1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-10 18:51:21 +03:00
occt/src/IntStart/IntStart_SearchOnBoundaries_1.gxx
abv 498ce76bde 0024129: Eliminate remaining compiler warnings in MSVC++ 2008 32 bit with warning level 4
List of resolved warnings:

c4063: Aspect.cdl; TObj_Application.cxx; PCDM.cdl; OpenGl_Workspace_5.cxx;
c4100: XDEDRAW.cxx; ViewerTest_ViewerCommands.cxx; TopOpeBRep_FacesFiller_1.cxx; TopClass_Classifier3d.gxx; TDataStd_ReferenceArray.cxx; QABugs_19.cxx; IntPatch_ImpImpIntersection_5.gxx; HLRTopoBRep_DSFiller.cxx; HLRBRep_Data.lxx; DPrsStd_AISPresentationCommands.cxx; BRepMesh_Delaun.cxx;
c4127: BOPTools_AlgoTools2D.cxx; MAT_Mat.gxx; GeomFill_SweepSectionGenerator.cxx; BRepMesh_Delaun.cxx;
c4189: IntCurveSurface_Inter.gxx; IGESToBRep_BRepEntity.cxx; BRepMesh_Delaun.cxx; BRepAlgo_Loop.cxx; IntStart_SearchOnBoundaries_1.gxx;
c4190: Plugin_Macro.hxx;
c4389: Visual3d_View.cxx; TopOpeBRep/TopOpeBRep_vpr.cxx; TDataStd_BooleanArray.cxx; IntPatch_ALine.cxx;
c4701: BRepAlgo.cxx;
c4702: MNaming_NamingRetrievalDriver_1.cxx; MNaming_NamingRetrievalDriver_2.cxx; BRepClass3d_SolidExplorer.cxx;
c4706: TestTopOpe_BOOP.cxx;

Additional fixes:
- old-style declarations of C functions in IGES and STEP parsers
- clean-up of debug code, fixes for building in Debug mode
- in BRepFill_TrimShellCorner.cxx, lines 878-9, wrong use of assignment instead of comparison fixed
- fix for Plugin_Macro reverted; warning 4190 disabled instead
- in IntPatch_ALine.cxx, line 520, wrong comparison of boolean with index fixed
- in InterfaceGraphic_Visual3d.hxx, field IsCustomMatrix made boolean
- in TopOpeBRepBuild_ShapeSet, obsolete (unused) methods removed
2013-09-18 09:13:31 +04:00

944 lines
28 KiB
Plaintext
Executable File

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569
#include <Precision.hxx>
#include <IntSurf_Quadric.hxx>
static
void FindVertex (const TheArc&,
const Handle(TheTopolTool)&,
TheFunction&,
IntStart_SequenceOfPathPoint&,
const Standard_Real);
static
void BoundedArc (const TheArc&,
const Handle(TheTopolTool)&,
const Standard_Real,
const Standard_Real,
TheFunction&,
IntStart_SequenceOfPathPoint&,
IntStart_SequenceOfSegment&,
const Standard_Real,
const Standard_Real,
Standard_Boolean&);
static
void InfiniteArc (const TheArc&,
const Handle(TheTopolTool)&,
const Standard_Real,
const Standard_Real,
TheFunction&,
IntStart_SequenceOfPathPoint&,
IntStart_SequenceOfSegment&,
const Standard_Real,
const Standard_Real,
Standard_Boolean&);
static
void PointProcess (const gp_Pnt&,
const Standard_Real,
const TheArc&,
const Handle(TheTopolTool)&,
IntStart_SequenceOfPathPoint&,
const Standard_Real,
Standard_Integer&);
static
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt);
static
Standard_Boolean IsRegularity(const TheArc& A,
const Handle(TheTopolTool)& aDomain);
//=======================================================================
//function : FindVertex
//purpose :
//=======================================================================
void FindVertex (const TheArc& A,
const Handle(TheTopolTool)& Domain,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Toler)
{
// Recherche des vertex de l arc de restriction A solutions. On stocke les
// vertex solutions dans la liste pnt.
