1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0030199: Extrema Point<->Curve gives inaccurate result

Special treatment of bspline curve of first degree is implemented in Extrema_GExtPC.gxx
Test case is added
Some test cases are modified according to actual state of algorithm
This commit is contained in:
ifv 2018-10-15 15:38:00 +03:00 committed by apn
parent 3b4c69452b
commit d8406b2f3a
6 changed files with 185 additions and 88 deletions

View File

@ -154,108 +154,189 @@ void Extrema_GExtPC::Perform(const ThePoint& P)
mysample = (TheCurveTool::BSpline(aCurve))->Degree() + 1;
// Fill sample points.
Standard_Integer aValIdx = 1;
NCollection_Array1<Standard_Real> aVal(1, (mysample) * (aLastUsedKnot - aFirstUsedKnot) + 1);
NCollection_Array1<Standard_Real> aParam(1, (mysample) * (aLastUsedKnot - aFirstUsedKnot) + 1);
for(anIdx = aFirstUsedKnot; anIdx < aLastUsedKnot; anIdx++)
if (mysample == 2)
{
Standard_Real aF = aKnots(anIdx) + aPeriodJump,
aL = aKnots(anIdx + 1) + aPeriodJump;
if (anIdx == aFirstUsedKnot)
aF = myuinf;
if (anIdx == aLastUsedKnot - 1)
aL = myusup;
Standard_Real aStep = (aL - aF) / mysample;
for(Standard_Integer aPntIdx = 0; aPntIdx < mysample; aPntIdx++)
//BSpline of first degree, direct seaching extrema for each knot interval
ThePoint aPmin;
Standard_Real tmin = 0., distmin = RealLast();
Standard_Real aMin1 = 0., aMin2 = 0.;
myExtPC.Initialize(aCurve);
for (anIdx = aFirstUsedKnot; anIdx < aLastUsedKnot; anIdx++)
{
Standard_Real aCurrentParam = aF + aStep * aPntIdx;
aVal(aValIdx) = TheCurveTool::Value(aCurve, aCurrentParam).SquareDistance(P);
aParam(aValIdx) = aCurrentParam;
aValIdx++;
Standard_Real aF = aKnots(anIdx) + aPeriodJump,
aL = aKnots(anIdx + 1) + aPeriodJump;
if (anIdx == aFirstUsedKnot)
{
aF = myuinf;
}
else
if (anIdx == aLastUsedKnot - 1)
{
aL = myusup;
}
ThePoint aP1, aP2;
TheCurveTool::D0(aCurve, aF, aP1);
TheCurveTool::D0(aCurve, aL, aP2);
TheVector aBase1(P, aP1), aBase2(P, aP2);
TheVector aV(aP2, aP1);
Standard_Real aVal1 = aV.Dot(aBase1); // Derivative of (C(u) - P)^2
Standard_Real aVal2 = aV.Dot(aBase2); // Derivative of (C(u) - P)^2
if (anIdx == aFirstUsedKnot)
{
aMin1 = P.SquareDistance(aP1);
}
else
{
aMin1 = aMin2;
if (distmin > aMin1)
{
distmin = aMin1;
tmin = aF;
aPmin = aP1;
}
}
aMin2 = P.SquareDistance(aP2);
Standard_Real aMinSqDist = Min(aMin1, aMin2);
Standard_Real aMinDer = Min(Abs(aVal1), Abs(aVal2));
if (!(Precision::IsInfinite(aVal1) || Precision::IsInfinite(aVal2)))
{
// Derivatives have opposite signs - min or max inside of interval (sufficient condition).
if (aVal1 * aVal2 <= 0.0 ||
aMinSqDist < 100. * Precision::SquareConfusion() ||
2.*aMinDer < Precision::Confusion())
{
myintuinf = aF;
myintusup = aL;
IntervalPerform(P);
}
}
}
if (!Precision::IsInfinite(distmin))
{
Standard_Boolean isToAdd = Standard_True;
NbExt = mypoint.Length();
for (i = 1; i <= NbExt && isToAdd; i++)
{
Standard_Real t = mypoint.Value(i).Parameter();
isToAdd = (distmin < mySqDist(i)) && (Abs(t - tmin) > mytolu);
