewLast - theLower) < Precision::PConfusion())
{
aNewLast += thePeriod;
}
else
{
aNewFirst -= thePeriod;
}
}
if (Abs(aNewFirst - theTK(theIndex1 + 1)) < theEps)
{
theIndex1++;
}
if ((aNewLast - theTK(theIndex2)) > theEps)
{
theIndex2++;
}
for (Standard_Integer i = 1; i <= theNbInt; i++)
{
if (theInter(i) > theIndex1 && theInter(i) < theIndex2) theNbIntervals++;
}
return theNbIntervals;
}
//=======================================================================
//function : NbIntervals
//purpose :
@@ -513,187 +302,49 @@ Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
if (myTypeCurve == GeomAbs_BSplineCurve) {
Standard_Integer FirstIndex = myBSplineCurve->FirstUKnotIndex();
Standard_Integer LastIndex = myBSplineCurve->LastUKnotIndex();
TColStd_Array1OfInteger Inter(1, LastIndex - FirstIndex + 1);
Standard_Boolean aContPer = (S >= Continuity()) && myBSplineCurve->IsPeriodic();
Standard_Boolean aContNotPer = (S > Continuity()) && !myBSplineCurve->IsPeriodic();
if (aContPer || aContNotPer) {
Standard_Integer Cont;
switch (S) {
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("Geom2dAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if (S == GeomAbs_C1) Cont = 1;
else if (S == GeomAbs_C2) Cont = 2;
else if (S == GeomAbs_C3) Cont = 3;
else Cont = myBSplineCurve->Degree();
Standard_Integer Degree = myBSplineCurve->Degree();
Standard_Integer NbKnots = myBSplineCurve->NbKnots();
TColStd_Array1OfInteger Mults(1, NbKnots);
myBSplineCurve->Multiplicities(Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter(NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults(Index) < Cont)
{
Inter(NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter(NbSplit) = Index;
Standard_Integer NbInt = NbSplit - 1;
Standard_Integer Nb = myBSplineCurve->NbKnots();
TColStd_Array1OfReal TK(1, Nb);
TColStd_Array1OfInteger TM(1, Nb);
myBSplineCurve->Knots(TK);
myBSplineCurve->Multiplicities(TM);
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
myNbIntervals = 1;
if (!myBSplineCurve->IsPeriodic())
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_False, myNbIntervals);
}
else
{
Standard_Real aCurFirst = myFirst;
Standard_Real aCurLast = myLast;
Standard_Real aLower = myBSplineCurve->FirstParameter();
Standard_Real anUpper = myBSplineCurve->LastParameter();
if ((Abs(aCurFirst - aLower) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
if ((Abs(aCurLast - anUpper) < Eps) && (aCurLast < anUpper))
{
aCurLast = anUpper;
}
Standard_Real aPeriod = myBSplineCurve->Period();
Standard_Integer aLPer = 1; Standard_Integer aFPer = 1;
if ((Abs(aLower - myFirst) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
else
{
DefinFPeriod(aLower, anUpper,
Eps, aPeriod, aCurFirst, aFPer);
}
DefinLPeriod(aLower, anUpper,
Eps, aPeriod, aCurLast, aLPer);
if ((Abs(aLower - myFirst) < Eps) && (Abs(anUpper - myLast) < Eps))
{
myNbIntervals = NbInt;
}
else
{
Standard_Integer aSumPer = Abs(aLPer - aFPer);
Standard_Real aFirst = 0;
if (aLower < 0 && anUpper == 0)
{
if (Abs(aCurLast) < Eps)
{
aCurLast = 0;
}
aFirst = aLower;
}
if (aSumPer <= 1)
{
if ((Abs(myFirst - TK(Nb) - aPeriod * (aFPer - 1)) <= Eps) && (myLast < (TK(Nb) + aPeriod * (aLPer - 1))))
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
return myNbIntervals;
}
if ((Abs(myFirst - aLower) < Eps) && (Abs(myLast - anUpper) < Eps))
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
return myNbIntervals;
}
}
if (aSumPer != 0)
{
Standard_Integer aFInt = 0;
Standard_Integer aLInt = 0;
Standard_Integer aPInt = NbInt;
if ((aCurFirst != aPeriod) || ((aCurFirst != anUpper) && (Abs(myFirst) < Eps)))
{
aFInt = 1;
}
if ((aCurLast != 0) && (aCurLast != anUpper))
{
aLInt = 1;
}
aFInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aCurFirst, anUpper, Eps, Standard_True, aFInt, aLower, aPeriod);
if (aCurLast == anUpper)
{
aLInt = NbInt;
}
else
{
if (Abs(aCurLast - aFirst) > Eps)
{
aLInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aFirst, aCurLast, Eps, Standard_True, aLInt, aLower, aPeriod, 1);
}
else
{
aLInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aFirst, aCurLast, Eps, Standard_True, aLInt, aLower, aPeriod);
}
}
myNbIntervals = aFInt + aLInt + aPInt * (aSumPer - 1);
}
else
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aCurFirst, aCurLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
}
}
}
}
break;
}
if (myTypeCurve == GeomAbs_BSplineCurve)
{
if ((!myBSplineCurve->IsPeriodic() && S <= Continuity()) || S == GeomAbs_C0)
{
return 1;
}
Standard_Integer aDegree = myBSplineCurve->Degree();
Standard_Integer aCont;
switch (S)
{
case GeomAbs_C1:
aCont = 1;
break;
case GeomAbs_C2:
aCont = 2;
break;
case GeomAbs_C3:
aCont = 3;
break;
case GeomAbs_CN:
aCont = aDegree;
break;
default:
throw Standard_DomainError ("Geom2dAdaptor_Curve::NbIntervals()");
}
Standard_Real anEps = Min(Resolution(Precision::Confusion()), Precision::PConfusion());
return BSplCLib::Intervals(myBSplineCurve->Knots(),
myBSplineCurve->Multiplicities(),
aDegree,
myBSplineCurve->IsPeriodic(),
aCont,
myFirst,
myLast,
anEps,
nullptr);
}