TheVertex vtx;
//gp_Pnt point;
Standard_Real param,valf;
Standard_Integer itemp;
// Domain.InitVertexIterator(A);
Domain->Initialize(A);
Domain->InitVertexIterator();
while (Domain->MoreVertex()) {
vtx = Domain->Vertex();
param = TheSOBTool::Parameter(vtx,A);
// Evaluer la fonction et regarder par rapport a la tolerance
// du vertex. Si la distance <= tolerance alors ajouter le vertex a
// la liste des points solutions
// L arc est suppose deja charge dans la fonction.
Func.Value(param,valf);
if (Abs(valf) <= Toler) {
itemp = Func.GetStateNumber();
pnt.Append(IntStart_ThePathPoint(Func.Valpoint(itemp),Toler,
vtx,A,param));
// on rajoute la solution
}
Domain->NextVertex();
}
}
//=======================================================================
//function : BoundedArc
//purpose :
//=======================================================================
void BoundedArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol,
const Standard_Boolean RecheckOnRegularity)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0,parfin = 0;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites son solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
//-- if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real para=0,dist,maxdist;
/* if(NbEchant<20) NbEchant = 20; //-- lbr le 22 Avril 96
//-- Toujours des pbs
*/
if(NbEchant<100) NbEchant = 100; //-- lbr le 22 Avril 96
//-- Toujours des pbs
//-------------------------------------------------------------- REJECTIONS le 15 oct 98
Standard_Boolean Rejection=Standard_True;
Standard_Real maxdr,maxr,minr,ur,dur;
minr=RealLast();
maxr=-minr;
maxdr=-minr;
dur=(Pfin-Pdeb)*0.2;
for(i=1,ur=Pdeb;i<=6;i++) {
Standard_Real F,D;
if(Func.Values(ur,F,D)) {
Standard_Real lminr,lmaxr;
if(D<0.0) D=-D;
D*=dur+dur;
if(D>maxdr) maxdr=D;
lminr=F-D;
lmaxr=F+D;
if(lminr<minr) minr=lminr;
if(lmaxr>maxr) maxr=lmaxr;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
continue;
}
}
ur+=dur;
}
dur=0.001+maxdr+(maxr-minr)*0.1;
minr-=dur;
maxr+=dur;
if(minr<0.0 && maxr>0.0) {
Rejection=Standard_False;
}
Arcsol=Standard_False;
if(Rejection==Standard_False) {
math_FunctionSample Echant(Pdeb,Pfin,NbEchant);
Standard_Boolean aelargir=Standard_True;
//modified by NIZNHY-PKV Thu Apr 12 09:25:19 2001 f
//
//maxdist = 100.0*TolBoundary;
maxdist = TolBoundary+TolTangency;
//
//modified by NIZNHY-PKV Thu Apr 12 09:25:23 2001 t
for(i=1; i<=NbEchant && aelargir;i++) {
Standard_Real u = Echant.GetParameter(i);
if(Func.Value(u,dist)) {
if(dist>maxdist || -dist>maxdist) {
aelargir=Standard_False;
}
}
}
if(aelargir && maxdist<0.01) {
#ifdef DEB
//-- cout<<"\n Tolerance elargie a "<<maxdist<<" dans IntStart_SearchOnBoundaries_1.gxx"<<endl;
#endif
}
else {
maxdist = TolBoundary;
}
math_FunctionAllRoots Sol(Func,Echant,EpsX,maxdist,maxdist); //-- TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
//jgv: build solution on the whole boundary
if (RecheckOnRegularity && Nbp > 0 && IsRegularity(A, Domain))
{
//Standard_Real theTol = Domain->MaxTolerance(A);
//theTol += theTol;
Standard_Real theTol = 5.e-4;
math_FunctionAllRoots SolAgain(Func,Echant,EpsX,theTol,theTol); //-- TolBoundary,nTolTangency);
if (!SolAgain.IsDone()) {Standard_Failure::Raise();}
Standard_Integer Nbi_again = SolAgain.NbIntervals();
if (Nbi_again > 0)
{
Standard_Integer NbSamples = 10;
Standard_Real delta = (Pfin - Pdeb)/NbSamples;
Standard_Real GlobalTol = theTol*10;
Standard_Boolean SolOnBoundary = Standard_True;
for (i = 0; i <= NbSamples; i++)
{
Standard_Real aParam = Pdeb + i*delta;
Standard_Real aValue;
Func.Value(aParam, aValue);
if (Abs(aValue) > GlobalTol)
{
SolOnBoundary = Standard_False;
break;
}
}
if (SolOnBoundary)
{
for (i = 1; i <= Nbi_again; i++)
{
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
SolAgain.GetInterval(i,pardeb,parfin);
if (Abs(pardeb - Pdeb) <= Precision::PConfusion())
pardeb = Pdeb;
if (Abs(parfin - Pfin) <= Precision::PConfusion())
parfin = Pfin;
SolAgain.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,theTol,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,theTol,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_True;
return;
}
}
}
////////////////////////////////////////////
//-- detection du cas ou la fonction est quasi tangente et que les
//-- zeros sont quasi confondus.