}
if (isToAdd)
{
ThePOnC PC(tmin, aPmin);
mySqDist.Append(distmin);
myismin.Append(Standard_True);
mypoint.Append(PC);
}
}
}
// Fill last point.
aVal(aValIdx) = TheCurveTool::Value(aCurve, myusup).SquareDistance(P);
aParam(aValIdx) = myusup;
myExtPC.Initialize(aCurve);
// Find extremas.
for(anIdx = aVal.Lower() + 1; anIdx < aVal.Upper(); anIdx++)
else
{
if (aVal(anIdx) <= Precision::SquareConfusion())
// Fill sample points.
Standard_Integer aValIdx = 1;
NCollection_Array1<Standard_Real> aVal(1, (mysample)* (aLastUsedKnot - aFirstUsedKnot) + 1);
NCollection_Array1<Standard_Real> aParam(1, (mysample)* (aLastUsedKnot - aFirstUsedKnot) + 1);
for (anIdx = aFirstUsedKnot; anIdx < aLastUsedKnot; anIdx++)
{
mySqDist.Append(aVal(anIdx));
myismin.Append(Standard_True);
mypoint.Append(ThePOnC(aParam(anIdx), TheCurveTool::Value(aCurve, aParam(anIdx))));
Standard_Real aF = aKnots(anIdx) + aPeriodJump,
aL = aKnots(anIdx + 1) + aPeriodJump;
if (anIdx == aFirstUsedKnot)
aF = myuinf;
if (anIdx == aLastUsedKnot - 1)
aL = myusup;
Standard_Real aStep = (aL - aF) / mysample;
for (Standard_Integer aPntIdx = 0; aPntIdx < mysample; aPntIdx++)
{
Standard_Real aCurrentParam = aF + aStep * aPntIdx;
aVal(aValIdx) = TheCurveTool::Value(aCurve, aCurrentParam).SquareDistance(P);
aParam(aValIdx) = aCurrentParam;
aValIdx++;
}
}
if ((aVal(anIdx) >= aVal(anIdx + 1) &&
aVal(anIdx) >= aVal(anIdx - 1)) ||
// Fill last point.
aVal(aValIdx) = TheCurveTool::Value(aCurve, myusup).SquareDistance(P);
aParam(aValIdx) = myusup;
myExtPC.Initialize(aCurve);
// Find extremas.
for (anIdx = aVal.Lower() + 1; anIdx < aVal.Upper(); anIdx++)
{
if (aVal(anIdx) <= Precision::SquareConfusion())
{
mySqDist.Append(aVal(anIdx));
myismin.Append(Standard_True);
mypoint.Append(ThePOnC(aParam(anIdx), TheCurveTool::Value(aCurve, aParam(anIdx))));
}
if ((aVal(anIdx) >= aVal(anIdx + 1) &&
aVal(anIdx) >= aVal(anIdx - 1)) ||
(aVal(anIdx) <= aVal(anIdx + 1) &&
aVal(anIdx) <= aVal(anIdx - 1)) )
{
myintuinf = aParam(anIdx - 1);
myintusup = aParam(anIdx + 1);
IntervalPerform(P);
}
}
// Solve on the first and last intervals.
if (mydist1 > Precision::SquareConfusion() && !Precision::IsPositiveInfinite(mydist1))
{
ThePoint aP1, aP2;
TheVector aV1, aV2;
TheCurveTool::D1(aCurve, aParam.Value(aParam.Lower()), aP1, aV1);
TheCurveTool::D1(aCurve, aParam.Value(aParam.Lower() + 1), aP2, aV2);
TheVector aBase1(P, aP1), aBase2(P, aP2);
Standard_Real aVal1 = aV1.Dot(aBase1); // Derivative of (C(u) - P)^2
Standard_Real aVal2 = aV2.Dot(aBase2); // Derivative of (C(u) - P)^2
if(!(Precision::IsInfinite(aVal1) || Precision::IsInfinite(aVal2)))
{
// Derivatives have opposite signs - min or max inside of interval (sufficient condition).
// Necessary condition - when point lies on curve.
// Necessary condition - when derivative of point is too small.
if(aVal1 * aVal2 <= 0.0 ||
aBase1.Dot(aBase2) <= 0.0 ||
2.0 * Abs(aVal1) < Precision::Confusion() )
aVal(anIdx) <= aVal(anIdx - 1)))
{
