1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00

0024170: Eliminate CLang compiler warning -Wunused local functions

Removed unreferenced local functions -Wunused
Removed self assignment
Merged IntStart_SearchOnBoundaries*.gxx files into one file.
This commit is contained in:
omy 2013-09-17 10:03:19 +04:00 committed by abv
parent b6abaec0c8
commit 74d80fb976
12 changed files with 1025 additions and 1192 deletions

View File

@ -64,35 +64,6 @@ static const Standard_Real RESOLUTION = 1.0E-16;
// should be cheched with double of discretization.
static const Standard_Real MIN_DIST = 2.E-5;
//=======================================================================
//function : IsLine
//purpose :
//=======================================================================
static Standard_Boolean IsLine(const Handle(Geom2d_Curve)& theCurve2d)
{
Standard_Boolean IsALine = Standard_False;
if ( theCurve2d->IsKind( STANDARD_TYPE(Geom2d_Line) ) )
{
IsALine = Standard_True;
}
else if ( theCurve2d->IsKind( STANDARD_TYPE(Geom2d_BSplineCurve) ) )
{
Handle(Geom2d_BSplineCurve) aBSpline = *((Handle(Geom2d_BSplineCurve)*)&theCurve2d);
IsALine = (aBSpline->NbPoles() == 2);
}
else if ( theCurve2d->IsKind( STANDARD_TYPE(Geom2d_BezierCurve) ) )
{
Handle(Geom2d_BezierCurve) aBezier = *((Handle(Geom2d_BezierCurve)*)&theCurve2d);
IsALine = (aBezier->NbPoles() == 2);
}
else if ( theCurve2d->IsKind( STANDARD_TYPE(Geom2d_TrimmedCurve) ) )
{
Handle(Geom2d_TrimmedCurve) aTrimmedCurve = *((Handle(Geom2d_TrimmedCurve)*)&theCurve2d);
IsALine = IsLine(aTrimmedCurve->BasisCurve());
}
return IsALine;
}
//=======================================================================
//function : AnalizeWire
//purpose :

View File

@ -1433,7 +1433,6 @@ Standard_Boolean BRepMesh_FastDiscret::Update(const TopoDS_Edge& theEdg
{
ipl = ipf;
ivl = iv1;
isv1 = isv1;
}
else
{

View File

@ -85,19 +85,7 @@ static void Write(const TopoDS_Shape& shape,
#include <TDF_MapIteratorOfAttributeMap.hxx>
#include <TCollection_AsciiString.hxx>
#include <TDF_ChildIterator.hxx>
static void CollectLabels(const TDF_Label& theLabel, TDF_LabelMap& theMap) {
TDF_AttributeMap outRefs;
TDF_Tool::OutReferences(theLabel, outRefs);
for (TDF_MapIteratorOfAttributeMap itr(outRefs); itr.More(); itr.Next()) {
if (itr.Key()->DynamicType() == STANDARD_TYPE(TNaming_NamedShape)) {
theMap.Add(itr.Key()->Label());
CollectLabels(itr.Key()->Label(), theMap);
TCollection_AsciiString anEntry;
TDF_Tool::Entry(itr.Key()->Label(), anEntry);
cout << "NS refered Label = " << anEntry << endl;
}
}
}
Standard_Integer DNaming_SelectionDriver::Execute(TFunction_Logbook& theLog) const
{
Handle(TFunction_Function) aFunction;
@ -138,7 +126,6 @@ Standard_Integer DNaming_SelectionDriver::Execute(TFunction_Logbook& theLog) con
// TDF_IDFilter aFilterForReferences;
// aFilterForReferences.Keep(TNaming_NamedShape::GetID());
// TDF_LabelMap aMap1;
// CollectLabels(aLabel, aMap1);
// TDF_Tool::OutReferences(aLabel, /*aFilterForReferers, aFilterForReferences, */outRefs);
//***

View File

@ -689,46 +689,47 @@ static Standard_Integer hardcopy(Draw_Interpretor& ,
iview = ViewId(a[2]);
if (iview < 0) return 1;
if (n >= 4) {
if (!strcmp(a[3],"a7")) {
cad = cad / (2 * Sqrt(2));
dx = dx / (2 * Sqrt(2));
dy = dy / (2 * Sqrt(2));
}
else if (!strcmp(a[3],"a6")) {
cad = cad / 2;
dx = dx / 2;
dy = dy / 2;
}
else if (!strcmp(a[3],"a5")) {
cad = cad / Sqrt(2);
dx = dx / Sqrt(2);
dy = dy / Sqrt(2);
}
else if (!strcmp(a[3],"a4")) {
cad = cad;
dx = dx;
dy = dy;
}
else if (!strcmp(a[3],"a3")) {
cad = cad * Sqrt(2);
dx = dx * Sqrt(2);
dy = dy * Sqrt(2);
}
else if (!strcmp(a[3],"a2")) {
cad = cad * 2;
dx = dx * 2;
dy = dy * 2;
}
else if (!strcmp(a[3],"a1")) {
cad = cad * 2 * Sqrt(2);
dx = dx * 2 * Sqrt(2);
dy = dy * 2 * Sqrt(2);
}
else if (!strcmp(a[3],"a0")) {
cad = cad * 4;
dx = dx * 4;
dy = dy * 4;
}
if (!strcmp(a[3],"a7")) {
cad = cad / (2 * Sqrt(2));
dx = dx / (2 * Sqrt(2));
dy = dy / (2 * Sqrt(2));
}
else if (!strcmp(a[3],"a6")) {
cad = cad / 2;
dx = dx / 2;
dy = dy / 2;
}
else if (!strcmp(a[3],"a5")) {
cad = cad / Sqrt(2);
dx = dx / Sqrt(2);
dy = dy / Sqrt(2);
}
else if (!strcmp(a[3],"a4")) {
// Do nothing
//cad == cad;
//dx == dx;
//dy == dy;
}
else if (!strcmp(a[3],"a3")) {
cad = cad * Sqrt(2);
dx = dx * Sqrt(2);
dy = dy * Sqrt(2);
}
else if (!strcmp(a[3],"a2")) {
cad = cad * 2;
dx = dx * 2;
dy = dy * 2;
}
else if (!strcmp(a[3],"a1")) {
cad = cad * 2 * Sqrt(2);
dx = dx * 2 * Sqrt(2);
dy = dy * 2 * Sqrt(2);
}
else if (!strcmp(a[3],"a0")) {
cad = cad * 4;
dx = dx * 4;
dy = dy * 4;
}
}
}
}

View File

@ -1,3 +0,0 @@
IntStart_SearchOnBoundaries_1.gxx
IntStart_SearchOnBoundaries_2.gxx