//-- Dans ce cas on prend le point "milieu"
//-- On suppose que les solutions sont triees.
Standard_Real *TabSol=NULL;
if(Nbp) {
TabSol = new Standard_Real [Nbp+2];
for(i=1;i<=Nbp;i++) {
TabSol[i]=Sol.GetPoint(i);
}
Standard_Boolean ok;
do {
ok=Standard_True;
for(i=1;i<Nbp;i++) {
if(TabSol[i]>TabSol[i+1]) {
ok=Standard_False;
para=TabSol[i]; TabSol[i]=TabSol[i+1]; TabSol[i+1]=para;
}
}
}
while(ok==Standard_False);
//modified by NIZNHY-PKV Wed Mar 21 18:34:18 2001 f
//////////////////////////////////////////////////////////
// The treatment of the situation when line(arc) that is
// tangent to cylinder(domain).
// We should have only one solution i.e Nbp=1. Ok?
// But we have 2,3,.. solutions. That is wrong ersult.
// The TreatLC(...) function is dedicated to solve the pb.
// PKV Fri Mar 23 12:17:29 2001
Standard_Integer ip;
const IntSurf_Quadric& aQuadric=Func.Quadric();
ip=TreatLC (A, Domain, aQuadric, TolBoundary, pnt);
if (ip) {
//////////////////////////////////////////////////////////
//modified by NIZNHY-PKV Wed Mar 21 18:34:23 2001 t
//
// Using of old usual way proposed by Laurent
//
for(i=1;i<Nbp;i++) {
Standard_Real parap1=TabSol[i+1];
para=TabSol[i];
Standard_Real param=(para+parap1)*0.5;
Standard_Real ym;
if(Func.Value(param,ym)) {
if(Abs(ym)<maxdist) {
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 Begin
// Consider this interval as tangent one. Treat it to find
// parameter with the lowest function value.
// Compute the number of nodes.
