1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0032037: Visualization - move V3d_View::FitMinMax() to Graphic3d_Camera::FitMinMax()

This commit is contained in:
kgv 2021-01-04 11:53:24 +03:00 committed by bugmaster
parent d723356fca
commit f3a53980a8
3 changed files with 165 additions and 147 deletions

View File

@ -1370,6 +1370,165 @@ void Graphic3d_Camera::LookOrientation (const NCollection_Vec3<Elem_t>& theEye,
theOutMx.Multiply (anAxialScaleMx);
}
// =======================================================================
// function : FitMinMax
// purpose :
// =======================================================================
bool Graphic3d_Camera::FitMinMax (const Bnd_Box& theBox,
const Standard_Real theResolution,
const bool theToEnlargeIfLine)
{
// Check bounding box for validness
if (theBox.IsVoid())
{
return false; // bounding box is out of bounds...
}
// Apply "axial scaling" to the bounding points.
// It is not the best approach to make this scaling as a part of fit all operation,
// but the axial scale is integrated into camera orientation matrix and the other
// option is to perform frustum plane adjustment algorithm in view camera space,
// which will lead to a number of additional world-view space conversions and
// loosing precision as well.
const gp_Pnt aBndMin = theBox.CornerMin().XYZ().Multiplied (myAxialScale);
const gp_Pnt aBndMax = theBox.CornerMax().XYZ().Multiplied (myAxialScale);
if (aBndMax.IsEqual (aBndMin, RealEpsilon()))
{
return false; // nothing to fit all
}
// Prepare camera frustum planes.
gp_Pln aFrustumPlaneArray[6];
NCollection_Array1<gp_Pln> aFrustumPlane (aFrustumPlaneArray[0], 1, 6);
Frustum (aFrustumPlane[1], aFrustumPlane[2], aFrustumPlane[3],
aFrustumPlane[4], aFrustumPlane[5], aFrustumPlane[6]);
// Prepare camera up, side, direction vectors.
const gp_Dir aCamUp = OrthogonalizedUp();
const gp_Dir aCamDir = Direction();
const gp_Dir aCamSide = aCamDir ^ aCamUp;
// Prepare scene bounding box parameters.
const gp_Pnt aBndCenter = (aBndMin.XYZ() + aBndMax.XYZ()) / 2.0;
gp_Pnt aBndCornerArray[8];
NCollection_Array1<gp_Pnt> aBndCorner (aBndCornerArray[0], 1, 8);
aBndCorner[1].SetCoord (aBndMin.X(), aBndMin.Y(), aBndMin.Z());
aBndCorner[2].SetCoord (aBndMin.X(), aBndMin.Y(), aBndMax.Z());
aBndCorner[3].SetCoord (aBndMin.X(), aBndMax.Y(), aBndMin.Z());
aBndCorner[4].SetCoord (aBndMin.X(), aBndMax.Y(), aBndMax.Z());
aBndCorner[5].SetCoord (aBndMax.X(), aBndMin.Y(), aBndMin.Z());
aBndCorner[6].SetCoord (aBndMax.X(), aBndMin.Y(), aBndMax.Z());
aBndCorner[7].SetCoord (aBndMax.X(), aBndMax.Y(), aBndMin.Z());
aBndCorner[8].SetCoord (aBndMax.X(), aBndMax.Y(), aBndMax.Z());
// Perspective-correct camera projection vector, matching the bounding box is determined geometrically.
// Knowing the initial shape of a frustum it is possible to match it to a bounding box.
// Then, knowing the relation of camera projection vector to the frustum shape it is possible to
// set up perspective-correct camera projection matching the bounding box.
// These steps support non-asymmetric transformations of view-projection space provided by camera.
// The zooming can be done by calculating view plane size matching the bounding box at center of
// the bounding box. The only limitation here is that the scale of camera should define size of
// its view plane passing through the camera center, and the center of camera should be on the
// same line with the center of bounding box.
// The following method is applied:
// 1) Determine normalized asymmetry of camera projection vector by frustum planes.
// 2) Determine new location of frustum planes, "matching" the bounding box.
// 3) Determine new camera projection vector using the normalized asymmetry.
// 4) Determine new zooming in view space.
// 1. Determine normalized projection asymmetry (if any).