View File

@ -17,10 +17,986 @@
// and conditions governing the rights and limitations under the License.
#include <TopoDS_Edge.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Line.hxx>
#include <gp_Lin.hxx>
#include <gp_Vec.hxx>
#include <gp_Dir.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Precision.hxx>
#include <Extrema_ExtCC.hxx>
#include <Extrema_POnCurv.hxx>
#include <math_FunctionSample.hxx>
#include <math_FunctionAllRoots.hxx>
#include <gp_Vec.hxx>
#include <TColgp_SequenceOfPnt.hxx>
#include <IntStart_SearchOnBoundaries_1.gxx>
#include <IntStart_SearchOnBoundaries_2.gxx>
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569
#include <Precision.hxx>
#include <IntSurf_Quadric.hxx>
static void FindVertex (const TheArc&,
const Handle(TheTopolTool)&,
TheFunction&,
IntStart_SequenceOfPathPoint&,
const Standard_Real);
static void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity);
static void InfiniteArc (const TheArc&,
const Handle(TheTopolTool)&,
const Standard_Real,
const Standard_Real,
TheFunction&,
IntStart_SequenceOfPathPoint&,
IntStart_SequenceOfSegment&,
const Standard_Real,
const Standard_Real,
Standard_Boolean&);
static void PointProcess (const gp_Pnt&,
const Standard_Real,
const TheArc&,
const Handle(TheTopolTool)&,
IntStart_SequenceOfPathPoint&,
const Standard_Real,
Standard_Integer&);
static Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt);
static Standard_Boolean IsRegularity(const TheArc& A,
const Handle(TheTopolTool)& aDomain);
//=======================================================================
//function : FindVertex
//purpose :
//=======================================================================
void FindVertex (const TheArc& A,
const Handle(TheTopolTool)& Domain,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Toler)
{
// Find the vertex of the arc A restriction solutions. It stores
// Vertex in the list solutions pnt.
TheVertex vtx;
Standard_Real param,valf;
Standard_Integer itemp;
Domain->Initialize(A);
Domain->InitVertexIterator();
while (Domain->MoreVertex()) {
vtx = Domain->Vertex();
param = TheSOBTool::Parameter(vtx,A);
// Evaluate the function and look compared to tolerance of the
// Vertex. If distance <= tolerance then add a vertex to the list of solutions.
// The arc is already assumed in the load function.
Func.Value(param,valf);
if (Abs(valf) <= Toler) {
itemp = Func.GetStateNumber();
pnt.Append(IntStart_ThePathPoint(Func.Valpoint(itemp),Toler, vtx,A,param));
// Solution is added
}
Domain->NextVertex();
}
}
static
void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb,parfin;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites son solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
//-- if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real para=0,dist,maxdist;
/* if(NbEchant<20) NbEchant = 20; //-- lbr le 22 Avril 96
//-- Toujours des pbs
*/
if(NbEchant<100) NbEchant = 100; //-- lbr le 22 Avril 96
//-- Toujours des pbs
//-------------------------------------------------------------- REJECTIONS le 15 oct 98
Standard_Boolean Rejection=Standard_True;
Standard_Real maxdr,maxr,minr,ur,dur;
minr=RealLast();
maxr=-minr;
maxdr=-minr;
dur=(Pfin-Pdeb)*0.2;
for(i=1,ur=Pdeb;i<=6;i++) {
Standard_Real F,D;
if(Func.Values(ur,F,D)) {
Standard_Real lminr,lmaxr;
if(D<0.0) D=-D;
D*=dur+dur;
if(D>maxdr) maxdr=D;
lminr=F-D;
lmaxr=F+D;
if(lminr<minr) minr=lminr;
if(lmaxr>maxr) maxr=lmaxr;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
continue;
}
}
ur+=dur;
}
dur=0.001+maxdr+(maxr-minr)*0.1;
minr-=dur;
maxr+=dur;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
}
Arcsol=Standard_False;
if(Rejection==Standard_False) {
math_FunctionSample Echant(Pdeb,Pfin,NbEchant);
Standard_Boolean aelargir=Standard_True;
//modified by NIZNHY-PKV Thu Apr 12 09:25:19 2001 f
//
//maxdist = 100.0*TolBoundary;
maxdist = TolBoundary+TolTangency;
//
//modified by NIZNHY-PKV Thu Apr 12 09:25:23 2001 t
for(i=1; i<=NbEchant && aelargir;i++) {
Standard_Real u = Echant.GetParameter(i);
if(Func.Value(u,dist)) {
if(dist>maxdist || -dist>maxdist) {
aelargir=Standard_False;
}
}
}
if(!(aelargir && maxdist<0.01)) {
maxdist = TolBoundary;
}
math_FunctionAllRoots Sol(Func,Echant,EpsX,maxdist,maxdist); //-- TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
//jgv: build solution on the whole boundary
if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
{
//Standard_Real theTol = Domain->MaxTolerance(A);
//theTol += theTol;
Standard_Real theTol = 5.e-4;
math_FunctionAllRoots SolAgain(Func,Echant,EpsX,theTol,theTol); //-- TolBoundary,nTolTangency);
if (!SolAgain.IsDone()) {Standard_Failure::Raise();}
Standard_Integer Nbi_again = SolAgain.NbIntervals();
if (Nbi_again > 0)
{
Standard_Integer NbSamples = 10;
Standard_Real delta = (Pfin - Pdeb)/NbSamples;
Standard_Real GlobalTol = theTol*10;
Standard_Boolean SolOnBoundary = Standard_True;
for (i = 0; i <= NbSamples; i++)
{
Standard_Real aParam = Pdeb + i*delta;
Standard_Real aValue;
Func.Value(aParam, aValue);
if (Abs(aValue) > GlobalTol)
{
SolOnBoundary = Standard_False;
break;
}
}
if (SolOnBoundary)
{
for (i = 1; i <= Nbi_again; i++)
{
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
SolAgain.GetInterval(i,pardeb,parfin);
if (Abs(pardeb - Pdeb) <= Precision::PConfusion())
pardeb = Pdeb;
if (Abs(parfin - Pfin) <= Precision::PConfusion())
parfin = Pfin;
SolAgain.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,theTol,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,theTol,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_True;
return;
}
}
}
////////////////////////////////////////////
//-- detection du cas ou la fonction est quasi tangente et que les
//-- zeros sont quasi confondus.
//-- Dans ce cas on prend le point "milieu"
//-- On suppose que les solutions sont triees.
Standard_Real *TabSol=NULL;
if(Nbp) {
TabSol = new Standard_Real [Nbp+2];
for(i=1;i<=Nbp;i++) {
TabSol[i]=Sol.GetPoint(i);
}
Standard_Boolean ok;
do {
ok=Standard_True;
for(i=1;i<Nbp;i++) {
if(TabSol[i]>TabSol[i+1]) {
ok=Standard_False;
para=TabSol[i]; TabSol[i]=TabSol[i+1]; TabSol[i+1]=para;
}
}
}
while(ok==Standard_False);
//modified by NIZNHY-PKV Wed Mar 21 18:34:18 2001 f
//////////////////////////////////////////////////////////
// The treatment of the situation when line(arc) that is
// tangent to cylinder(domain).
// We should have only one solution i.e Nbp=1. Ok?
// But we have 2,3,.. solutions. That is wrong ersult.
// The TreatLC(...) function is dedicated to solve the pb.
// PKV Fri Mar 23 12:17:29 2001
Standard_Integer ip;
const IntSurf_Quadric& aQuadric=Func.Quadric();
ip=TreatLC (A, Domain, aQuadric, TolBoundary, pnt);
if (ip) {
