The algorithm in WorkWithBoundaries::BoundaryEstimation(...) did not take into account opposite directions of cylindrical axes (when the angle between them is obtuse). After the fix it does it.
Small correction of test cases for issue CR28009
The root of the problem is incorrect processing of cases when intersection line goes through the apex(es) of sphere. The fix improves this situation. The algorithm is taken from DecomposeResult(...) function (see IntPatch_ImpPrmIntersection.cxx file). Before the fix, faltering steps were done to solve this problem. As result, it worked in some particular cases. Now, its possibilities have been extended significantly.
Following changes have been made in the fix:
1. Class IntPatch_ALineToWLine has been rewritten cardinally. It touches as interfaces of existing methods as adding/removing some methods/fields. Correction touches both cases: going through seam of Cone/Sphere and through pole(s) of sphere. Old interface did not allow making some actions with analytical line (ALine), e.g. splitting it on several Walking-lines (WLine).
2. Restriction-line support has been removed from Implicit-Implicit intersection result (see IntPatch_Intersection::GeomGeomPerfom(...) method). It connects with the fact that the intersection algorithm itself returns precise intersection line in analytical cases (in compare with parametric intersector). Therefore, we do not need in additional (restriction) line.
3. New class IntPatch_SpecialPoints has been added. This class contains methods to add some special points (such as apex of cone, pole of sphere, point on surface boundary etc.) in intersection line (IntPatch_PointLine). It is based on the static functions, which already exist in IntPatch_ImpPrmIntersection.cxx file (these functions have been moved to the new class).
4. Method IntPatch_WLineTool::ExtendTwoWlinesToEachOther(...) has been renamed to IntPatch_WLineTool::ExtendTwoWLines(...). It is connected with changing main idea of the method. Now it allows extending WLine to the surface boundary or to the singular point (if it is possible): cone apex, sphere pole etc. Interface of this method has been corrected, too. At that, old functionality (extending to each other) has been kept. For implementation of this algorithm, new enumeration "IntPatchWT_WLsConnectionType" has been created.
5. Method IntPatch_PointLine::CurvatureRadiusOfIntersLine(...) has been added. See IntPatch_PointLine.hxx for detail information. It allows correct step computing depended on the local curvature of the intersection line. This method uses geometrical properties of intersected surfaces to compute local curvature. Therefore, it can be applied in wide range of cases even if the intersection curve is not represented in explicit form (e.g. in case of param-param-intersection).
6. Method IntSurf::SetPeriod(...) has been created.
7. Additional check has been added in Draft_Modification::Perform() method for better choice of correct fragment of intersection line for processing DRAFT operation.
8. New overload method IntPatch_Point::SetValue() has been added.
9. Some refactoring of the code has been made.
Creation of test case for issue #27431.
---------------------------------------------------------------------------------------------
Some test cases have been adjusted according to their new behavior.
tests\bugs\modalg_4\bug62
It is really IMPROVEMENT (but fortuitous).
tests\bugs\modalg_5\bug25838
The behavior of this test has been reverted to the state before fixing the issue #27341. Main problem has not been fixed in #27341. It was fortuitous improvement.
tests\bugs\moddata_2\bug565
Quality of intersection curve was not checked. And the curve is bad on both MASTER and FIX. Input data are really wrong: plane-like-cone. However, on the MASTER, four intersection curves (the quality is insignificant) are expected. On the fix, not empty intersection result is expected simply.
tests\boolean\volumemaker\A8
Differences in images and CPU is expected. Difference in images is expected to be fixed in the issue #26020. Now, we should apply this behavior.
Much CPU time is spent by IntTools_FaceFace::ComputeTolReached3d(...) and GeomInt_IntSS::BuildPCurves(...) methods calling. These methods are not touched by the algorithm. It is the result of change of intersection curve(s) form. However, the new Curve(s) seems to be valid and can be applied. As result, new behavior can be applied, too.
tests\boolean\volumemaker\F8
tests\boolean\volumemaker\F9
tests\boolean\volumemaker\G5
tests\boolean\volumemaker\G6
CPU difference is expected. Much CPU time is spent by IntPatch_PointLine::CurvatureRadiusOfIntersLine(...) method calling. This method is really new (it does not exist on the MASTER) and is really useful. Therefore, we should apply new behavior.
tests\boolean\volumemaker\G1
CPU difference is expected. Much CPU time is spent by IntTools_WLineTool::DecompositionOfWLine(...) and IntTools_FaceFace::ComputeTolReached3d(...) methods calling. These methods are not touched by the algorithm. It is the result of change of intersection curve(s) form. However, the new Curve(s) seems to be valid and can be applied. As result, new behavior can be applied, too.
tests\bugs\modalg_6\bug26619
Differences in images is expected. The test keeps its BAD status on the FIX. But the result on the fix is nearer to expected than on the MASTER. Issue #27014 is still actual. As before, it is not clear, why the number of entities is different. The number of section curves has not been changed. Interfered entities are the same as on the MASTER.
tests\bugs\modalg_5\bug25319_1(2)
The reason is described in the issue #27896.
Small correction in the test case
The SolidClassifier algorithm does not take into account the internal parts of the solid and its faces.
But in some cases the parts which are internal on some shapes can be included in other shapes of
the same solid with FORWARD/REVERSED orientation and therefore should be counted as well.
The fix changes the procedure of the initialization of the tree of bounding boxes of the edges and
vertices of the solid in SolidExplorer algorithm to treat the internal/external parts of the solid correctly.
Avoid getting non-existing array items. Use reference to array items instead of pointers where it is possible.