myintuinf = aParam(aVal.Lower());
myintusup = aParam(aVal.Lower() + 1);
myintuinf = aParam(anIdx - 1);
myintusup = aParam(anIdx + 1);
IntervalPerform(P);
}
}
}
if (mydist2 > Precision::SquareConfusion() && !Precision::IsPositiveInfinite(mydist2))
{
ThePoint aP1, aP2;
TheVector aV1, aV2;
TheCurveTool::D1(aCurve, aParam.Value(aParam.Upper() - 1), aP1, aV1);
TheCurveTool::D1(aCurve, aParam.Value(aParam.Upper()), aP2, aV2);
TheVector aBase1(P, aP1), aBase2(P, aP2);
Standard_Real aVal1 = aV1.Dot(aBase1); // Derivative of (C(u) - P)^2
Standard_Real aVal2 = aV2.Dot(aBase2); // Derivative of (C(u) - P)^2
if(!(Precision::IsInfinite(aVal1) || Precision::IsInfinite(aVal2)))
// Solve on the first and last intervals.
if (mydist1 > Precision::SquareConfusion() && !Precision::IsPositiveInfinite(mydist1))
{
// Derivatives have opposite signs - min or max inside of interval (sufficient condition).
// Necessary condition - when point lies on curve.
// Necessary condition - when derivative of point is too small.
if(aVal1 * aVal2 <= 0.0 ||
aBase1.Dot(aBase2) <= 0.0 ||
2.0 * Abs(aVal2) < Precision::Confusion() )
ThePoint aP1, aP2;
TheVector aV1, aV2;
TheCurveTool::D1(aCurve, aParam.Value(aParam.Lower()), aP1, aV1);
TheCurveTool::D1(aCurve, aParam.Value(aParam.Lower() + 1), aP2, aV2);
TheVector aBase1(P, aP1), aBase2(P, aP2);
Standard_Real aVal1 = aV1.Dot(aBase1); // Derivative of (C(u) - P)^2
Standard_Real aVal2 = aV2.Dot(aBase2); // Derivative of (C(u) - P)^2
if (!(Precision::IsInfinite(aVal1) || Precision::IsInfinite(aVal2)))
{
myintuinf = aParam(aVal.Upper() - 1);
myintusup = aParam(aVal.Upper());
IntervalPerform(P);
// Derivatives have opposite signs - min or max inside of interval (sufficient condition).
// Necessary condition - when point lies on curve.
// Necessary condition - when derivative of point is too small.
if (aVal1 * aVal2 <= 0.0 ||
aBase1.Dot(aBase2) <= 0.0 ||
2.0 * Abs(aVal1) < Precision::Confusion())
{
myintuinf = aParam(aVal.Lower());
myintusup = aParam(aVal.Lower() + 1);
IntervalPerform(P);
}
}
}
if (mydist2 > Precision::SquareConfusion() && !Precision::IsPositiveInfinite(mydist2))
{
ThePoint aP1, aP2;
TheVector aV1, aV2;
TheCurveTool::D1(aCurve, aParam.Value(aParam.Upper() - 1), aP1, aV1);
TheCurveTool::D1(aCurve, aParam.Value(aParam.Upper()), aP2, aV2);
TheVector aBase1(P, aP1), aBase2(P, aP2);
Standard_Real aVal1 = aV1.Dot(aBase1); // Derivative of (C(u) - P)^2
Standard_Real aVal2 = aV2.Dot(aBase2); // Derivative of (C(u) - P)^2
if (!(Precision::IsInfinite(aVal1) || Precision::IsInfinite(aVal2)))
{
// Derivatives have opposite signs - min or max inside of interval (sufficient condition).
// Necessary condition - when point lies on curve.
// Necessary condition - when derivative of point is too small.
if (aVal1 * aVal2 <= 0.0 ||
aBase1.Dot(aBase2) <= 0.0 ||
2.0 * Abs(aVal2) < Precision::Confusion())
{
myintuinf = aParam(aVal.Upper() - 1);
myintusup = aParam(aVal.Upper());
IntervalPerform(P);
}
}
}
}
mydone = Standard_True;
break;
}