//////////////////////////////////////////////////////////
//modified by NIZNHY-PKV Wed Mar 21 18:34:23 2001 t
//
// Using of old usual way proposed by Laurent
//
for(i=1;i<Nbp;i++) {
Standard_Real parap1=TabSol[i+1];
para=TabSol[i];
Standard_Real param=(para+parap1)*0.5;
Standard_Real ym;
if(Func.Value(param,ym)) {
if(Abs(ym)<maxdist) {
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 Begin
// Consider this interval as tangent one. Treat it to find
// parameter with the lowest function value.
// Compute the number of nodes.
Standard_Real aTol = TolBoundary*1000.0;
if(aTol > 0.001)
aTol = 0.001;
// fix floating point exception 569, chl-922-e9
parap1 = (Abs(parap1) < 1.e9) ? parap1 : ((parap1 >= 0.) ? 1.e9 : -1.e9);
para = (Abs(para) < 1.e9) ? para : ((para >= 0.) ? 1.e9 : -1.e9);
Standard_Integer aNbNodes = RealToInt(Ceiling((parap1 - para)/aTol));
Standard_Real aVal = RealLast();
//Standard_Integer aNbNodes = 23;
Standard_Real aDelta = (parap1 - para)/(aNbNodes + 1.);
Standard_Integer ii;
Standard_Real aCurPar;
Standard_Real aCurVal;
for (ii = 0; ii <= aNbNodes + 1; ii++) {
aCurPar = (ii < aNbNodes + 1) ? para + ii*aDelta : parap1;
if (Func.Value(aCurPar, aCurVal)) {
//if (aCurVal < aVal) {
if (Abs(aCurVal) < aVal) {
//aVal = aCurVal;
aVal = Abs(aCurVal);
param = aCurPar;
}
}
}
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 End
TabSol[i]=Pdeb-1;
TabSol[i+1]=param;
}
}
}
for (i=1; i<=Nbp; i++) {
para=TabSol[i];
if((para-Pdeb)<EpsX || (Pfin-para)<EpsX) {
}
else {
if(Func.Value(para,dist)) {
//modified by jgv 5.07.01 for the bug buc60927
Standard_Integer anIndx;
Standard_Real aParam;
if (Abs(dist) < maxdist)
{
aParam = Sol.GetPoint(i);
if (Abs(aParam-Pdeb)<=Precision::PConfusion() || Abs(aParam-Pfin)<=Precision::PConfusion())
anIndx = Sol.GetPointState(i);
else
{
anIndx = Func.GetStateNumber(); //take the middle point
aParam = para;
}
}
else
{
anIndx = Sol.GetPointState(i);
aParam = Sol.GetPoint(i);
}
const gp_Pnt& aPnt = Func.Valpoint(anIndx);
//////////////////////////////////////////////
PointProcess(aPnt, aParam, A, Domain, pnt, TolBoundary, range);
}
}
}
if(TabSol) {
delete [] TabSol;
}
}// end ofif (ip)
} // end of if(Nbp)
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
Nbi=Sol.NbIntervals();
if (!RecheckOnRegularity && Nbp) {
//--cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx :Nbp>0 0 <- Nbi "<<Nbi<<endl;
Nbi=0;
}
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : Nbi : "<<Nbi<<endl;
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
}
//=======================================================================
//function : ComputeBoundsfromInfinite
//purpose :
//=======================================================================
// - PROVISIONAL - TEMPORARY - NOT GOOD - NYI - TO DO
// - Temporary - temporary - not good - nyi - to do
void ComputeBoundsfromInfinite(TheFunction& Func,
Standard_Real& PDeb,
Standard_Real& PFin,
Standard_Integer& NbEchant)
{
// - We are looking for parameters for start and end of the arc (2d curve)
// - Infinity, a way to intersect the quadric with a portion of arc
// - Finished.
//
// - The quadric is a plane, a cylinder, a cone and a sphere.
// - Idea: We take any point on the arc and the fact grow
// - Terminals to the signed distance function values or is likely
// - S cancel.
//
// - WARNING: The following calculations provide a very estimated coarse parameters.
// - This avoids the raises and allows a case of Boxes
// - Inifinies walk. It will take this code
// - With curve surface intersections.
NbEchant = 10;
Standard_Real U0 = 0.0;
Standard_Real dU = 0.001;
Standard_Real Dist0,Dist1;
Func.Value(U0 , Dist0);
Func.Value(U0+dU, Dist1);
Standard_Real dDist = Dist1 - Dist0;
if(dDist) {
U0 -= dU*Dist0 / dDist;
PDeb = PFin = U0;
Standard_Real Umin = U0 - 1e5;
Func.Value(Umin , Dist0);
Func.Value(Umin+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umin -= dU*Dist0 / dDist;
}
else {
Umin-=10.0;
}
Standard_Real Umax = U0 + 1e8;
Func.Value(Umax , Dist0);
Func.Value(Umax+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umax -= dU*Dist0 / dDist;
}
else {
Umax+=10.0;
}
if(Umin>U0) { Umin=U0-10.0; }
if(Umax<U0) { Umax=U0+10.0; }
PFin = Umax;
PDeb = Umin;
}
else {
//-- Possibilite de Arc totalement inclu ds Quad
PDeb = 1e10;
PFin = -1e10;
}
}
//=======================================================================
//function : InfiniteArc
//purpose :
//=======================================================================
void InfiniteArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol)
{
// Find points of solutions and tips bow bow gives a solution.
// The math_FunctionAllRoots function is used. Therefore suitable for
// Beginning of arcs having a point and a closed end point (range
// Parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0.,parfin = 0.;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Create the Sample Rate (math_FunctionSample or inheriting class)
// Call a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ Tolerance is the asociee al arc (Inconsistency with tracking)
//@@@ (EPSX ~ 1e-5 and ResolutionU and V ~ 1e-9)
//@@@ Vertex is here is not found as a point to stop
//@@@ Wayline
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
// - Plant with a edge with 2 Samples
// - Whose ends are solutions (f = 0)
// - And the derivative is zero or
// - Example: a diameter of a sphere segment
if(NbEchant<3) NbEchant = 3; //-- lbr 19.04.95
//--------------------------------------------------
Standard_Real PDeb = Pdeb;
Standard_Real PFin = Pfin;
ComputeBoundsfromInfinite(Func,PDeb,PFin,NbEchant);
math_FunctionSample Echant(PDeb,PFin,NbEchant);
math_FunctionAllRoots Sol(Func,Echant,EpsX,TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
for (i=1; i<=Nbp; i++) {
Standard_Real para = Sol.GetPoint(i);
Standard_Real dist;
if(Func.Value(para,dist)) {
PointProcess(Func.Valpoint(Sol.GetPointState(i)),Sol.GetPoint(i),
A,Domain,pnt,TolBoundary,range);
}
}
// For each interval:
// Process the ends as points
// Add range in the list of segments
Nbi=Sol.NbIntervals();
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recover start and end points, and parameter.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_False;
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
//=======================================================================
//function : PointProcess
//purpose :
//=======================================================================
void PointProcess (const gp_Pnt& Pt,
const Standard_Real Para,
const TheArc& A,
const Handle(TheTopolTool)& Domain,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Tol,
Standard_Integer& Range)
{