Standard_Real aTol = TolBoundary*1000.0;
if(aTol > 0.001)
aTol = 0.001;
// fix floating point exception 569, chl-922-e9
parap1 = (Abs(parap1) < 1.e9) ? parap1 : ((parap1 >= 0.) ? 1.e9 : -1.e9);
para = (Abs(para) < 1.e9) ? para : ((para >= 0.) ? 1.e9 : -1.e9);
Standard_Integer aNbNodes = RealToInt(Ceiling((parap1 - para)/aTol));
Standard_Real aVal = RealLast();
//Standard_Integer aNbNodes = 23;
Standard_Real aDelta = (parap1 - para)/(aNbNodes + 1.);
Standard_Integer ii;
Standard_Real aCurPar;
Standard_Real aCurVal;
for (ii = 0; ii <= aNbNodes + 1; ii++) {
aCurPar = (ii < aNbNodes + 1) ? para + ii*aDelta : parap1;
if (Func.Value(aCurPar, aCurVal)) {
//if (aCurVal < aVal) {
if (Abs(aCurVal) < aVal) {
//aVal = aCurVal;
aVal = Abs(aCurVal);
param = aCurPar;
}
}
}
// Modified by skv - Tue Aug 31 12:13:51 2004 OCC569 End
TabSol[i]=Pdeb-1;
TabSol[i+1]=param;
}
}
}
for (i=1; i<=Nbp; i++) {
para=TabSol[i];
if((para-Pdeb)<EpsX || (Pfin-para)<EpsX) {
}
else {
if(Func.Value(para,dist)) {
//modified by jgv 5.07.01 for the bug buc60927
Standard_Integer anIndx;
Standard_Real aParam;
if (Abs(dist) < maxdist)
{
aParam = Sol.GetPoint(i);
if (Abs(aParam-Pdeb)<=Precision::PConfusion() || Abs(aParam-Pfin)<=Precision::PConfusion())
anIndx = Sol.GetPointState(i);
else
{
anIndx = Func.GetStateNumber(); //take the middle point
aParam = para;
}
}
else
{
anIndx = Sol.GetPointState(i);
aParam = Sol.GetPoint(i);
}
const gp_Pnt& aPnt = Func.Valpoint(anIndx);
//////////////////////////////////////////////
PointProcess(aPnt, aParam, A, Domain, pnt, TolBoundary, range);
}
}
}
if(TabSol) {
delete [] TabSol;
}
}// end ofif (ip)
} // end of if(Nbp)
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
Nbi=Sol.NbIntervals();
if (!RecheckOnRegularity && Nbp) {
//--cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx :Nbp>0 0 <- Nbi "<<Nbi<<endl;
Nbi=0;
}
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : Nbi : "<<Nbi<<endl;
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
//-- cout<<" Debug : IntStart_SearchOnBoundaries_1.gxx : i= "<<i<<" ParDeb:"<<pardeb<<" ParFin:"<<parfin<<endl;
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
}
//=======================================================================
//function : ComputeBoundsfromInfinite
//purpose :
//=======================================================================
//-- PROVISOIRE - TEMPORAIRE - PAS BON - NYI - A FAIRE
//-- provisoire - temporaire - pas bon - nyi - a faire
void ComputeBoundsfromInfinite(TheFunction& Func,
Standard_Real& PDeb,
Standard_Real& PFin,
Standard_Integer& NbEchant)
{
//-- On cherche des parametres de debut et de fin de l arc (courbe 2d)
//-- infini, de facon a intersecter la quadrique avec une portion d arc
//-- finie.
//-- La quadrique est un plan, un cylindre, un cone ou une sphere.
//-- Idee : On prend un point quelconque sur l'arc et on fait croitre les
//-- bornes vers des valeurs ou la fonction distance signee a des chances
//-- de s annuler.
//-- ATTENTION : Les calculs ci-dessous fournissent une estimation tres
//-- grossiere des parametres .
//-- Cela evite les raises et permet a des cas de Boites
//-- inifinies de marcher. Il faudra reprendre ce code
//-- avec des intersections Courbe Surface.
NbEchant = 10;
Standard_Real U0 = 0.0;
//Standard_Real U1;
Standard_Real dU = 0.001;
Standard_Real Dist0,Dist1;//Grad0,Grad1;
//Standard_Real D1OnArc;
Func.Value(U0 , Dist0);
Func.Value(U0+dU, Dist1);
Standard_Real dDist = Dist1 - Dist0;
if(dDist) {
U0 -= dU*Dist0 / dDist;
PDeb = PFin = U0;
Standard_Real Umin = U0 - 1e5;
Func.Value(Umin , Dist0);
Func.Value(Umin+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umin -= dU*Dist0 / dDist;
}
else {
Umin-=10.0;
}
Standard_Real Umax = U0 + 1e8;
Func.Value(Umax , Dist0);
Func.Value(Umax+dU, Dist1);
dDist = Dist1-Dist0;
if(dDist) {
Umax -= dU*Dist0 / dDist;
}
else {
Umax+=10.0;
}
if(Umin>U0) { Umin=U0-10.0; }
if(Umax<U0) { Umax=U0+10.0; }
PFin = Umax;
PDeb = Umin;
}
else {
//-- Possibilite de Arc totalement inclu ds Quad
PDeb = 1e10;
PFin = -1e10;
}
}
//=======================================================================
//function : InfiniteArc
//purpose :
//=======================================================================
void InfiniteArc (const TheArc& A,
const Handle(TheTopolTool)& Domain,
const Standard_Real Pdeb,
const Standard_Real Pfin,
TheFunction& Func,
IntStart_SequenceOfPathPoint& pnt,
IntStart_SequenceOfSegment& seg,
const Standard_Real TolBoundary,
const Standard_Real TolTangency,
Standard_Boolean& Arcsol)
{
// Recherche des points solutions et des bouts d arc solution sur un arc donne.