Standard_Real anAssymX = Tan (( aCamSide).Angle (aFrustumPlane[1].Axis().Direction()))
- Tan ((-aCamSide).Angle (aFrustumPlane[2].Axis().Direction()));
Standard_Real anAssymY = Tan (( aCamUp) .Angle (aFrustumPlane[3].Axis().Direction()))
- Tan ((-aCamUp) .Angle (aFrustumPlane[4].Axis().Direction()));
// 2. Determine how far should be the frustum planes placed from center
// of bounding box, in order to match the bounding box closely.
Standard_Real aFitDistanceArray[6];
NCollection_Array1<Standard_Real> aFitDistance (aFitDistanceArray[0], 1, 6);
aFitDistance.Init (0.0);
for (Standard_Integer anI = aFrustumPlane.Lower(); anI <= aFrustumPlane.Upper(); ++anI)
{
// Measure distances from center of bounding box to its corners towards the frustum plane.
const gp_Dir& aPlaneN = aFrustumPlane[anI].Axis().Direction();
Standard_Real& aFitDist = aFitDistance[anI];
for (Standard_Integer aJ = aBndCorner.Lower(); aJ <= aBndCorner.Upper(); ++aJ)
{
aFitDist = Max (aFitDist, gp_Vec (aBndCenter, aBndCorner[aJ]).Dot (aPlaneN));
}
}
// The center of camera is placed on the same line with center of bounding box.
// The view plane section crosses the bounding box at its center.
// To compute view plane size, evaluate coefficients converting "point -> plane distance"
// into view section size between the point and the frustum plane.
// proj
// /|\ right half of frame //
// | //
// point o<-- distance * coeff -->//---- (view plane section)
// \ //
// (distance) //
// ~ //
// (distance) //
// \/\//
// \//
// //
// (frustum plane)
aFitDistance[1] *= Sqrt(1 + Pow (Tan ( aCamSide .Angle (aFrustumPlane[1].Axis().Direction())), 2.0));
aFitDistance[2] *= Sqrt(1 + Pow (Tan ((-aCamSide).Angle (aFrustumPlane[2].Axis().Direction())), 2.0));
aFitDistance[3] *= Sqrt(1 + Pow (Tan ( aCamUp .Angle (aFrustumPlane[3].Axis().Direction())), 2.0));
aFitDistance[4] *= Sqrt(1 + Pow (Tan ((-aCamUp) .Angle (aFrustumPlane[4].Axis().Direction())), 2.0));
aFitDistance[5] *= Sqrt(1 + Pow (Tan ( aCamDir .Angle (aFrustumPlane[5].Axis().Direction())), 2.0));
aFitDistance[6] *= Sqrt(1 + Pow (Tan ((-aCamDir) .Angle (aFrustumPlane[6].Axis().Direction())), 2.0));
Standard_Real aViewSizeXv = aFitDistance[1] + aFitDistance[2];
Standard_Real aViewSizeYv = aFitDistance[3] + aFitDistance[4];
Standard_Real aViewSizeZv = aFitDistance[5] + aFitDistance[6];
// 3. Place center of camera on the same line with center of bounding
// box applying corresponding projection asymmetry (if any).
Standard_Real anAssymXv = anAssymX * aViewSizeXv * 0.5;
Standard_Real anAssymYv = anAssymY * aViewSizeYv * 0.5;
Standard_Real anOffsetXv = (aFitDistance[2] - aFitDistance[1]) * 0.5 + anAssymXv;
Standard_Real anOffsetYv = (aFitDistance[4] - aFitDistance[3]) * 0.5 + anAssymYv;
gp_Vec aTranslateSide = gp_Vec (aCamSide) * anOffsetXv;
gp_Vec aTranslateUp = gp_Vec (aCamUp) * anOffsetYv;
gp_Pnt aCamNewCenter = aBndCenter.Translated (aTranslateSide).Translated (aTranslateUp);
gp_Trsf aCenterTrsf;
aCenterTrsf.SetTranslation (Center(), aCamNewCenter);
Transform (aCenterTrsf);
SetDistance (aFitDistance[6] + aFitDistance[5]);
if (aViewSizeXv < theResolution
&& aViewSizeYv < theResolution)
{
// Bounding box collapses to a point or thin line going in depth of the screen
if (aViewSizeXv < theResolution || !theToEnlargeIfLine)
{
return false; // This is just one point or line and zooming has no effect.
}
// Looking along line and "theToEnlargeIfLine" is requested.
// Fit view to see whole scene on rotation.
aViewSizeXv = aViewSizeZv;
aViewSizeYv = aViewSizeZv;
}
const Standard_Real anAspect = Aspect();
if (anAspect > 1.0)
{
SetScale (Max (aViewSizeXv / anAspect, aViewSizeYv));
}
else
{
SetScale (Max (aViewSizeXv, aViewSizeYv * anAspect));
}
return true;
}
//=============================================================================
//function : ZFitAll
//purpose :