// Check to see if a solution point is coincident with a vertex.
// If confused, you should find this vertex in the list of
// Start. It then returns the position of this point in the list pnt.
// Otherwise, add the point in the list.
Standard_Integer k;
Standard_Boolean found,goon;
Standard_Real dist,toler;
Standard_Integer Nbsol = pnt.Length();
TheVertex vtx;
IntStart_ThePathPoint ptsol;
Domain->Initialize(A);
Domain->InitVertexIterator();
found = Standard_False;
goon = Domain->MoreVertex();
while (goon) {
vtx = Domain->Vertex();
dist= Abs(Para-TheSOBTool::Parameter(vtx,A));
toler = TheSOBTool::Tolerance(vtx,A);
#ifdef DEB
if(toler>0.1) {
cout<<"IntStart_SearchOnBoundaries_1.gxx : ** WARNING ** Tol Vertex="<<toler<<endl;
cout<<" Ou Edge degenere Ou Kro pointu"<<endl;
if(toler>10000) toler=1e-7;
}
#endif
if (dist <= toler) {
// Locate the vertex in the list of solutions
k=1;
found = (k>Nbsol);
while (!found) {
ptsol = pnt.Value(k);
if (!ptsol.IsNew()) {
//jag 940608 if (ptsol.Vertex() == vtx && ptsol.Arc() == A) {
if (Domain->Identical(ptsol.Vertex(),vtx) &&
ptsol.Arc() == A &&
Abs(ptsol.Parameter()-Para) <= toler) {
found=Standard_True;
}
else {
k=k+1;
found=(k>Nbsol);
}
}
else {
k=k+1;
found=(k>Nbsol);
}
}
if (k<=Nbsol) { // We find the vertex
Range = k;
}
else { // Otherwise
ptsol.SetValue(Pt,Tol,vtx,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
found = Standard_True;
goon = Standard_False;
}
else {
Domain->NextVertex();
goon = Domain->MoreVertex();
}
}
if (!found) { // No one is falling on a vertex
//jgv: do not add segment's extremities if they already exist
Standard_Boolean found_internal = Standard_False;
for (k = 1; k <= pnt.Length(); k++)
{
ptsol = pnt.Value(k);
if (ptsol.Arc() != A ||
!ptsol.IsNew()) //vertex
continue;
if (Abs(ptsol.Parameter()-Para) <= Precision::PConfusion())
{
found_internal = Standard_True;
Range = k;
}
}
/////////////////////////////////////////////////////////////
if (!found_internal)
{
Standard_Real TOL=Tol;
TOL*=1000.0;
if(TOL>0.001) TOL=0.001;
ptsol.SetValue(Pt,TOL,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
}
}
//=======================================================================
//function : IsRegularity
//purpose :
//=======================================================================
Standard_Boolean IsRegularity(const TheArc& /*A*/,
const Handle(TheTopolTool)& aDomain)
{
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return Standard_False;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
return (BRep_Tool::HasContinuity(*anE));
}
//=======================================================================
//function : TreatLC
//purpose :
//=======================================================================
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt)
{
Standard_Integer anExitCode=1, aNbExt;
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return anExitCode;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
if (BRep_Tool::Degenerated(*anE)) {
return anExitCode;
}
GeomAbs_CurveType aTypeE;
BRepAdaptor_Curve aBAC(*anE);
aTypeE=aBAC.GetType();
if (aTypeE!=GeomAbs_Line) {
return anExitCode;
}
GeomAbs_SurfaceType aTypeS;
aTypeS=aQuadric.TypeQuadric();
if (aTypeS!=GeomAbs_Cylinder) {
return anExitCode;
}
Standard_Real f, l, U1f, U1l, U2f, U2l, U1, UEgde, TOL, aDist, aR, aRRel, Tol;
Handle(Geom_Curve) aCEdge=BRep_Tool::Curve(*anE, f, l);
gp_Cylinder aCyl=aQuadric.Cylinder();
const gp_Ax1& anAx1=aCyl.Axis();
gp_Lin aLin(anAx1);
Handle(Geom_Line) aCAxis=new Geom_Line (aLin);
aR=aCyl.Radius();
U1f = aCAxis->FirstParameter();
U1l = aCAxis->LastParameter();
U2f = aCEdge->FirstParameter();
U2l = aCEdge->LastParameter();
GeomAdaptor_Curve C1, C2;
C1.Load(aCAxis);
C2.Load(aCEdge);
Tol = Precision::PConfusion();
Extrema_ExtCC anExtCC(C1, C2, U1f, U1l, U2f, U2l, Tol, Tol);
aNbExt=anExtCC.NbExt();
if (aNbExt!=1) {
return anExitCode;
}
gp_Pnt P1,PEdge;
Extrema_POnCurv PC1, PC2;
anExtCC.Points(1, PC1, PC2);
P1 =PC1.Value();
PEdge=PC2.Value();
U1=PC1.Parameter();
UEgde=PC2.Parameter();
aDist=PEdge.Distance(P1);
aRRel=fabs(aDist-aR)/aR;
if (aRRel > TolBoundary) {
return anExitCode;
}
if (UEgde < (f+TolBoundary) || UEgde > (l-TolBoundary)) {
return anExitCode;
}
//
// Do not wonder !
// It was done as into PointProcess(...) function
//printf("TreatLC()=> tangent line is found\n");
TOL=1000.*TolBoundary;
if(TOL>0.001) TOL=0.001;
IntStart_ThePathPoint ptsol;
ptsol.SetValue(PEdge, TOL, A, UEgde);
pnt.Append(ptsol);
anExitCode=0;
return anExitCode;
}
//=======================================================================
//function : IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries
//purpose :
//=======================================================================
IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries ()
: done(Standard_False)
{
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntStart_SearchOnBoundaries::Perform (TheFunction& Func,
const Handle(TheTopolTool)& Domain,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
const Standard_Boolean RecheckOnRegularity)
{
done = Standard_False;
spnt.Clear();
sseg.Clear();
Standard_Boolean Arcsol;
Standard_Real PDeb,PFin, prm, tol;
Standard_Integer i, nbknown, nbfound,index;
gp_Pnt pt;
Domain->Init();
if (Domain->More()) {
all = Standard_True;
}
else {
all = Standard_False;
}
while (Domain->More()) {
TheArc A = Domain->Value();
if (!TheSOBTool::HasBeenSeen(A)) {
Func.Set(A);
FindVertex(A,Domain,Func,spnt,TolBoundary);
TheSOBTool::Bounds(A,PDeb,PFin);
if(Precision::IsNegativeInfinite(PDeb) ||
Precision::IsPositiveInfinite(PFin)) {
InfiniteArc(A,Domain,PDeb,PFin,Func,spnt,sseg,TolBoundary,TolTangency,Arcsol);
}
else {
BoundedArc(A,Domain,PDeb,PFin,Func,spnt,sseg,TolBoundary,TolTangency,Arcsol,RecheckOnRegularity);
}
all = (all && Arcsol);
}
else {
// as it seems we'll never be here, because
// TheSOBTool::HasBeenSeen(A) always returns FALSE
nbfound = spnt.Length();
// On recupere les points connus
nbknown = TheSOBTool::NbPoints(A);
for (i=1; i<=nbknown; i++) {
TheSOBTool::Value(A,i,pt,tol,prm);
if (TheSOBTool::IsVertex(A,i)) {
TheVertex vtx;
TheSOBTool::Vertex(A,i,vtx);
spnt.Append(IntStart_ThePathPoint(pt,tol,vtx,A,prm));
}
else {
spnt.Append(IntStart_ThePathPoint(pt,tol,A,prm));
}
}
// On recupere les arcs solutions
nbknown = TheSOBTool::NbSegments(A);
for (i=1; i<=nbknown; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
if (TheSOBTool::HasFirstPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_True);
}
if (TheSOBTool::HasLastPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_False);
}
sseg.Append(newseg);
}
all = (all& TheSOBTool::IsAllSolution(A));
}
Domain->Next();
}
done = Standard_True;
}

