- Standard_EXPORT which were specified for inline methods were deleted.
- ALL occurrences of DEFINE_STANDARD_RTTI_INLINE were replaced by DEFINE_STANDARD_RTTIEXT in header files and IMPLEMENT_STANDARD_RTTIEXT in source files
- ALL occurrences of "inline" keyword were deleted where it didn't not cause a linkage errors
- Added source files for classes that were without them for IMPLEMENT_STANDARD_RTTIEXT
Removed tight connections between data structures, auxiliary tools and algorithms in order to create extensible solution, easy for maintenance and improvements;
Code is separated on several functional units responsible for specific operation for the sake of simplification of debugging and readability;
Introduced new data structures enabling possibility to manipulate discrete model of particular entity (edge, wire, face) in order to perform computations locally instead of processing an entire model.
The workflow of updated component can be divided on six parts:
* Creation of model data structure: source TopoDS_Shape passed to algorithm is analyzed and exploded on faces and edges. For each topological entity corresponding reflection is created in data model. Note that underlying algorithms use data model as input and access it via common interface which allows user to create custom data model with necessary dependencies between particular entities;
* Discretize edges 3D & 2D curves: 3D curve as well as associated set of 2D curves of each model edge is discretized in order to create coherent skeleton used as a base in faces meshing process. In case if some edge of source shape already contains polygonal data which suites specified parameters, it is extracted from shape and stored to the model as is. Each edge is processed separately, adjacency is not taken into account;
* Heal discrete model: source TopoDS_Shape can contain problems, such as open-wire or self-intersections, introduced during design, exchange or modification of model. In addition, some problems like self-intersections can be introduced by roughly discretized edges. This stage is responsible for analysis of discrete model in order to detect and repair faced problems or refuse model’s part for further processing in case if problem cannot be solved;
* Preprocess discrete model: defines actions specific for implemented approach to be performed before meshing of faces. By default, iterates over model faces and checks consistency of existing triangulations. Cleans topological faces and its adjacent edges from polygonal data in case of inconsistency or marks face of discrete model as not required for computation;
* Discretize faces: represents core part performing mesh generation for particular face based on 2D discrete data related to processing face. Caches polygonal data associated with face’s edges in data model for further processing and stores generated mesh to TopoDS_Face;
* Postprocess discrete model: defines actions specific for implemented approach to be performed after meshing of faces. By default, stores polygonal data obtained on previous stage to TopoDS_Edge objects of source model.
Component is now spread over IMeshData, IMeshTools, BRepMeshData and BRepMesh units.
<!break>
1. Extend "tricheck" DRAW-command in order to find degenerated triangles.
2. Class BRepMesh_FastDiscret::Parameters has been declared as deprecated.
3. NURBS range splitter: do not split intervals without necessity. Intervals are split only in case if it is impossible to compute normals directly on intervals.
4. Default value of IMeshTools_Parameters::MinSize has been changed. New value is equal to 0.1*Deflection.
5. Correction of test scripts:
1) perf mesh bug27119: requested deflection is increased from 1e-6 to 1e-5 to keep reasonable performance (but still reproducing original issue)
2) bugs mesh bug26692_1, 2: make snapshot of triangulation instead of wireframe (irrelevant)
Correction in upgrade guide.
BRepMesh_Classifier: Two-pass approach for intersection check with possibility to run it in parallel mode.
First pass - bounding boxes of segments are checked for overlapping;
Second pass - intersection point is calculated in case if overlapping is detected.
Make NCollection_UBTree::ChangeLastNode() exported due to compilation error on Linux platform.
Reason: method does not depend on template parameters, so it should be available.
Revert previous change and try to use another trick for Linux
Fix compilation warning on MacOS: remove redundant constant
Fix regressions: do not consider insignificant loops in case of self intersections on the same wire.
More sugar solution for compilation errors on NCollection_EBTree on Linux
Test cases for issue CR24968
Increased checking accuracy of endpoints touching of segments.
Code formatting improvement.
Test case for issue CR24775
Correction test case for issue CR24775
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
Removing pPotentially uninitialized local variable
Got rid of most of warnings C4701: Potentially uninitialized local variable
Removed redundant variable definitions.
Refactored a part of AppParCurves_ResolConstraint CTOR.
Replaced 0. to Precision::Confusion for tolerance vars;
Changed values for min and max parameter vars;
Got rid of redundant variables' initialization.