// On utilise la fonction math_FunctionAllRoots. Ne convient donc que pour
// des arcs ayant un point debut et un point de fin (intervalle ferme de
// parametrage).
Standard_Integer i,Nbi,Nbp;
gp_Pnt ptdeb,ptfin;
Standard_Real pardeb = 0.,parfin = 0.;
Standard_Integer ideb,ifin,range,ranged,rangef;
// Creer l echantillonage (math_FunctionSample ou classe heritant)
// Appel a math_FunctionAllRoots
Standard_Real EpsX = TheArcTool::Resolution(A,Precision::Confusion());
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@ La Tolerance est asociee a l arc ( Incoherence avec le cheminement )
//@@@ ( EpsX ~ 1e-5 et ResolutionU et V ~ 1e-9 )
//@@@ le vertex trouve ici n'est pas retrouve comme point d arret d une
//@@@ ligne de cheminement
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
EpsX = 0.0000000001;
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Standard_Integer NbEchant = TheSOBTool::NbSamplesOnArc(A);
Standard_Integer NbEchant = Func.NbSamples();
//-- Modif 24 Aout 93 -----------------------------
Standard_Real nTolTangency = TolTangency;
if((Pfin - Pdeb) < (TolTangency*10.0)) {
nTolTangency=(Pfin-Pdeb)*0.1;
}
if(EpsX>(nTolTangency+nTolTangency)) {
EpsX = nTolTangency * 0.1;
}
//--------------------------------------------------
//-- Plante avec un edge avec 2 Samples
//-- dont les extremites sont solutions (f=0)
//-- et ou la derivee est nulle
//-- Exemple : un segment diametre d une sphere
if(NbEchant<3) NbEchant = 3; //-- lbr le 19 Avril 95
//--------------------------------------------------
Standard_Real PDeb = Pdeb;
Standard_Real PFin = Pfin;
ComputeBoundsfromInfinite(Func,PDeb,PFin,NbEchant);
math_FunctionSample Echant(PDeb,PFin,NbEchant);
math_FunctionAllRoots Sol(Func,Echant,EpsX,TolBoundary,nTolTangency);
if (!Sol.IsDone()) {Standard_Failure::Raise();}
Nbp=Sol.NbPoints();
for (i=1; i<=Nbp; i++) {
Standard_Real para = Sol.GetPoint(i);
Standard_Real dist;
if(Func.Value(para,dist)) {
//--if(Abs(dist)>nTolTangency) {
//--cout<<" Point sur restriction a dist="<<dist<<endl;
//--}
PointProcess(Func.Valpoint(Sol.GetPointState(i)),Sol.GetPoint(i),
A,Domain,pnt,TolBoundary,range);
}
//--else {
//-- cout<<" Point Rejete dans IntStart_SearchOnBoundaries_1.gxx "<<endl;
//--}
}
// Pour chaque intervalle trouve faire
// Traiter les extremites comme des points
// Ajouter intervalle dans la liste des segments
Nbi=Sol.NbIntervals();
for (i=1; i<=Nbi; i++) {
IntStart_TheSegment newseg;
newseg.SetValue(A);
// Recuperer point debut et fin, et leur parametre.