View File

@ -1,943 +0,0 @@
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569
#include <Precision.hxx>
#include <IntSurf_Quadric.hxx>
static
void FindVertex (const TheArc&,
const Handle(TheTopolTool)&,
TheFunction&,
IntStart_SequenceOfPathPoint&,
const Standard_Real);
static
void BoundedArc (const TheArc&,
const Handle(TheTopolTool)&,
const Standard_Real,
const Standard_Real,
TheFunction&,
IntStart_SequenceOfPathPoint&,
IntStart_SequenceOfSegment&,
const Standard_Real,
const Standard_Real,
Standard_Boolean&);
static
void InfiniteArc (const TheArc&,
const Handle(TheTopolTool)&,
const Standard_Real,
const Standard_Real,
TheFunction&,
IntStart_SequenceOfPathPoint&,
IntStart_SequenceOfSegment&,
const Standard_Real,
const Standard_Real,
Standard_Boolean&);
static
void PointProcess (const gp_Pnt&,
const Standard_Real,
const TheArc&,
const Handle(TheTopolTool)&,
IntStart_SequenceOfPathPoint&,
const Standard_Real,
Standard_Integer&);
static
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt);
static
Standard_Boolean IsRegularity(const TheArc& A,
const Handle(TheTopolTool)& aDomain);
//=======================================================================
//function : FindVertex
//purpose :
//=======================================================================
void FindVertex (const TheArc& A,
const Handle(TheTopolTool)& Domain,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Toler)
{
// Recherche des vertex de l arc de restriction A solutions. On stocke les
// vertex solutions dans la liste pnt.
TheVertex vtx;
//gp_Pnt point;
Standard_Real param,valf;
Standard_Integer itemp;
// Domain.InitVertexIterator(A);
Domain->Initialize(A);
Domain->InitVertexIterator();
while (Domain->MoreVertex()) {
vtx = Domain->Vertex();
param = TheSOBTool::Parameter(vtx,A);
// Evaluer la fonction et regarder par rapport a la tolerance
// du vertex. Si la distance <= tolerance alors ajouter le vertex a
// la liste des points solutions
// L arc est suppose deja charge dans la fonction.
Func.Value(param,valf);
if (Abs(valf) <= Toler) {
itemp = Func.GetStateNumber();
pnt.Append(IntStart_ThePathPoint(Func.Valpoint(itemp),Toler,
vtx,A,param));
// on rajoute la solution
}
Domain->NextVertex();
}
}
//=======================================================================
//function : BoundedArc
//purpose :
//=======================================================================
void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0,parfin = 0;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites son solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
//-- if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real para=0,dist,maxdist;
/* if(NbEchant<20) NbEchant = 20; //-- lbr le 22 Avril 96
//-- Toujours des pbs
*/
if(NbEchant<100) NbEchant = 100; //-- lbr le 22 Avril 96
//-- Toujours des pbs
//-------------------------------------------------------------- REJECTIONS le 15 oct 98
Standard_Boolean Rejection=Standard_True;
Standard_Real maxdr,maxr,minr,ur,dur;
minr=RealLast();
maxr=-minr;
maxdr=-minr;
dur=(Pfin-Pdeb)*0.2;
for(i=1,ur=Pdeb;i<=6;i++) {
Standard_Real F,D;
if(Func.Values(ur,F,D)) {
Standard_Real lminr,lmaxr;
if(D<0.0) D=-D;
D*=dur+dur;
if(D>maxdr) maxdr=D;
lminr=F-D;
lmaxr=F+D;
if(lminr<minr) minr=lminr;
if(lmaxr>maxr) maxr=lmaxr;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
continue;
}
}
ur+=dur;
}
dur=0.001+maxdr+(maxr-minr)*0.1;
minr-=dur;
maxr+=dur;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
}
Arcsol=Standard_False;
if(Rejection==Standard_False) {
math_FunctionSample Echant(Pdeb,Pfin,NbEchant);
Standard_Boolean aelargir=Standard_True;
//modified by NIZNHY-PKV Thu Apr 12 09:25:19 2001 f
//
//maxdist = 100.0*TolBoundary;
maxdist = TolBoundary+TolTangency;
//
//modified by NIZNHY-PKV Thu Apr 12 09:25:23 2001 t
for(i=1; i<=NbEchant && aelargir;i++) {
Standard_Real u = Echant.GetParameter(i);
if(Func.Value(u,dist)) {
if(dist>maxdist || -dist>maxdist) {
aelargir=Standard_False;
}
}
}
if(aelargir && maxdist<0.01) {
#ifdef DEB
//-- cout<<"\n Tolerance elargie a "<<maxdist<<" dans IntStart_SearchOnBoundaries_1.gxx"<<endl;
#endif
}
else {
maxdist = TolBoundary;
}
math_FunctionAllRoots Sol(Func,Echant,EpsX,maxdist,maxdist); //-- TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
//jgv: build solution on the whole boundary
if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
{
//Standard_Real theTol = Domain->MaxTolerance(A);
//theTol += theTol;
Standard_Real theTol = 5.e-4;
math_FunctionAllRoots SolAgain(Func,Echant,EpsX,theTol,theTol); //-- TolBoundary,nTolTangency);
if (!SolAgain.IsDone()) {Standard_Failure::Raise();}
Standard_Integer Nbi_again = SolAgain.NbIntervals();
if (Nbi_again > 0)
{
Standard_Integer NbSamples = 10;
Standard_Real delta = (Pfin - Pdeb)/NbSamples;
Standard_Real GlobalTol = theTol*10;
Standard_Boolean SolOnBoundary = Standard_True;
for (i = 0; i <= NbSamples; i++)
{
Standard_Real aParam = Pdeb + i*delta;
Standard_Real aValue;
Func.Value(aParam, aValue);
if (Abs(aValue) > GlobalTol)
{
SolOnBoundary = Standard_False;
break;
}
}
if (SolOnBoundary)
{
for (i = 1; i <= Nbi_again; i++)
{
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
SolAgain.GetInterval(i,pardeb,parfin);
if (Abs(pardeb - Pdeb) <= Precision::PConfusion())
pardeb = Pdeb;
if (Abs(parfin - Pfin) <= Precision::PConfusion())
parfin = Pfin;
SolAgain.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,theTol,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,theTol,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_True;
return;
}
}
}
////////////////////////////////////////////
//-- detection du cas ou la fonction est quasi tangente et que les
//-- zeros sont quasi confondus.
//-- Dans ce cas on prend le point "milieu"
//-- On suppose que les solutions sont triees.
Standard_Real *TabSol=NULL;
if(Nbp) {
TabSol = new Standard_Real [Nbp+2];