else if (myTypeCurve == GeomAbs_OffsetCurve){
Standard_Integer myNbIntervals = 1;
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
@@ -705,208 +356,14 @@ Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
Geom2dAdaptor_Curve anAdaptor (Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve(), myFirst, myLast);
myNbIntervals = anAdaptor.NbIntervals(BaseS);
return myNbIntervals;
}
return myNbIntervals;
}
//=======================================================================
//function : WriteIntervals
//purpose :
//=======================================================================
void WriteIntervals(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theNbInt,
const Standard_Integer theIndex1,
const Standard_Integer theIndex2,
const Standard_Real theCurPeriod,
const Standard_Boolean theFlagForFirst,
TColStd_Array1OfReal &theT,
TColStd_Array1OfInteger &theFinalIntervals,
Standard_Integer &theNbIntervals,
Standard_Integer &theCurInt)
{
if (theFlagForFirst)
{
for (Standard_Integer anId = 1; anId <= theNbInt; anId++)
{
if (theInter(anId) > theIndex1 && theInter(anId) <= theIndex2)
{
theNbIntervals++;
theFinalIntervals(theNbIntervals) = theInter(anId);
}
}
}
else
{
for (Standard_Integer anId = 1; anId <= theNbInt; anId++)
{
if (theInter(anId) > theIndex1 && theInter(anId) < theIndex2)
{
theNbIntervals++;
theFinalIntervals(theNbIntervals) = theInter(anId);
}
}
}
theFinalIntervals(theNbIntervals + 1) = theIndex2;
for (Standard_Integer anId = theCurInt; anId <= theNbIntervals + 1; anId++)
{
theT(anId) = theTK(theFinalIntervals(anId)) + theCurPeriod;
theCurInt++;
}
}
//=======================================================================
//function : SpreadInt
//purpose :
//=======================================================================
void SpreadInt(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theTM,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theFPer,
const Standard_Integer theLPer,
const Standard_Integer theNbInt,
const Standard_Real theLower,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real thePeriod,
const Standard_Real theLastParam,
const Standard_Real theEps,
TColStd_Array1OfReal &theT,
Standard_Integer &theNbIntervals)
{
Standard_Integer anIndex1 = 0;
Standard_Integer anIndex2 = 0;
Standard_Real aNewFirst, aNewLast;
Standard_Integer anUpper;
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theFirst,
Standard_True, 1, theNb, anIndex1, aNewFirst);
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theLastParam,
Standard_True, 1, theNb, anIndex2, aNewLast);
if (Abs(aNewFirst - theTK(anIndex1 + 1)) < theEps)
{
anIndex1++;
}
if ((aNewLast - theTK(anIndex2)) > theEps)
{
anIndex2++;
}
theNbIntervals = 1;
if (anIndex1 == theNb)
{
anIndex1 = 1;
}
// Count the max number of boundaries of intervals
if (Abs(theLPer - theFPer) > 1)
{
anUpper = theNb - anIndex1 + anIndex2 + (theLPer - theFPer - 1) * theNb + 1;
}
else
{
anUpper = theNb - anIndex1 + anIndex2 + 1;
}
if (theLPer == theFPer)
{
anUpper = theInter.Upper();
}
TColStd_Array1OfInteger aFinalIntervals(1, anUpper);
aFinalIntervals(1) = anIndex1;
// If first and last are in the same period
if ((Abs(theLPer - theFPer) == 0))
{
Standard_Integer aCurInt = 1;
Standard_Real aCurPeriod = theFPer * thePeriod;
if (theFirst == aNewFirst && theLast == aNewLast)
{
aCurPeriod = 0;
}
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
anIndex2, aCurPeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
// If the first and the last are in neighboring periods
if (Abs(theLPer - theFPer) == 1)
{
Standard_Integer aCurInt = 1;
if (Abs(theLastParam - theLower) < theEps)
{
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
else
{
// For period with first
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
// For period with last
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
anIndex2, theLPer * thePeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
}
// If the first and the last are far apart
if (Abs(theLPer - theFPer) > 1)
{
Standard_Integer aCurInt = 1;
if (Abs(theLastParam - theLower) < theEps)
{
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
Standard_Integer aNbPer = Abs(theLPer - theFPer);
Standard_Integer aCurPer = theFPer + 1;
while (aNbPer > 1)
{
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
theNb, aCurPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
aNbPer--;
aCurPer++;
}
return;
}
else
{
// For period with first
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
Standard_Integer aNbPer = Abs(theLPer - theFPer);
Standard_Integer aCurPer = theFPer + 1;
while (aNbPer > 1)
{
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
theNb, aCurPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
aNbPer--;
aCurPer++;
}
// For period with last
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
anIndex2, theLPer * thePeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
return 1;
}
}
@@ -915,156 +372,53 @@ void SpreadInt(const TColStd_Array1OfReal &theTK,
//purpose :
//=======================================================================