Sol.GetInterval(i,pardeb,parfin);
Sol.GetIntervalState(i,ideb,ifin);
ptdeb=Func.Valpoint(ideb);
ptfin=Func.Valpoint(ifin);
PointProcess(ptdeb,pardeb,A,Domain,pnt,TolBoundary,ranged);
newseg.SetLimitPoint(pnt.Value(ranged),Standard_True);
PointProcess(ptfin,parfin,A,Domain,pnt,TolBoundary,rangef);
newseg.SetLimitPoint(pnt.Value(rangef),Standard_False);
seg.Append(newseg);
}
Arcsol=Standard_False;
if (Nbi==1) {
if (pardeb == Pdeb && parfin == Pfin) {
Arcsol=Standard_True;
}
}
}
//=======================================================================
//function : PointProcess
//purpose :
//=======================================================================
void PointProcess (const gp_Pnt& Pt,
const Standard_Real Para,
const TheArc& A,
const Handle(TheTopolTool)& Domain,
IntStart_SequenceOfPathPoint& pnt,
const Standard_Real Tol,
Standard_Integer& Range)
{
// Regarder si un point solution est confondu avec un vertex.
// Si confondu, on doit retrouver ce vertex dans la liste des points de
// depart. On renvoie alors le rang de ce point dans la liste pnt.
// Sinon, on ajoute le point dans la liste.
Standard_Integer k;
Standard_Boolean found,goon;
Standard_Real dist,toler;
Standard_Integer Nbsol = pnt.Length();
TheVertex vtx;
IntStart_ThePathPoint ptsol;
// Domain.InitVertexIterator(A);
Domain->Initialize(A);
Domain->InitVertexIterator();
found = Standard_False;
goon = Domain->MoreVertex();
while (goon) {
vtx = Domain->Vertex();
dist= Abs(Para-TheSOBTool::Parameter(vtx,A));
toler = TheSOBTool::Tolerance(vtx,A);
#ifdef DEB
if(toler>0.1) {
cout<<"IntStart_SearchOnBoundaries_1.gxx : ** WARNING ** Tol Vertex="<<toler<<endl;
cout<<" Ou Edge degenere Ou Kro pointu"<<endl;
if(toler>10000) toler=1e-7;
}
#endif
if (dist <= toler) {
// Localiser le vertex dans la liste des solutions
k=1;
found = (k>Nbsol);
while (!found) {
ptsol = pnt.Value(k);
if (!ptsol.IsNew()) {
//jag 940608 if (ptsol.Vertex() == vtx &&
//jag 940608 ptsol.Arc() == A) {
if (Domain->Identical(ptsol.Vertex(),vtx) &&
ptsol.Arc() == A &&
Abs(ptsol.Parameter()-Para) <= toler) {
found=Standard_True;
}
else {
k=k+1;
found=(k>Nbsol);
}
}
else {
k=k+1;
found=(k>Nbsol);
}
}
if (k<=Nbsol) { // on a retrouve le vertex
Range = k;
}
else { // au cas ou...