for(i=1;i<=Nbp;i++) {
TabSol[i]=Sol.GetPoint(i);
}
Standard_Boolean ok;
do {
ok=Standard_True;
for(i=1;i<Nbp;i++) {
if(TabSol[i]>TabSol[i+1]) {
ok=Standard_False;
para=TabSol[i]; TabSol[i]=TabSol[i+1]; TabSol[i+1]=para;
}
}
}
while(ok==Standard_False);
//modified by NIZNHY-PKV Wed Mar 21 18:34:18 2001 f
//////////////////////////////////////////////////////////
// The treatment of the situation when line(arc) that is
// tangent to cylinder(domain).
// We should have only one solution i.e Nbp=1. Ok?
// But we have 2,3,.. solutions. That is wrong ersult.
// The TreatLC(...) function is dedicated to solve the pb.
// PKV Fri Mar 23 12:17:29 2001
Standard_Integer ip;
const IntSurf_Quadric& aQuadric=Func.Quadric();
ip=TreatLC (A, Domain, aQuadric, TolBoundary, pnt);
if (ip) {
//////////////////////////////////////////////////////////
//modified by NIZNHY-PKV Wed Mar 21 18:34:23 2001 t
//
// Using of old usual way proposed by Laurent
//
for(i=1;i<Nbp;i++) {
Standard_Real parap1=TabSol[i+1];
para=TabSol[i];
Standard_Real param=(para+parap1)*0.5;
Standard_Real ym;
if(Func.Value(param,ym)) {
if(Abs(ym)<maxdist) {
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 Begin
// Consider this interval as tangent one. Treat it to find
// parameter with the lowest function value.
// Compute the number of nodes.
Standard_Real aTol = TolBoundary*1000.0;
if(aTol > 0.001)
aTol = 0.001;
// fix floating point exception 569, chl-922-e9
parap1 = (Abs(parap1) < 1.e9) ? parap1 : ((parap1 >= 0.) ? 1.e9 : -1.e9);
para = (Abs(para) < 1.e9) ? para : ((para >= 0.) ? 1.e9 : -1.e9);
Standard_Integer aNbNodes = RealToInt(Ceiling((parap1 - para)/aTol));
Standard_Real aVal = RealLast();
//Standard_Integer aNbNodes = 23;
Standard_Real aDelta = (parap1 - para)/(aNbNodes + 1.);
Standard_Integer ii;
Standard_Real aCurPar;
Standard_Real aCurVal;
for (ii = 0; ii <= aNbNodes + 1; ii++) {
aCurPar = (ii < aNbNodes + 1) ? para + ii*aDelta : parap1;
if (Func.Value(aCurPar, aCurVal)) {
//if (aCurVal < aVal) {
if (Abs(aCurVal) < aVal) {
//aVal = aCurVal;
aVal = Abs(aCurVal);
param = aCurPar;
}
}
}
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 End
TabSol[i]=Pdeb-1;
TabSol[i+1]=param;
}
}
}
for (i=1; i<=Nbp; i++) {
para=TabSol[i];
if((para-Pdeb)<EpsX || (Pfin-para)<EpsX) {
}
else {
if(Func.Value(para,dist)) {
//modified by jgv 5.07.01 for the bug buc60927
Standard_Integer anIndx;
Standard_Real aParam;
if (Abs(dist) < maxdist)
{
aParam = Sol.GetPoint(i);
if (Abs(aParam-Pdeb)<=Precision::PConfusion() || Abs(aParam-Pfin)<=Precision::PConfusion())
anIndx = Sol.GetPointState(i);
else
{
anIndx = Func.GetStateNumber(); //take the middle point
aParam = para;
}
}
else
{
anIndx = Sol.GetPointState(i);
aParam = Sol.GetPoint(i);
}
const gp_Pnt& aPnt = Func.Valpoint(anIndx);
//////////////////////////////////////////////
PointProcess(aPnt, aParam, A, Domain, pnt, TolBoundary, range);
}
}
}
if(TabSol) {
delete [] TabSol;
}
}// end ofif (ip)
} // end of if(Nbp)
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
Nbi=Sol.NbIntervals();
if (!RecheckOnRegularity && Nbp) {
//--cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx :Nbp>0 0 <- Nbi "<<Nbi<<endl;
Nbi=0;
}
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : Nbi : "<<Nbi<<endl;
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
}
//=======================================================================
//function : ComputeBoundsfromInfinite
//purpose :
//=======================================================================
//-- PROVISOIRE - TEMPORAIRE - PAS BON - NYI - A FAIRE
//-- provisoire - temporaire - pas bon - nyi - a faire
void ComputeBoundsfromInfinite(TheFunction& Func,
Standard_Real& PDeb,
Standard_Real& PFin,
Standard_Integer& NbEchant)
{
//-- On cherche des parametres de debut et de fin de l arc (courbe 2d)
//-- infini, de facon a intersecter la quadrique avec une portion d arc
//-- finie.
//-- La quadrique est un plan, un cylindre, un cone ou une sphere.
//-- Idee : On prend un point quelconque sur l'arc et on fait croitre les
//-- bornes vers des valeurs ou la fonction distance signee a des chances
//-- de s annuler.
//-- ATTENTION : Les calculs ci-dessous fournissent une estimation tres
//-- grossiere des parametres .
//-- Cela evite les raises et permet a des cas de Boites
//-- inifinies de marcher. Il faudra reprendre ce code
//-- avec des intersections Courbe Surface.
NbEchant = 10;
Standard_Real U0 = 0.0;
//Standard_Real U1;
Standard_Real dU = 0.001;
Standard_Real Dist0,Dist1;//Grad0,Grad1;
//Standard_Real D1OnArc;
Func.Value(U0 , Dist0);
Func.Value(U0+dU, Dist1);
Standard_Real dDist = Dist1 - Dist0;
if(dDist) {
U0 -= dU*Dist0 / dDist;
PDeb = PFin = U0;
Standard_Real Umin = U0 - 1e5;
Func.Value(Umin , Dist0);
Func.Value(Umin+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umin -= dU*Dist0 / dDist;
}
else {
Umin-=10.0;
}
Standard_Real Umax = U0 + 1e8;
Func.Value(Umax , Dist0);
Func.Value(Umax+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umax -= dU*Dist0 / dDist;
}
else {
Umax+=10.0;
}
if(Umin>U0) { Umin=U0-10.0; }
if(Umax<U0) { Umax=U0+10.0; }
PFin = Umax;
PDeb = Umin;
}
else {
//-- Possibilite de Arc totalement inclu ds Quad
PDeb = 1e10;
PFin = -1e10;
}
}
//=======================================================================
//function : InfiniteArc
//purpose :
//=======================================================================
void InfiniteArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0.,parfin = 0.;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites sont solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real PDeb = Pdeb;
Standard_Real PFin = Pfin;
ComputeBoundsfromInfinite(Func,PDeb,PFin,NbEchant);
math_FunctionSample Echant(PDeb,PFin,NbEchant);
math_FunctionAllRoots Sol(Func,Echant,EpsX,TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
for (i=1; i<=Nbp; i++) {