void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
const GeomAbs_Shape S ) const
void Geom2dAdaptor_Curve::Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
if (myTypeCurve == GeomAbs_BSplineCurve) {
Standard_Integer FirstIndex = myBSplineCurve->FirstUKnotIndex();
Standard_Integer LastIndex = myBSplineCurve->LastUKnotIndex();
TColStd_Array1OfInteger Inter (1, LastIndex-FirstIndex+1);
Standard_Boolean aContPer = (S >= Continuity()) && myBSplineCurve->IsPeriodic();
Standard_Boolean aContNotPer = (S > Continuity()) && !myBSplineCurve->IsPeriodic();
if (aContPer || aContNotPer) {
Standard_Integer Cont;
switch ( S) {
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("Geom2dAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if (S == GeomAbs_C1) Cont = 1;
else if (S == GeomAbs_C2) Cont = 2;
else if (S == GeomAbs_C3) Cont = 3;
else Cont = myBSplineCurve->Degree();
Standard_Integer Degree = myBSplineCurve->Degree();
Standard_Integer NbKnots = myBSplineCurve->NbKnots();
TColStd_Array1OfInteger Mults(1, NbKnots);
myBSplineCurve->Multiplicities(Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter(NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults(Index) < Cont)
{
Inter(NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter(NbSplit) = Index;
Standard_Integer NbInt = NbSplit - 1;
Standard_Integer Nb = myBSplineCurve->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
Standard_Real newFirst, newLast;
TColStd_Array1OfReal TK(1, Nb);
TColStd_Array1OfInteger TM(1, Nb);
myBSplineCurve->Knots(TK);
myBSplineCurve->Multiplicities(TM);
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
if (!myBSplineCurve->IsPeriodic())
{
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myFirst,
myBSplineCurve->IsPeriodic(),
1, Nb, Index1, newFirst);
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myLast,
myBSplineCurve->IsPeriodic(),
1, Nb, Index2, newLast);
// On decale eventuellement les indices
// On utilise une "petite" tolerance, la resolution ne doit
// servir que pour les tres longue courbes....(PRO9248)
if (Abs(newFirst - TK(Index1 + 1)) < Eps) Index1++;
if (newLast - TK(Index2) > Eps) Index2++;
Inter(1) = Index1;
myNbIntervals = 1;
for (Standard_Integer i = 1; i <= NbInt; i++) {
if (Inter(i) > Index1 && Inter(i) < Index2) {
myNbIntervals++;
Inter(myNbIntervals) = Inter(i);
}
}
Inter(myNbIntervals + 1) = Index2;
Standard_Integer ii = T.Lower() - 1;
for (Standard_Integer I = 1; I <= myNbIntervals + 1; I++) {
T(ii + I) = TK(Inter(I));
}
}
else
{
Standard_Real aFirst = myFirst;
Standard_Real aLast = myLast;
Standard_Real aCurFirst = aFirst;
Standard_Real aCurLast = aLast;
Standard_Real aPeriod = myBSplineCurve->Period();
Standard_Real aLower = myBSplineCurve->FirstParameter();
Standard_Real anUpper = myBSplineCurve->LastParameter();
Standard_Integer aLPer = 0; Standard_Integer aFPer = 0;
if (Abs(myFirst - aLower) <= Eps)
{
aCurFirst = aLower;
aFirst = aCurFirst;
}
if (Abs(myLast - anUpper) <= Eps)
{
aCurLast = anUpper;
aLast = aCurLast;
}
if ((Abs(aLower - myFirst) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
else
{
DefinFPeriod(aLower, anUpper,
Eps, aPeriod, aCurFirst, aFPer);
}
DefinLPeriod(aLower, anUpper,
Eps, aPeriod, aCurLast, aLPer);
if (myFirst == aLower)
{
aFPer = 0;
}
SpreadInt(TK, TM, Inter, myBSplineCurve->Degree(), Nb, aFPer, aLPer, NbInt, aLower, myFirst, myLast, aPeriod,
aCurLast, Eps, T, myNbIntervals);
T(T.Lower()) = aFirst;
T(T.Lower() + myNbIntervals) = aLast;
return;
}
}
T(T.Lower()) = myFirst;
T(T.Lower() + myNbIntervals) = myLast;
if (myTypeCurve == GeomAbs_BSplineCurve)
{
if ((!myBSplineCurve->IsPeriodic() && S <= Continuity()) || S == GeomAbs_C0)
{
T( T.Lower() ) = myFirst;
T( T.Lower() + 1 ) = myLast;
return;
}
}
Standard_Integer aDegree = myBSplineCurve->Degree();
Standard_Integer aCont;
switch (S)
{
case GeomAbs_C1:
aCont = 1;
break;
case GeomAbs_C2:
aCont = 2;
break;
case GeomAbs_C3:
aCont = 3;
break;
case GeomAbs_CN:
aCont = aDegree;
break;
default:
throw Standard_DomainError ("Geom2dAdaptor_Curve::Intervals()");
}
Standard_Real anEps = Min(Resolution(Precision::Confusion()), Precision::PConfusion());
BSplCLib::Intervals(myBSplineCurve->Knots(),
myBSplineCurve->Multiplicities(),
aDegree,
myBSplineCurve->IsPeriodic(),
aCont,
myFirst,
myLast,
anEps,
&T);
}
else if (myTypeCurve == GeomAbs_OffsetCurve){
Standard_Integer myNbIntervals = 1;
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
@@ -1077,13 +431,18 @@ void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
default: BaseS = GeomAbs_CN;
}
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
Geom2dAdaptor_Curve anAdaptor (Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve(), myFirst, myLast);
myNbIntervals = anAdaptor.NbIntervals(BaseS);
anAdaptor.Intervals(T, BaseS);
T( T.Lower() ) = myFirst;
T( T.Lower() + myNbIntervals ) = myLast;
}
T( T.Lower() ) = myFirst;
T( T.Lower() + myNbIntervals ) = myLast;
else
{
T( T.Lower() ) = myFirst;
T( T.Lower() + 1 ) = myLast;
}
}
//=======================================================================