Create test case. Before the fix this test raised exception in debug mode.
Method WorkWithBoundaries::BoundaryEstimation(...) has been brought in balance with IsParallel(...) method, which checks if cylinder axes are parallel.
While checking the section edges between pair of faces on coincidence with the
existing edges use for checking only the edges from these two faces.
Test case for the issue.
method BuildKPart was modified in order to create sphere instead of torus in case of major radius <= tolerance
Minor corrections in test case bugs/modalg_6/bug27769
Now, the algorithm tries to estimate U- and V-ranges of future intersection curve(s) on the surface. This information is used in stop-criterium of the algorithm instead of full surface range used earlier. It allows reducing dependencies of intersection result on the surface ranges.
Tuning of test case bugs/modalg_6/bug27937_1
1. VRange of intersection curve has been limited. As result, too oblong intersection curve(s) will be never returned.
2. Now, purger algorithm is not called for lines obtained by Geom-Geom intersection method.
3. New statuses are entered in IntPatch_ImpImpIntersection class. It makes intersection algorithm more informative and flexible for using.
4. Method IntPatch_ImpImpIntersection::GetStatus() has been created.
Tuning of test case bugs modalg_6/bug26894
1. Unification of trimmed and not-trimmed cylinders processing (IntPatch_Intersection::GeomGeomPerfomTrimSurf() method has been removed).
2. Interface of IntPatch_ImpImpIntersection::Perform(...) method has been changed.
3. Now, WLine purging is forbidden for Geom-Geom-Intersection.
4. Bnd_Range class has been created. See Bnd_Range.hxx for detail information.
5. Algorithm of AddBoundaryPoint function has been improved in order to obtain intersection points in both boundaries (VFirst and VLast of every surface).
6. Earlier, method Geom2dConvert::ConcatG1(...) increased resulted B-spline degree (in case of not succession of previous iteration). Now increased value has been limited by Geom2d_BSplineCurve::MaxDegree() value (max degree = 25).
7. Algorithm of B-spline closure definition has been changed in the methods Geom2dConvert::C0BSplineToC1BSplineCurve(...) and Geom2dConvert::C0BSplineToArrayOfC1BSplineCurve(...).
Creation of test case for this issue.
Adjusting test cases according to their new behavior.
Small correction in the code according to KGV's remark.
Using osculating surface is forbidden if the normal to basis (for offset) surface is well defined.
Creation of test case for this issue.
Adjusting test cases according to their new behavior.
Incorrect result of classification of a point relatively a solid leads to faulty interferences between vertices/edges of one solid with another one. Classification has been corrected by checking if an auxiliary point in face coincides with the face boundary in 3D space.
Test case has been created.
The reason of exception has been eliminated.
Creation of the test case for this issue.
Correction of unstable test case.
Some test cases have been adjusted according to their new behavior.
The algorithm that builds outlines ("silhouettes") makes an outline in 2d parametric space of the surface starting from some previously detected point where normal is orthogonal to direction of view. So, the surface is previously discretized into (m*n) sample points and some of them become starting points for future outlines.
If the surface has non-uniform parametrization and/or some local extremums of curvature, the outlines can not be built without breaks, so there are several groups of consequent outlines in this case. Unfortunately, it leads to the situation when current number of sample points becomes insufficient to build all the parts of outlines.
The idea is to detect the "holes" between already constructed parts of outlines and then complete the construction.
New auxiliary draw command for testing of HLR.
Correction according to the remarks.
Update of test case according to the developer's directive
The GeomFill_NSections algorithm cannot create any surface from sequence with single curve only.
Therefore, return is provided in corresponding place of the code. Additionally, some public methods of GeomFill_NSections class checks if the surface has been created earlier.
Test case for this issue has been created.
Compiler error has been eliminated.
Make protection of HLR algo against garbage data in faces. In particular case, there are faces built on a periodical surfaces, which U bounds exceed period thousands times. Such faces are excluded from the process of edges hiding.
In addition, while fitting the intersection point in period for periodical faces, replace looping with the single call to AdjustPeriodic method.
- Add new test case.
- Update tests of HLR according to new numbers of subshapes.
Update of test cases according to the new behavior
1. The reason of exception has been eliminated.
2. Interfaces of DistanceMinimizeByGradient and DistanceMinimizeByExtrema methods of IntWalk_PWalking class has been changed.
Creation of test case for this issue.
TODO has been added with reference to the issue #26329
1. BOPAlgo_MakerVolume - Taking into account the possibility of Same Domain faces
while collecting the faces for building the solids;
2. BOPDS_DS - Making the check on coincidence of edges consistent with the intersection
algorithm which also adds the Precision::Confusion() to the intersection tolerance;
3. Test case for the issue.
4. Adjusting test cases (improvements) to their new behavior.
The matter was that with starting point paased into intersector the walking line goes one point outside of the surface domain. Then during purging this extra point is removed from the line but its geometry is used for the last vertex. This makes a set of points invalid for approximation, and as a result we obtain the curve with reversed tangent direction at the end.
The API of the method IntPatch_WLineTool::ComputePurgedWLine has been changed to insert a new Boolean parameter RestrictLine. If this parameter is false than the step of removing of outside points is skipped, and the result line is not distorted. This flag is determined inside IntTools_FaceFace to tell the intersector if it is needed to limit intersection line by surface domain.
Test case has been added.
2d-tolerance has been bounded above (earlier it was too big for precise computation).
Creation of the test case for this issue.
Adjusting some test cases according to their new behavior.
Adjusting test case according to its new behavior.