Standard_Real para = Sol.GetPoint(i);
Standard_Real dist;
if(Func.Value(para,dist)) {
//--if(Abs(dist)>nTolTangency) {
//--cout<<" Point sur restriction a dist="<<dist<<endl;
//--}
PointProcess(Func.Valpoint(Sol.GetPointState(i)),Sol.GetPoint(i),
A,Domain,pnt,TolBoundary,range);
}
//--else {
//-- cout<<" Point Rejete dans IntStart_SearchOnBoundaries_1.gxx "<<endl;
//--}
}
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
Nbi=Sol.NbIntervals();
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_False;
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
//=======================================================================
//function : PointProcess
//purpose :
//=======================================================================
void PointProcess (const gp_Pnt& Pt,
const Standard_Real Para,
const TheArc& A,
const Handle(TheTopolTool)& Domain,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Tol,
Standard_Integer& Range)
{
// Regarder si un point solution est confondu avec un vertex.
// Si confondu, on doit retrouver ce vertex dans la liste des points de
// depart. On renvoie alors le rang de ce point dans la liste pnt.
// Sinon, on ajoute le point dans la liste.
Standard_Integer k;
Standard_Boolean found,goon;
Standard_Real dist,toler;
Standard_Integer Nbsol = pnt.Length();
TheVertex vtx;
IntStart_ThePathPoint ptsol;
// Domain.InitVertexIterator(A);
Domain->Initialize(A);
Domain->InitVertexIterator();
found = Standard_False;
goon = Domain->MoreVertex();
while (goon) {
vtx = Domain->Vertex();
dist= Abs(Para-TheSOBTool::Parameter(vtx,A));
toler = TheSOBTool::Tolerance(vtx,A);
#ifdef DEB
if(toler>0.1) {
cout<<"IntStart_SearchOnBoundaries_1.gxx : ** WARNING ** Tol Vertex="<<toler<<endl;
cout<<" Ou Edge degenere Ou Kro pointu"<<endl;
if(toler>10000) toler=1e-7;
}
#endif
if (dist <= toler) {
// Localiser le vertex dans la liste des solutions
k=1;
found = (k>Nbsol);
while (!found) {
ptsol = pnt.Value(k);
if (!ptsol.IsNew()) {
//jag 940608 if (ptsol.Vertex() == vtx &&
//jag 940608 ptsol.Arc() == A) {
if (Domain->Identical(ptsol.Vertex(),vtx) &&
ptsol.Arc() == A &&
Abs(ptsol.Parameter()-Para) <= toler) {
found=Standard_True;
}
else {
k=k+1;
found=(k>Nbsol);
}
}
else {
k=k+1;
found=(k>Nbsol);
}
}
if (k<=Nbsol) { // on a retrouve le vertex
Range = k;
}
else { // au cas ou...
ptsol.SetValue(Pt,Tol,vtx,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
found = Standard_True;
goon = Standard_False;
}
else {
Domain->NextVertex();
goon = Domain->MoreVertex();
}
}
if (!found) { // on n est pas tombe sur un vertex
//jgv: do not add segment's extremities if they already exist
Standard_Boolean found_internal = Standard_False;
for (k = 1; k <= pnt.Length(); k++)
{
ptsol = pnt.Value(k);
if (ptsol.Arc() != A ||
!ptsol.IsNew()) //vertex
continue;
if (Abs(ptsol.Parameter()-Para) <= Precision::PConfusion())
{
found_internal = Standard_True;
Range = k;
}
}
/////////////////////////////////////////////////////////////
if (!found_internal)
{
Standard_Real TOL=Tol;
TOL*=1000.0;
if(TOL>0.001) TOL=0.001;
ptsol.SetValue(Pt,TOL,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
}
}
//modified by NIZNHY-PKV Fri Mar 23 10:53:15 2001
#include <TopoDS_Edge.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Line.hxx>
#include <gp_Lin.hxx>
#include <gp_Vec.hxx>
#include <gp_Dir.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Precision.hxx>
#include <Extrema_ExtCC.hxx>
#include <Extrema_POnCurv.hxx>
//=======================================================================
//function : IsRegularity
//purpose :
//=======================================================================
Standard_Boolean IsRegularity(const TheArc&,
const Handle(TheTopolTool)& aDomain)
{
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return Standard_False;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
return (BRep_Tool::HasContinuity(*anE));
}
//=======================================================================
//function : TreatLC
//purpose :
//=======================================================================
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt)
{
Standard_Integer anExitCode=1, aNbExt;
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return anExitCode;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
if (BRep_Tool::Degenerated(*anE)) {
return anExitCode;
}
GeomAbs_CurveType aTypeE;
BRepAdaptor_Curve aBAC(*anE);
aTypeE=aBAC.GetType();
if (aTypeE!=GeomAbs_Line) {
return anExitCode;
}
GeomAbs_SurfaceType aTypeS;
aTypeS=aQuadric.TypeQuadric();
if (aTypeS!=GeomAbs_Cylinder) {
return anExitCode;
}
Standard_Real f, l, U1f, U1l, U2f, U2l, U1, UEgde, TOL, aDist, aR, aRRel, Tol;
Handle(Geom_Curve) aCEdge=BRep_Tool::Curve(*anE, f, l);
gp_Cylinder aCyl=aQuadric.Cylinder();
const gp_Ax1& anAx1=aCyl.Axis();
gp_Lin aLin(anAx1);
Handle(Geom_Line) aCAxis=new Geom_Line (aLin);
aR=aCyl.Radius();
U1f = aCAxis->FirstParameter();
U1l = aCAxis->LastParameter();
U2f = aCEdge->FirstParameter();
U2l = aCEdge->LastParameter();
GeomAdaptor_Curve C1, C2;
C1.Load(aCAxis);
C2.Load(aCEdge);
Tol = Precision::PConfusion();
Extrema_ExtCC anExtCC(C1, C2, U1f, U1l, U2f, U2l, Tol, Tol);
aNbExt=anExtCC.NbExt();
if (aNbExt!=1) {
return anExitCode;
}
gp_Pnt P1,PEdge;
Extrema_POnCurv PC1, PC2;
anExtCC.Points(1, PC1, PC2);
P1 =PC1.Value();
PEdge=PC2.Value();
U1=PC1.Parameter();
UEgde=PC2.Parameter();
aDist=PEdge.Distance(P1);
aRRel=fabs(aDist-aR)/aR;
if (aRRel > TolBoundary) {
return anExitCode;
}
if (UEgde < (f+TolBoundary) || UEgde > (l-TolBoundary)) {
return anExitCode;
}
//
// Do not wonder !
// It was done as into PointProcess(...) function
//printf("TreatLC()=> tangent line is found\n");
TOL=1000.*TolBoundary;
if(TOL>0.001) TOL=0.001;
IntStart_ThePathPoint ptsol;
ptsol.SetValue(PEdge, TOL, A, UEgde);
pnt.Append(ptsol);
anExitCode=0;
return anExitCode;
}