View File

@@ -58,65 +58,6 @@ static const Standard_Real PosTol = Precision::PConfusion() / 2;
IMPLEMENT_STANDARD_RTTIEXT(GeomAdaptor_Curve, Adaptor3d_Curve)
static void DefinFPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurFirst,
Standard_Integer &theFPer);
static void DefinLPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurLast,
Standard_Integer &theLPer);
static Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
const TColStd_Array1OfInteger& theTM,
const TColStd_Array1OfInteger& theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theNbInt,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theEps,
const Standard_Boolean thePeriodicCur,
Standard_Integer theNbIntervals,
Standard_Real theLower = 0,
Standard_Real thePeriod = 0,
Standard_Integer theIndex1 = 0,
Standard_Integer theIndex2 = 0);
static void WriteIntervals(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theNbInt,
const Standard_Integer theIndex1,
const Standard_Integer theIndex2,
const Standard_Real theCurPeriod,
const Standard_Boolean theFlagForFirst,
TColStd_Array1OfReal &theT,
TColStd_Array1OfInteger &theFinalIntervals,
Standard_Integer &theNbIntervals,
Standard_Integer &theCurInt);
static void SpreadInt(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theTM,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theFPer,
const Standard_Integer theLPer,
const Standard_Integer theNbInt,
const Standard_Real theLower,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real thePeriod,
const Standard_Real theLastParam,
const Standard_Real theEps,
TColStd_Array1OfReal &theT,
Standard_Integer &theNbIntervals);
//=======================================================================
//function : ShallowCopy
//purpose :
@@ -310,159 +251,6 @@ GeomAbs_Shape GeomAdaptor_Curve::Continuity() const
return GeomAbs_CN;
}
//=======================================================================
//function : DefinFPeriod
//purpose :
//=======================================================================
void DefinFPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurFirst,
Standard_Integer &theFPer)
{
if (theCurFirst >= theLower)
{
while (theCurFirst >= theUpper)
{
theCurFirst = theCurFirst - thePeriod;
theFPer++;
}
if (Abs(theUpper - theCurFirst) <= theEps)
{
theFPer++;
theCurFirst = theLower;
}
}
else
{
while (theCurFirst < theLower)
{
theCurFirst = theCurFirst + thePeriod;
if ((Abs(theLower - theCurFirst)) > theEps)
{
theFPer--;
}
}
if (Abs(theUpper - theCurFirst) <= theEps)
{
theCurFirst = theLower;
}
}
}
//=======================================================================
//function : DefinLPeriod
//purpose :
//=======================================================================
void DefinLPeriod(const Standard_Real theLower,
const Standard_Real theUpper,
const Standard_Real theEps,
const Standard_Real thePeriod,
Standard_Real &theCurLast,
Standard_Integer &theLPer)
{
if (theCurLast >= theLower)
{
if ((theCurLast >= theUpper) && (Abs(theCurLast - theUpper) <= theEps))
{
theCurLast = theUpper;
}
else
{
while (theCurLast >= theUpper)
{
theCurLast = theCurLast - thePeriod;
theLPer++;
}
if (Abs(theUpper - theCurLast) <= theEps)
{
theCurLast = theLower;
}
}
}
else
{
while (theCurLast < theLower)
{
theCurLast = theCurLast + thePeriod;
if (Abs(theLower - theCurLast) > theEps)
{
theLPer--;
}
}
if ((theUpper - theCurLast) <= theEps)
{
theCurLast = theLower;
}
}
}
//=======================================================================
//function : LocalNbIntervals
//purpose :
//=======================================================================
Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
const TColStd_Array1OfInteger& theTM,
const TColStd_Array1OfInteger& theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theNbInt,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real theEps,
const Standard_Boolean thePeriodicCur,
Standard_Integer theNbIntervals,
Standard_Real theLower,
Standard_Real thePeriod,
Standard_Integer theIndex1,
Standard_Integer theIndex2)
{
Standard_Real aNewFirst = theFirst;
Standard_Real aNewLast = theLast;
if (theIndex1 == 0)
{
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theFirst,
thePeriodicCur, 1, theNb, theIndex1, aNewFirst);
}
if (theIndex2 == 0)
{
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theLast,
thePeriodicCur, 1, theNb, theIndex2, aNewLast);
}
// Protection against theFirst = UFirst - eps, which located as ULast - eps
if (thePeriodicCur && ((aNewLast - aNewFirst) < Precision::PConfusion()))
{
if (Abs(aNewLast - theLower) < Precision::PConfusion())
{
aNewLast += thePeriod;
}
else
{
aNewFirst -= thePeriod;
}
}
if (Abs(aNewFirst - theTK(theIndex1 + 1)) < theEps)
{
theIndex1++;
}
if ((aNewLast - theTK(theIndex2)) > theEps)
{
theIndex2++;
}
for (Standard_Integer i = 1; i <= theNbInt; i++)
{
if (theInter(i) > theIndex1 && theInter(i) < theIndex2) theNbIntervals++;
}
return theNbIntervals;
}
//=======================================================================
//function : NbIntervals
//purpose :
@@ -470,207 +258,61 @@ Standard_Integer LocalNbIntervals(const TColStd_Array1OfReal& theTK,
Standard_Integer GeomAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
if (myTypeCurve == GeomAbs_BSplineCurve) {
Standard_Integer FirstIndex = myBSplineCurve->FirstUKnotIndex();
Standard_Integer LastIndex = myBSplineCurve->LastUKnotIndex();
TColStd_Array1OfInteger Inter(1, LastIndex - FirstIndex + 1);
Standard_Boolean aContPer = (S >= Continuity()) && myBSplineCurve->IsPeriodic();
Standard_Boolean aContNotPer = (S > Continuity()) && !myBSplineCurve->IsPeriodic();
