The misprint leading to the problems was fixed.
"Draw" tests were created to check the fix.
"Draw" test bugs/modalg_7/bug28784 was corrected
for right changes of the results.
In fact, the DRAW-command "mesh" is duplicate of "incmesh".
The difference is that the "mesh" creates DRAW-object MeshTest_DrawableMesh. However, this object is currently not applicable (e.g. we cannot display it).
DRAW-commands "mesh", "addshape", "smooth", "edges", "vertices", "medge", "mvertex", "triangle", "dumpvertex", "dumpedge", "dumptriangle" and "onetriangulation" have been removed.
The class MeshTest_DrawableMesh has been removed as useless.
Testgrids "mesh standard_mesh" and "mesh advanced_mesh" have been removed.
1. Check whether the mesh satisfies the required angular deflection has been amended. Namely normals (to the surface) in the ends of any not "frontier" link are made collinear (with the given angular tolerance).
2. New parameters AngleInterior and DeflectionInterior have been added in IMeshTools_Parameters structure.
3. In case of thin long faces with internal edges, add points of internal edges to control parameters using grabParamsOfInternalEdges() in order to avoid aberrations on its ends. Disable addition of parameters from boundary edges in case of BSpline surface. Deviation can be controlled through the deflection parameter.
4. Grab parameters from edges in case if there is just a single interval on BSpline surface along U and V direction.
Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements;
Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability;
Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model.
The workflow of updated component can be divided on six parts:
* Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities;
* Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account;
* Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved;
* Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation;
* Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face;
* Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model.
Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units.
<!break>
1. Extend "tricheck" DRAW-command in order to find degenerated triangles.
2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated.
3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals.
4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection.
5. Correction of test scripts:
1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue)
2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant)
Correction in upgrade guide.
Boolean Operations - Force the face with internal edges to be treated by the BuilderFace algorithm. It is needed for the cases when internal edges of the face go from side to side and should really split the face.
Test case for the issue.
If 2D-curves are requested in intersection result but they cannot be created (by some reason) then the full set of curves (3D and two 2D) is rejected from the intersection result.
1. New testgrid "lowalgos/intss" has been created. It will contain all test cases on geometrical intersection of two surfaces ("intersect" DRAW-command) and two faces ("bopcurves" DRAW-command).
2. New test case for the issue #28493 has been created because the problem is not reproduced on MASTER.
3. Test case (lowalgos/intss/bug24472) for the issue #29501 has been modified in order to check loops of the resulting intersection curves.
Test cases have been created. No fix is needed because the described problem has not to be cause of failing of high-level OCCT-algorithms.
See the message ~80300 (issue #26509) for detail information.
Bnd_Box now keeps calculating of finite part of bounding box after specifying it to be Open in some direction.
The finite part can be retrieved using new method Bnd_Box::FinitePart().
Prs3d::GetDeflection() now uses Bnd_Box::FinitePart() when applying relative deflection.
Draw Harness command bounding has been extended with option -finite returing a finite part of AABB.
Special treatment of bspline curve of first degree is implemented in Extrema_GExtPC.gxx
Test case is added
Some test cases are modified according to actual state of algorithm
Graphic3d_Buffer can be now optionally initialized as non-interleaved array of vertex attributes
and provides an interface to invalidate buffer sub-range tracked by OpenGl_PrimitiveArray.
Replacing usage of BRepAlgo_DSAccess with usage of modern Boolean operations algorithms in BRepFill_Draft.
Removing BRepAlgo_BooleanOperations and BRepAlgo_DSAccess classes.
The following classes have been removed as unused:
* BRepAlgo_DataMapOfShapeBoolean
* BRepAlgo_DataMapOfShapeInterference
* BRepAlgo_EdgeConnector
* BRepAlgo_SequenceOfSequenceOfInteger
SelectMgr_SelectableObject now assigns transformation to mySelectionPrs and myHilightPrs presentations.
Removed confusing method PrsMgr_PresentableObject::UpdateTransformation() with presentation as argument.
When refining the mesh to achieve required deflection (IntPolyh_Triangle::MultipleMiddleRefinement) limit the number of new triangles to avoid infinite loop.
Test case for the issue.
Implemented workaround for dump images with width >= 5462 pix on Intel OpenGl driver.
Changes according to OpenGl_Context::myVendor field in lowercase.
Now roots-references in XCAF Document can be exported to STEP without losing structure of assembly/sharing/metadata of this root. New auxiliary root assembly with each root-reference is created to save all necessary data.
Provide possibility to perform Boolean operations on open solids.
Implementation of the new method *BOPAlgo_Builder::BuildBOP* performing the construction of the result shape for the given type of Boolean operation.
This approach does not rely on the splits of solid to be correct and looks for the faces with necessary state relatively opposite solids to build the result solid.
The call to this method is performed from BOP algorithm in case there were open solids in the arguments.
Implementation of the draw command *buildbop* performing a call to the method above.
Do not allow the precision with which the valid range is found to be less than the epsilon of the max parameter of the edge's range.
Test cases for the issue.
Add history for subshapes of spine: edges and vertices. Each edge of spine generates a shell. Each vertex of spine generates a set of edges and, possibly, faces (in the case of Round Corner).
StdPrs_ToolRFace no skips curves with NULL curves.
Code has been cleaned up from duplicated checks, redundant casts
and dummy Adaptor2d_Curve2dPtr typedef.
StdSelect_BRepSelectionTool::GetSensitiveForFace() now catches
Standard_NullObject exception to skip invalid Edges.
The following improvements have been made in Boolean operations algorithm in order to fix the problem:
1. Initialization of the pave blocks which vertices have acquired the SD ones.
2. Removing from Data Structure the small edges having the same vertices on both ends (either initially or acquired).
3. Avoid adding empty SD connections when one vertex points to itself.
Test case for the issue.
BRepLib::ExtendFace method when working with analytical and periodic faces now takes into account the possible closeness of the result face.
Test cases for the issue.
1. The condition of WLine breaking (in IntWalk_IWalking algorithm) has become more independent of the input tolerance.
2. Currently the algorithm of IntPatch_Points of WLine processing depends on the algorithm of obtaining the WLine.
3. The methods IntSurf_LineOn2S::Add(...) and IntSurf_LineOn2S::SetUV(...) have become not inline (see the message ~0077431 in the issue #29866).
Detection of specific case of error in the definition of transformation matrix describing position of the component within assembly, when it has Axis Placements swapped, is corrected to handle the case when one of these Axis Placements is contained in both Shape Representations (of the assembly and its component).
This allows the problematic STEP file to be translated correctly.
Added test bugs step bug30087