View File

@ -1,115 +0,0 @@
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <Precision.hxx>
//=======================================================================
//function : IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries
//purpose :
//=======================================================================
IntStart_SearchOnBoundaries::IntStart_SearchOnBoundaries ()
: done(Standard_False)
{
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void IntStart_SearchOnBoundaries::Perform (TheFunction& Func,
const Handle(TheTopolTool)& Domain,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
const Standard_Boolean RecheckOnRegularity)
{
done = Standard_False;
spnt.Clear();
sseg.Clear();
Standard_Boolean Arcsol;
Standard_Real PDeb,PFin, prm, tol;
Standard_Integer i, nbknown, nbfound,index;
gp_Pnt pt;
Domain->Init();
if (Domain->More()) {
all = Standard_True;
}
else {
all = Standard_False;
}
while (Domain->More()) {
TheArc A = Domain->Value();
if (!TheSOBTool::HasBeenSeen(A)) {
Func.Set(A);
FindVertex(A,Domain,Func,spnt,TolBoundary);
TheSOBTool::Bounds(A,PDeb,PFin);
if(Precision::IsNegativeInfinite(PDeb) ||
Precision::IsPositiveInfinite(PFin)) {
InfiniteArc(A,Domain,PDeb,PFin,Func,spnt,sseg,
TolBoundary,TolTangency,Arcsol);
}
else {
BoundedArc(A,Domain,PDeb,PFin,Func,spnt,sseg,
TolBoundary,TolTangency,Arcsol,RecheckOnRegularity);
}
all = (all && Arcsol);
}
else {
// as it seems we'll never be here, because
// TheSOBTool::HasBeenSeen(A) always returns FALSE
nbfound = spnt.Length();
// On recupere les points connus
nbknown = TheSOBTool::NbPoints(A);
for (i=1; i<=nbknown; i++) {
TheSOBTool::Value(A,i,pt,tol,prm);
if (TheSOBTool::IsVertex(A,i)) {
TheVertex vtx;
TheSOBTool::Vertex(A,i,vtx);
spnt.Append(IntStart_ThePathPoint(pt,tol,vtx,A,prm));
}
else {
spnt.Append(IntStart_ThePathPoint(pt,tol,A,prm));
}
}
// On recupere les arcs solutions
nbknown = TheSOBTool::NbSegments(A);
for (i=1; i<=nbknown; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
if (TheSOBTool::HasFirstPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_True);
}
if (TheSOBTool::HasLastPoint(A,i,index)) {
newseg.SetLimitPoint(spnt.Value(nbfound+index),Standard_False);
}
sseg.Append(newseg);
}
all = (all& TheSOBTool::IsAllSolution(A));
}
Domain->Next();
}
done = Standard_True;
}

View File

@ -44,8 +44,10 @@ namespace
#define IMEM_FREE(p_bl) (size_t(p_bl->p_end_block - p_bl->p_free_space))
#ifdef DEB
// auxiliary dummy function used to get a place where break point can be set
inline void place_for_breakpoint() {}
#endif
};
#define MaxLookup 16

View File

@ -2382,6 +2382,8 @@ static Standard_Integer OCC5698 (Draw_Interpretor& di, Standard_Integer argc, co
static char sarr[2000];
static int si=1;
#ifdef WNT
static int StackOverflow(int i = -1)
{
char arr[2000];
@ -2401,7 +2403,6 @@ static int StackOverflow(int i = -1)
return i;
}
#ifdef WNT
// this code does not work with optimize mode on Windows
#pragma optimize( "", off )
#endif

View File

@ -160,27 +160,6 @@ static Standard_Real DISTABS (const gp_XYZ& v1, const gp_XYZ& v2)
// 2/ reprendre les boucles pour les fusionner : pas encore fait
// (pour l instant, on imprime un petit message, c est tout)
static Standard_Integer NextFree
(const Standard_Integer i, const Standard_Integer nb,
Standard_Integer& nbloops, TColStd_Array1OfInteger& loops,
TColStd_Array1OfInteger& loopord,
const Handle(TColStd_HArray1OfInteger)& ord)
{
if (i < 0) return -NextFree (-i, nb,nbloops,loops,loopord,ord);
//szv#4:S4163:12Mar99 optimized
Standard_Integer j; // svv Jan11 2000 : porting on DEC
for (j = 1; j <= nbloops; j ++) if (i == loops(j)) break;
if ( j > nbloops ) return i; // OK
// sinon, une boucle de plus, et chercher le prochain libre
nbloops ++;
for (j = 1; j <= nb; j ++)
if (loopord.Value(j) == 0) { loops(nbloops) = j; return j; }
nbloops --; // finalement il n ya plus rien
return 0;
}
//=======================================================================
//function : KeepLoopsMode
//purpose :

View File

@ -466,28 +466,6 @@ Handle(TDF_Attribute) TNaming_NamedShape::NewEmpty () const
return new TNaming_NamedShape();
}
//=======================================================================
//function : static GetLocation 23.06.99 (szy)
//purpose : service: returns copy of Location if exist Relocation
//=======================================================================
static TopLoc_Location GetLocation(const TopLoc_Location& L,
const Handle(TDF_RelocationTable)& RT)
{
TopLoc_Location result;
if (!L.IsIdentity()) {
Handle(TopLoc_Datum3D) TD;
if(!RT->HasTransientRelocation(L.FirstDatum(), TD))
#ifdef DEB
cout <<"TNaming_Named_Shape::Paste : Relocation for TopLocation don't exist" << endl;
#endif
result = GetLocation(L.NextLocation(), RT) *
TopLoc_Location(TD).Powered(L.FirstPower());
}
return result;
}
//=======================================================================
//function : Paste
//purpose :