if(aContPer || aContNotPer) {
Standard_Integer Cont;
switch (S) {
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if (S == GeomAbs_C1) Cont = 1;
else if (S == GeomAbs_C2) Cont = 2;
else if (S == GeomAbs_C3) Cont = 3;
else Cont = myBSplineCurve->Degree();
Standard_Integer Degree = myBSplineCurve->Degree();
Standard_Integer NbKnots = myBSplineCurve->NbKnots();
TColStd_Array1OfInteger Mults(1, NbKnots);
myBSplineCurve->Multiplicities(Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter(NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults(Index) < Cont)
{
Inter(NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter(NbSplit) = Index;
Standard_Integer NbInt = NbSplit - 1;
Standard_Integer Nb = myBSplineCurve->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
const TColStd_Array1OfReal& TK = myBSplineCurve->Knots();
const TColStd_Array1OfInteger& TM = myBSplineCurve->Multiplicities();
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
myNbIntervals = 1;
if (!myBSplineCurve->IsPeriodic())
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_False, myNbIntervals);
}
else
{
Standard_Real aCurFirst = myFirst;
Standard_Real aCurLast = myLast;
Standard_Real aLower = myBSplineCurve->FirstParameter();
Standard_Real anUpper = myBSplineCurve->LastParameter();
if ((Abs(aCurFirst - aLower) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
if ((Abs(aCurLast - anUpper) < Eps) && (aCurLast < anUpper))
{
aCurLast = anUpper;
}
Standard_Real aPeriod = myBSplineCurve->Period();
Standard_Integer aLPer = 1; Standard_Integer aFPer = 1;
if ((Abs(aLower - myFirst) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
else
{
DefinFPeriod(aLower, anUpper,
Eps, aPeriod, aCurFirst, aFPer);
}
DefinLPeriod(aLower, anUpper,
Eps, aPeriod, aCurLast, aLPer);
Standard_Real aNewFirst;
Standard_Real aNewLast;
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myFirst,
Standard_True, 1, Nb, Index1, aNewFirst);
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myLast,
Standard_True, 1, Nb, Index2, aNewLast);
if ((aNewFirst == myFirst && aNewLast == myLast) && (aFPer != aLPer))
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
}
else
{
Standard_Integer aSumPer = Abs(aLPer - aFPer);
Standard_Real aFirst = 0;
if (aLower < 0 && anUpper == 0)
{
if (Abs(aCurLast) < Eps)
{
aCurLast = 0;
}
aFirst = aLower;
}
if (aSumPer <= 1)
{
if ((Abs(myFirst - TK(Nb) - aPeriod * (aFPer - 1)) <= Eps) && (myLast < (TK(Nb) + aPeriod * (aLPer - 1))))
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
return myNbIntervals;
}
if ((Abs(myFirst - aLower) < Eps) && (Abs(myLast - anUpper) < Eps))
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
myFirst, myLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
return myNbIntervals;
}
}
if (aSumPer != 0)
{
Standard_Integer aFInt = 0;
Standard_Integer aLInt = 0;
Standard_Integer aPInt = NbInt;
if ((aCurFirst != aPeriod) || ((aCurFirst != anUpper) && (Abs(myFirst) < Eps)))
{
aFInt = 1;
}
if ((aCurLast != aLower) && (aCurLast != anUpper))
{
aLInt = 1;
}
aFInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aCurFirst, anUpper, Eps, Standard_True, aFInt, aLower, aPeriod);
if (aCurLast == anUpper)
{
aLInt = NbInt;
}
else
{
if (Abs(aCurLast - aFirst) > Eps)
{
aLInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aFirst, aCurLast, Eps, Standard_True, aLInt, aLower, aPeriod, 1);
}
else
{
aLInt = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aFirst, aCurLast, Eps, Standard_True, aLInt, aLower, aPeriod);
}
}
myNbIntervals = aFInt + aLInt + aPInt * (aSumPer - 1);
}
else
{
myNbIntervals = LocalNbIntervals(TK, TM, Inter, Degree, Nb, NbInt,
aCurFirst, aCurLast, Eps, Standard_True, myNbIntervals, aLower, aPeriod);
}
}
}
}
break;
}
if (myTypeCurve == GeomAbs_BSplineCurve)
{
if ((!myBSplineCurve->IsPeriodic() && S <= Continuity()) || S == GeomAbs_C0)
{
return 1;
}
Standard_Integer aDegree = myBSplineCurve->Degree();
Standard_Integer aCont;
switch (S)
{
case GeomAbs_C1:
aCont = 1;
break;
case GeomAbs_C2:
aCont = 2;
break;
case GeomAbs_C3:
aCont = 3;
break;
case GeomAbs_CN:
aCont = aDegree;
break;
default:
throw Standard_DomainError ("GeomAdaptor_Curve::NbIntervals()");
}
Standard_Real anEps = Min(Resolution(Precision::Confusion()), Precision::PConfusion());
return BSplCLib::Intervals(myBSplineCurve->Knots(),
myBSplineCurve->Multiplicities(),
aDegree,
myBSplineCurve->IsPeriodic(),
aCont,
myFirst,
myLast,
anEps,
nullptr);
}
else if (myTypeCurve == GeomAbs_OffsetCurve) {
Standard_Integer myNbIntervals = 1;
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0: BaseS = GeomAbs_C1; break;
case GeomAbs_C1: BaseS = GeomAbs_C2; break;
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("GeomAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0: BaseS = GeomAbs_C1; break;
case GeomAbs_C1: BaseS = GeomAbs_C2; break;
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
GeomAdaptor_Curve C
(Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve());
GeomAdaptor_Curve C (Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve(), myFirst, myLast);
// akm 05/04/02 (OCC278) If our curve is trimmed we must recalculate
// the number of intervals obtained from the basis to
// vvv reflect parameter bounds
@@ -680,211 +322,16 @@ Standard_Integer GeomAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
TColStd_Array1OfReal rdfInter(1,1+iNbBasisInt);
C.Intervals(rdfInter,BaseS);
for (iInt=1; iInt<=iNbBasisInt; iInt++)
if (rdfInter(iInt)>myFirst && rdfInter(iInt)<myLast)
myNbIntervals++;
if (rdfInter(iInt)>myFirst && rdfInter(iInt)<myLast)
myNbIntervals++;
}
// akm 05/04/02 ^^^
return myNbIntervals;
}
return myNbIntervals;
}