ptsol.SetValue(Pt,Tol,vtx,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
found = Standard_True;
goon = Standard_False;
}
else {
Domain->NextVertex();
goon = Domain->MoreVertex();
}
}
if (!found) { // on n est pas tombe sur un vertex
//jgv: do not add segment's extremities if they already exist
Standard_Boolean found_internal = Standard_False;
for (k = 1; k <= pnt.Length(); k++)
{
ptsol = pnt.Value(k);
if (ptsol.Arc() != A ||
!ptsol.IsNew()) //vertex
continue;
if (Abs(ptsol.Parameter()-Para) <= Precision::PConfusion())
{
found_internal = Standard_True;
Range = k;
}
}
/////////////////////////////////////////////////////////////
if (!found_internal)
{
Standard_Real TOL=Tol;
TOL*=1000.0;
if(TOL>0.001) TOL=0.001;
ptsol.SetValue(Pt,TOL,A,Para);
pnt.Append(ptsol);
Range = pnt.Length();
}
}
}
//modified by NIZNHY-PKV Fri Mar 23 10:53:15 2001
#include <TopoDS_Edge.hxx>
#include <Geom_Curve.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <Adaptor3d_HSurface.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <BRep_Tool.hxx>
#include <Geom_Line.hxx>
#include <gp_Lin.hxx>
#include <gp_Vec.hxx>
#include <gp_Dir.hxx>
#include <gp_Cylinder.hxx>
#include <gp_Ax1.hxx>
#include <gp_Lin.hxx>
#include <GeomAdaptor_Curve.hxx>
#include <Precision.hxx>
#include <Extrema_ExtCC.hxx>
#include <Extrema_POnCurv.hxx>
//=======================================================================
//function : IsRegularity
//purpose :
//=======================================================================
Standard_Boolean IsRegularity(const TheArc&,
const Handle(TheTopolTool)& aDomain)
{
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return Standard_False;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
return (BRep_Tool::HasContinuity(*anE));
}
//=======================================================================
//function : TreatLC
//purpose :
//=======================================================================
Standard_Integer TreatLC (const TheArc& A,
const Handle(TheTopolTool)& aDomain,
const IntSurf_Quadric& aQuadric,
const Standard_Real TolBoundary,
IntStart_SequenceOfPathPoint& pnt)
{
Standard_Integer anExitCode=1, aNbExt;
Standard_Address anEAddress=aDomain->Edge();
if (anEAddress==NULL) {
return anExitCode;
}
TopoDS_Edge* anE=(TopoDS_Edge*)anEAddress;
if (BRep_Tool::Degenerated(*anE)) {
return anExitCode;
}
GeomAbs_CurveType aTypeE;
BRepAdaptor_Curve aBAC(*anE);
aTypeE=aBAC.GetType();
if (aTypeE!=GeomAbs_Line) {
return anExitCode;
}
GeomAbs_SurfaceType aTypeS;
aTypeS=aQuadric.TypeQuadric();
if (aTypeS!=GeomAbs_Cylinder) {
return anExitCode;
}
Standard_Real f, l, U1f, U1l, U2f, U2l, U1, UEgde, TOL, aDist, aR, aRRel, Tol;
Handle(Geom_Curve) aCEdge=BRep_Tool::Curve(*anE, f, l);
gp_Cylinder aCyl=aQuadric.Cylinder();
const gp_Ax1& anAx1=aCyl.Axis();
gp_Lin aLin(anAx1);
Handle(Geom_Line) aCAxis=new Geom_Line (aLin);
aR=aCyl.Radius();
U1f = aCAxis->FirstParameter();
U1l = aCAxis->LastParameter();
U2f = aCEdge->FirstParameter();
U2l = aCEdge->LastParameter();
GeomAdaptor_Curve C1, C2;
C1.Load(aCAxis);
C2.Load(aCEdge);
Tol = Precision::PConfusion();
Extrema_ExtCC anExtCC(C1, C2, U1f, U1l, U2f, U2l, Tol, Tol);
aNbExt=anExtCC.NbExt();
if (aNbExt!=1) {
return anExitCode;
}
gp_Pnt P1,PEdge;
Extrema_POnCurv PC1, PC2;
anExtCC.Points(1, PC1, PC2);
P1 =PC1.Value();
PEdge=PC2.Value();
U1=PC1.Parameter();
UEgde=PC2.Parameter();
aDist=PEdge.Distance(P1);
aRRel=fabs(aDist-aR)/aR;
if (aRRel > TolBoundary) {
return anExitCode;
}
if (UEgde < (f+TolBoundary) || UEgde > (l-TolBoundary)) {
return anExitCode;
}
//
// Do not wonder !
// It was done as into PointProcess(...) function
//printf("TreatLC()=> tangent line is found\n");
TOL=1000.*TolBoundary;
if(TOL>0.001) TOL=0.001;
IntStart_ThePathPoint ptsol;
ptsol.SetValue(PEdge, TOL, A, UEgde);
pnt.Append(ptsol);
anExitCode=0;
return anExitCode;
}