View File

@ -0,0 +1,16 @@
puts "========"
puts "0030199: Extrema Point<->Curve gives inaccurate result"
puts "========"
puts ""
2dbsplinecurve c2d 1 8 0 2 147.948545311472 1 227.205037349287 1 282.782457537237 1 341.526569446034 1 412.981618615062 1 493.370506013535 1 820.162497637298 2 70.4310501764176 -125.064069601289 1 202.351851590745 -192.039245703947 1 281.504332439341 -187.980144121968 1 310.594560443526 -140.62395898876 1 274.062646205713 -94.6208077364441 1 341.714339238701 -71.6192321052281 1 397.188727525752 -129.799688113598 1 70.4310501764176 -125.064069601289 1
to3d c3d c2d
mkedge e c3d
vertex v 360 -127 0
distmini dd e v
set dist [dval dd_val]
checkreal dist $dist 2.26048366458175 1.e-7 0
vertex v1 199.49416090801449 -197.77438365880749 0
distmini dd1 e v1
set dist1 [dval dd1_val]
checkreal dist1 $dist1 6.4076675475126184 1.e-7 0

View File

@ -10,7 +10,7 @@ TPSTAT : Faulties = 0 ( 0 ) Warnings = 14 ( 3 ) Summary = 14 ( 3 )
CHECKSHAPE : Wires = 0 ( 0 ) Faces = 0 ( 0 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 41 ( 41 )
STATSHAPE : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 41 ( 41 ) FreeWire = 0 ( 4 )
TOLERANCE : MaxTol = 0.07980045861 ( 0.07980045861 ) AvgTol = 0.006103073943 ( 0.006647359845 )
TOLERANCE : MaxTol = 0.07980045861 ( 0.0832075472 ) AvgTol = 0.006103073943 ( 0.007097682834 )
LABELS : N0Labels = 3 ( 3 ) N1Labels = 2 ( 2 ) N2Labels = 0 ( 0 ) TotalLabels = 5 ( 5 ) NameLabels = 5 ( 5 ) ColorLabels = 0 ( 0 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 0 ( 0 ) Volume = 0 ( 0 ) Area = 0 ( 0 )
NCOLORS : NColors = 0 ( 0 )

View File

@ -7,7 +7,7 @@ TPSTAT : Faulties = 0 ( 0 ) Warnings = 0 ( 0 ) Summary = 0 ( 0 )
CHECKSHAPE : Wires = 0 ( 0 ) Faces = 0 ( 0 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 0 ( 0 ) Shell = 1 ( 1 ) Face = 47 ( 47 )
STATSHAPE : Solid = 0 ( 0 ) Shell = 1 ( 1 ) Face = 47 ( 47 ) FreeWire = 0 ( 0 )
TOLERANCE : MaxTol = 0.09974534731 ( 0.127442531 ) AvgTol = 0.03628276746 ( 0.04204326369 )
TOLERANCE : MaxTol = 0.09974534731 ( 0.127442531 ) AvgTol = 0.03628276746 ( 0.04253031643 )
LABELS : N0Labels = 1 ( 1 ) N1Labels = 0 ( 0 ) N2Labels = 0 ( 0 ) TotalLabels = 1 ( 1 ) NameLabels = 1 ( 1 ) ColorLabels = 0 ( 0 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 0 ( 0 ) Volume = 0 ( 0 ) Area = 0 ( 0 )
NCOLORS : NColors = 0 ( 0 )

View File

@ -12,7 +12,7 @@ TPSTAT : Faulties = 0 ( 2 ) Warnings = 4 ( 30 ) Summary = 4 ( 32 )
CHECKSHAPE : Wires = 1 ( 2 ) Faces = 1 ( 2 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 416 ( 415 )
STATSHAPE : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 416 ( 415 ) FreeWire = 0 ( 0 )
TOLERANCE : MaxTol = 133200.3972 ( 0.9492292985 ) AvgTol = 320.1208367 ( 0.03928716897 )
TOLERANCE : MaxTol = 133200.3972 ( 0.9492292985 ) AvgTol = 320.1208627 ( 0.04011190067 )
LABELS : N0Labels = 1 ( 1 ) N1Labels = 28 ( 28 ) N2Labels = 0 ( 0 ) TotalLabels = 29 ( 29 ) NameLabels = 1 ( 1 ) ColorLabels = 29 ( 29 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 1 ( 1 ) Volume = 1 ( 1 ) Area = 1 ( 1 )
NCOLORS : NColors = 2 ( 2 )

View File

@ -7,7 +7,7 @@ TPSTAT : Faulties = 0 ( 0 ) Warnings = 1 ( 27 ) Summary = 1 ( 27 )
CHECKSHAPE : Wires = 0 ( 0 ) Faces = 0 ( 0 ) Shells = 0 ( 0 ) Solids = 0 ( 0 )
NBSHAPES : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 415 ( 415 )
STATSHAPE : Solid = 1 ( 1 ) Shell = 1 ( 1 ) Face = 415 ( 415 ) FreeWire = 0 ( 0 )
TOLERANCE : MaxTol = 0.09895613597 ( 0.9492292985 ) AvgTol = 0.01325689195 ( 0.04014390707 )
TOLERANCE : MaxTol = 0.09895613597 ( 0.9492292985 ) AvgTol = 0.01328296919 ( 0.04097063947 )
LABELS : N0Labels = 1 ( 1 ) N1Labels = 28 ( 28 ) N2Labels = 0 ( 0 ) TotalLabels = 29 ( 29 ) NameLabels = 1 ( 1 ) ColorLabels = 29 ( 29 ) LayerLabels = 0 ( 0 )
PROPS : Centroid = 1 ( 1 ) Volume = 1 ( 1 ) Area = 1 ( 1 )
NCOLORS : NColors = 2 ( 2 )