//=======================================================================
//function : WriteIntervals
//purpose :
//=======================================================================
static void WriteIntervals(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theNbInt,
const Standard_Integer theIndex1,
const Standard_Integer theIndex2,
const Standard_Real theCurPeriod,
const Standard_Boolean theFlagForFirst,
TColStd_Array1OfReal &theT,
TColStd_Array1OfInteger &theFinalIntervals,
Standard_Integer &theNbIntervals,
Standard_Integer &theCurInt)
{
if (theFlagForFirst)
{
for (Standard_Integer anId = 1; anId <= theNbInt; anId++)
{
if (theInter(anId) > theIndex1 && theInter(anId) <= theIndex2)
{
theNbIntervals++;
theFinalIntervals(theNbIntervals) = theInter(anId);
}
}
}
else
{
for (Standard_Integer anId = 1; anId <= theNbInt; anId++)
{
if (theInter(anId) > theIndex1 && theInter(anId) < theIndex2)
{
theNbIntervals++;
theFinalIntervals(theNbIntervals) = theInter(anId);
}
}
}
theFinalIntervals(theNbIntervals + 1) = theIndex2;
for (Standard_Integer anId = theCurInt; anId <= theNbIntervals + 1; anId++)
{
theT(anId) = theTK(theFinalIntervals(anId)) + theCurPeriod;
theCurInt++;
}
}
//=======================================================================
//function : SpreadInt
//purpose :
//=======================================================================
void SpreadInt(const TColStd_Array1OfReal &theTK,
const TColStd_Array1OfInteger &theTM,
const TColStd_Array1OfInteger &theInter,
const Standard_Integer theCurDegree,
const Standard_Integer theNb,
const Standard_Integer theFPer,
const Standard_Integer theLPer,
const Standard_Integer theNbInt,
const Standard_Real theLower,
const Standard_Real theFirst,
const Standard_Real theLast,
const Standard_Real thePeriod,
const Standard_Real theLastParam,
const Standard_Real theEps,
TColStd_Array1OfReal &theT,
Standard_Integer &theNbIntervals)
{
Standard_Integer anIndex1 = 0;
Standard_Integer anIndex2 = 0;
Standard_Real aNewFirst, aNewLast;
Standard_Integer anUpper;
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theFirst,
Standard_True, 1, theNb, anIndex1, aNewFirst);
BSplCLib::LocateParameter(theCurDegree, theTK, theTM, theLastParam,
Standard_True, 1, theNb, anIndex2, aNewLast);
if (Abs(aNewFirst - theTK(anIndex1 + 1)) < theEps)
{
anIndex1++;
}
if ((aNewLast - theTK(anIndex2)) > theEps)
{
anIndex2++;
}
theNbIntervals = 1;
if (anIndex1 == theNb)
{
anIndex1 = 1;
}
// Count the max number of boundaries of intervals
if (Abs(theLPer - theFPer) > 1)
{
anUpper = theNb - anIndex1 + anIndex2 + (theLPer - theFPer - 1) * theNb + 1;
}
else
{
anUpper = theNb - anIndex1 + anIndex2 + 1;
}
if (theLPer == theFPer)
{
anUpper = theInter.Upper();
}
TColStd_Array1OfInteger aFinalIntervals(1, anUpper);
aFinalIntervals(1) = anIndex1;
// If first and last are in the same period
if ((Abs(theLPer - theFPer) == 0))
{
Standard_Integer aCurInt = 1;
Standard_Real aCurPeriod = theFPer * thePeriod;
if (theFirst == aNewFirst && theLast == aNewLast)
{
aCurPeriod = 0;
}
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
anIndex2, aCurPeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
// If the first and the last are in neighboring periods
if (Abs(theLPer - theFPer) == 1)
{
Standard_Integer aCurInt = 1;
if (Abs(theLastParam - theLower) < theEps)
{
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
else
{
// For period with first
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
// For period with last
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
anIndex2, theLPer * thePeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
}
// If the first and the last are far apart
if (Abs(theLPer - theFPer) > 1)
{
Standard_Integer aCurInt = 1;
if (Abs(theLastParam - theLower) < theEps)
{
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
Standard_Integer aNbPer = Abs(theLPer - theFPer);
Standard_Integer aCurPer = theFPer + 1;
while (aNbPer > 1)
{
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
theNb, aCurPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
aNbPer--;
aCurPer++;
}
return;
}
else
{
// For period with first
WriteIntervals(theTK, theInter, theNbInt, anIndex1,
theNb, theFPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
Standard_Integer aNbPer = Abs(theLPer - theFPer);
Standard_Integer aCurPer = theFPer + 1;
while (aNbPer > 1)
{
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
theNb, aCurPer * thePeriod, Standard_True, theT, aFinalIntervals, theNbIntervals, aCurInt);
aNbPer--;
aCurPer++;
}
// For period with last
theNbIntervals++;
WriteIntervals(theTK, theInter, theNbInt, 1,
anIndex2, theLPer * thePeriod, Standard_False, theT, aFinalIntervals, theNbIntervals, aCurInt);
return;
}
return 1;
}
}
@@ -893,175 +340,53 @@ void SpreadInt(const TColStd_Array1OfReal &theTK,
//purpose :
//=======================================================================
void GeomAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
const GeomAbs_Shape S ) const
void GeomAdaptor_Curve::Intervals (TColStd_Array1OfReal& T, const GeomAbs_Shape S) const
{
Standard_Integer myNbIntervals = 1;
Standard_Integer NbSplit;
Standard_Real FirstParam = myFirst, LastParam = myLast;
if (myTypeCurve == GeomAbs_BSplineCurve)
{
Standard_Integer FirstIndex = myBSplineCurve->FirstUKnotIndex();
Standard_Integer LastIndex = myBSplineCurve->LastUKnotIndex();
TColStd_Array1OfInteger Inter(1, LastIndex - FirstIndex + 1);
Standard_Boolean aContPer = (S >= Continuity()) && myBSplineCurve->IsPeriodic();
Standard_Boolean aContNotPer = (S > Continuity()) && !myBSplineCurve->IsPeriodic();
if (aContPer || aContNotPer) {
Standard_Integer Cont;
switch (S) {
case GeomAbs_G1:
case GeomAbs_G2:
throw Standard_DomainError("Geom2dAdaptor_Curve::NbIntervals");
break;
case GeomAbs_C0:
myNbIntervals = 1;
break;
case GeomAbs_C1:
case GeomAbs_C2:
case GeomAbs_C3:
case GeomAbs_CN:
{
if (S == GeomAbs_C1) Cont = 1;
else if (S == GeomAbs_C2) Cont = 2;
else if (S == GeomAbs_C3) Cont = 3;
else Cont = myBSplineCurve->Degree();
Standard_Integer Degree = myBSplineCurve->Degree();
Standard_Integer NbKnots = myBSplineCurve->NbKnots();
TColStd_Array1OfInteger Mults(1, NbKnots);
myBSplineCurve->Multiplicities(Mults);
NbSplit = 1;
Standard_Integer Index = FirstIndex;
Inter(NbSplit) = Index;
Index++;
NbSplit++;
while (Index < LastIndex)
{
if (Degree - Mults(Index) < Cont)
{
Inter(NbSplit) = Index;
NbSplit++;
}
Index++;
}
Inter(NbSplit) = Index;
Standard_Integer NbInt = NbSplit - 1;
// GeomConvert_BSplineCurveKnotSplitting Convector(myBspl, Cont);
// Standard_Integer NbInt = Convector.NbSplits()-1;
// TColStd_Array1OfInteger Inter(1,NbInt+1);
// Convector.Splitting( Inter);
Standard_Integer Nb = myBSplineCurve->NbKnots();
Standard_Integer Index1 = 0;
Standard_Integer Index2 = 0;
Standard_Real newFirst, newLast;
const TColStd_Array1OfReal& TK = myBSplineCurve->Knots();
const TColStd_Array1OfInteger& TM = myBSplineCurve->Multiplicities();
Standard_Real Eps = Min(Resolution(Precision::Confusion()),
Precision::PConfusion());
if (!myBSplineCurve->IsPeriodic() || ((Abs(myFirst - myBSplineCurve->FirstParameter()) < Eps) &&
(Abs(myLast - myBSplineCurve->LastParameter()) < Eps)))
{
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myFirst,
myBSplineCurve->IsPeriodic(),
1, Nb, Index1, newFirst);
BSplCLib::LocateParameter(myBSplineCurve->Degree(), TK, TM, myLast,
myBSplineCurve->IsPeriodic(),
1, Nb, Index2, newLast);
FirstParam = newFirst;
LastParam = newLast;
// Protection against myFirst = UFirst - eps, which located as ULast - eps
if (myBSplineCurve->IsPeriodic() && (LastParam - FirstParam) < Precision::PConfusion())
{
if (Abs(LastParam - myBSplineCurve->FirstParameter()) < Precision::PConfusion())
LastParam += myBSplineCurve->Period();
else
FirstParam -= myBSplineCurve->Period();
}
// On decale eventuellement les indices
// On utilise une "petite" tolerance, la resolution ne doit
// servir que pour les tres longue courbes....(PRO9248)
if (Abs(FirstParam - TK(Index1 + 1)) < Eps) Index1++;
if (LastParam - TK(Index2) > Eps) Index2++;
myNbIntervals = 1;
TColStd_Array1OfInteger aFinalIntervals(1, Inter.Upper());
aFinalIntervals(1) = Index1;
for (Standard_Integer i = 1; i <= NbInt; i++) {
if (Inter(i) > Index1 && Inter(i) < Index2) {
myNbIntervals++;
aFinalIntervals(myNbIntervals) = Inter(i);
}
}
aFinalIntervals(myNbIntervals + 1) = Index2;
for (Standard_Integer I = 1; I <= myNbIntervals + 1; I++) {
T(I) = TK(aFinalIntervals(I));
}
}
else
{
Standard_Real aFirst = myFirst;
Standard_Real aLast = myLast;
Standard_Real aCurFirst = aFirst;
Standard_Real aCurLast = aLast;
Standard_Real aPeriod = myBSplineCurve->Period();
Standard_Real aLower = myBSplineCurve->FirstParameter();
Standard_Real anUpper = myBSplineCurve->LastParameter();
Standard_Integer aLPer = 0; Standard_Integer aFPer = 0;
if (Abs(myFirst - aLower) <= Eps)
{
aCurFirst = aLower;
aFirst = aCurFirst;
}
if (Abs(myLast - anUpper) <= Eps)
{
aCurLast = anUpper;
aLast = aCurLast;
}
if ((Abs(aLower - myFirst) < Eps) && (aCurFirst < aLower))
{
aCurFirst = aLower;
}
else
{
DefinFPeriod(aLower, anUpper,
Eps, aPeriod, aCurFirst, aFPer);
}
DefinLPeriod(aLower, anUpper,
Eps, aPeriod, aCurLast, aLPer);
if (myFirst == aLower)
{
aFPer = 0;
}
SpreadInt(TK, TM, Inter, myBSplineCurve->Degree(), Nb, aFPer, aLPer, NbInt, aLower, myFirst, myLast, aPeriod,
aCurLast, Eps, T, myNbIntervals);
T(T.Lower()) = aFirst;
T(T.Lower() + myNbIntervals) = aLast;
return;
}
}
T(T.Lower()) = myFirst;
T(T.Lower() + myNbIntervals) = myLast;
if ((!myBSplineCurve->IsPeriodic() && S <= Continuity()) || S == GeomAbs_C0)
{
T( T.Lower() ) = myFirst;
T( T.Lower() + 1 ) = myLast;
return;
}
}
Standard_Integer aDegree = myBSplineCurve->Degree();
Standard_Integer aCont;
switch (S)
{
case GeomAbs_C1:
aCont = 1;
break;
case GeomAbs_C2:
aCont = 2;
break;
case GeomAbs_C3:
aCont = 3;
break;
case GeomAbs_CN:
aCont = aDegree;
break;
default:
throw Standard_DomainError ("GeomAdaptor_Curve::Intervals()");
}
Standard_Real anEps = Min(Resolution(Precision::Confusion()), Precision::PConfusion());
BSplCLib::Intervals(myBSplineCurve->Knots(),
myBSplineCurve->Multiplicities(),
aDegree,
myBSplineCurve->IsPeriodic(),
aCont,
myFirst,
myLast,
anEps,
&T);
}
else if (myTypeCurve == GeomAbs_OffsetCurve){
Standard_Integer myNbIntervals = 1;
GeomAbs_Shape BaseS=GeomAbs_C0;
switch(S){
case GeomAbs_G1:
@@ -1073,8 +398,7 @@ void GeomAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
GeomAdaptor_Curve C
(Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve());
GeomAdaptor_Curve C (Handle(Geom_OffsetCurve)::DownCast (myCurve)->BasisCurve(), myFirst, myLast);
// akm 05/04/02 (OCC278) If our curve is trimmed we must recalculate
// the array of intervals obtained from the basis to
// vvv reflect parameter bounds
@@ -1090,10 +414,15 @@ void GeomAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
// old - myNbIntervals = C.NbIntervals(BaseS);
// old - C.Intervals(T, BaseS);
// akm 05/04/02 ^^^
T( T.Lower() ) = myFirst;
T( T.Lower() + myNbIntervals ) = myLast;
}
T( T.Lower() ) = FirstParam;
T( T.Lower() + myNbIntervals ) = LastParam;
else
{
T( T.Lower() ) = myFirst;
T( T.Lower() + 1 ) = myLast;
}
}
//=======================================================================

View File

@@ -279,7 +279,7 @@ IntAna_QuadQuadGeo::IntAna_QuadQuadGeo(void)
void IntAna_QuadQuadGeo::InitTolerances()
{
myEPSILON_DISTANCE = 1.0e-14;
myEPSILON_ANGLE_CONE = Precision::Angular();
myEPSILON_ANGLE_CONE = 1.0e-10; //Precision::Angular();
myEPSILON_MINI_CIRCLE_RADIUS = 0.01*Precision::Confusion();
myEPSILON_CYLINDER_DELTA_RADIUS = 1.0e-13;
myEPSILON_CYLINDER_DELTA_DISTANCE= Precision::Confusion();

View File

@@ -18,6 +18,7 @@
// paralleling with Intel TBB
#ifdef HAVE_TBB
#pragma comment (lib, "tbbmalloc.lib")
#include <tbb/scalable_allocator.h>
using namespace tbb;
#else

View File

@@ -9,6 +9,7 @@ TKShHealing
TKMesh
TKService
TKHLR
TKTopAlgo
CSF_TclLibs
CSF_TclTkLibs
CSF_XwLibs

View File

@@ -0,0 +1,9 @@
puts "================================"
puts "0033187: Modeling Algorithms - Crash in postprocessing of imported shape"
puts "================================"
restore [locate_data_file bug33187.brep] s
if [catch { fixshape r s } catch_result] {
puts "${BugNumber}: Faulty"
}

View File

@@ -4,7 +4,7 @@ puts "====================================="
puts ""
set viewname ""
set length 6.30238
set length 6.30139
restore [locate_data_file bug27341_hlrsave.brep] a
COMPUTE_HLR $viewname $algotype

View File

@@ -1,4 +1,4 @@
puts "TODO OCC30286 ALL: Error : The length of result shape is 8.06872, expected 8.05281"
puts "TODO OCC30286 ALL: Error : The length of result shape is 7.9487, expected 8.05281"
puts "====================================="
puts "OCC27341: Incorrect exact HLR results"

View File

@@ -4,7 +4,7 @@ puts "====================================="
puts ""
set viewname "vbottom"
set length 8.39744
set length 8.40196
restore [locate_data_file bug27341_hlrsave.brep] a
COMPUTE_HLR $viewname $algotype

View File

@@ -1,4 +1,4 @@
puts "TODO OCC30286 ALL: Error : The length of result shape is 7.44464, expected 7.39488"
puts "TODO OCC30286 ALL: Error : The length of result shape is 7.4452, expected 7.39488"
puts "====================================="
puts "OCC27341: Incorrect exact HLR results"

View File

@@ -1,4 +1,4 @@
puts "TODO OCC30286 ALL: Error : The length of result shape is 9.10542, expected 9.47163"
puts "TODO OCC30286 ALL: Error : The length of result shape is 9.08401, expected 9.47163"
puts "====================================="
puts "OCC27341: Incorrect exact HLR results"

View File

@@ -4,7 +4,7 @@ puts "====================================="
puts ""
set viewname "vleft"
set length 7.64599
set length 7.64618
restore [locate_data_file bug27341_hlrsave.brep] a
COMPUTE_HLR $viewname $algotype

View File

@@ -4,7 +4,7 @@ puts "====================================="
puts ""
set viewname "vright"
set length 9.30381
set length 9.30402
restore [locate_data_file bug27341_hlrsave.brep] a
COMPUTE_HLR $viewname $algotype

View File

@@ -1,5 +1,5 @@
@echo off
rem test1
rem Helper script to run procedure of automatic upgrade of application code
rem on newer version of OCCT on Windows.
rem Running it requires that Tcl should be in the PATH