View File

@ -359,6 +359,11 @@ public:
//! Set Field Of View (FOV) restriction for 2D on-screen elements.
Standard_EXPORT void SetFOV2d (Standard_Real theFOV);
//! Adjust camera to fit in specified AABB.
Standard_EXPORT bool FitMinMax (const Bnd_Box& theBox,
const Standard_Real theResolution,
const bool theToEnlargeIfLine);
//! Estimate Z-min and Z-max planes of projection volume to match the
//! displayed objects. The methods ensures that view volume will
//! be close by depth range to the displayed objects. Fitting assumes that

View File

@ -2927,159 +2927,13 @@ Standard_Boolean V3d_View::FitMinMax (const Handle(Graphic3d_Camera)& theCamera,
const Standard_Real theResolution,
const Standard_Boolean theToEnlargeIfLine) const
{
// Check bounding box for validness
if (theBox.IsVoid())
if (!theCamera->FitMinMax (theBox, theResolution, theToEnlargeIfLine))
{
return Standard_False; // bounding box is out of bounds...
}
// Apply "axial scaling" to the bounding points.
// It is not the best approach to make this scaling as a part of fit all operation,
// but the axial scale is integrated into camera orientation matrix and the other
// option is to perform frustum plane adjustment algorithm in view camera space,
// which will lead to a number of additional world-view space conversions and
// loosing precision as well.
gp_Pnt aBndMin = theBox.CornerMin().XYZ().Multiplied (theCamera->AxialScale());
gp_Pnt aBndMax = theBox.CornerMax().XYZ().Multiplied (theCamera->AxialScale());
if (aBndMax.IsEqual (aBndMin, RealEpsilon()))
{
return Standard_False; // nothing to fit all
}
// Prepare camera frustum planes.
NCollection_Array1<gp_Pln> aFrustumPlane (1, 6);
theCamera->Frustum (aFrustumPlane.ChangeValue (1),
aFrustumPlane.ChangeValue (2),
aFrustumPlane.ChangeValue (3),
aFrustumPlane.ChangeValue (4),
aFrustumPlane.ChangeValue (5),
aFrustumPlane.ChangeValue (6));
// Prepare camera up, side, direction vectors.
gp_Dir aCamUp = theCamera->OrthogonalizedUp();
gp_Dir aCamDir = theCamera->Direction();
gp_Dir aCamSide = aCamDir ^ aCamUp;
// Prepare scene bounding box parameters.
gp_Pnt aBndCenter = (aBndMin.XYZ() + aBndMax.XYZ()) / 2.0;
NCollection_Array1<gp_Pnt> aBndCorner (1, 8);
aBndCorner.ChangeValue (1) = gp_Pnt (aBndMin.X(), aBndMin.Y(), aBndMin.Z());
aBndCorner.ChangeValue (2) = gp_Pnt (aBndMin.X(), aBndMin.Y(), aBndMax.Z());
aBndCorner.ChangeValue (3) = gp_Pnt (aBndMin.X(), aBndMax.Y(), aBndMin.Z());
aBndCorner.ChangeValue (4) = gp_Pnt (aBndMin.X(), aBndMax.Y(), aBndMax.Z());
aBndCorner.ChangeValue (5) = gp_Pnt (aBndMax.X(), aBndMin.Y(), aBndMin.Z());
aBndCorner.ChangeValue (6) = gp_Pnt (aBndMax.X(), aBndMin.Y(), aBndMax.Z());
aBndCorner.ChangeValue (7) = gp_Pnt (aBndMax.X(), aBndMax.Y(), aBndMin.Z());
aBndCorner.ChangeValue (8) = gp_Pnt (aBndMax.X(), aBndMax.Y(), aBndMax.Z());
// Perspective-correct camera projection vector, matching the bounding box is determined geometrically.
// Knowing the initial shape of a frustum it is possible to match it to a bounding box.
// Then, knowing the relation of camera projection vector to the frustum shape it is possible to
// set up perspective-correct camera projection matching the bounding box.
// These steps support non-asymmetric transformations of view-projection space provided by camera.
// The zooming can be done by calculating view plane size matching the bounding box at center of
// the bounding box. The only limitation here is that the scale of camera should define size of
// its view plane passing through the camera center, and the center of camera should be on the
// same line with the center of bounding box.
// The following method is applied:
// 1) Determine normalized asymmetry of camera projection vector by frustum planes.
// 2) Determine new location of frustum planes, "matching" the bounding box.
// 3) Determine new camera projection vector using the normalized asymmetry.
// 4) Determine new zooming in view space.
// 1. Determine normalized projection asymmetry (if any).
Standard_Real anAssymX = Tan (( aCamSide).Angle (aFrustumPlane (1).Axis().Direction()))
- Tan ((-aCamSide).Angle (aFrustumPlane (2).Axis().Direction()));
Standard_Real anAssymY = Tan (( aCamUp) .Angle (aFrustumPlane (3).Axis().Direction()))
- Tan ((-aCamUp) .Angle (aFrustumPlane (4).Axis().Direction()));
// 2. Determine how far should be the frustum planes placed from center
// of bounding box, in order to match the bounding box closely.
NCollection_Array1<Standard_Real> aFitDistance (1, 6);
aFitDistance.ChangeValue (1) = 0.0;
aFitDistance.ChangeValue (2) = 0.0;
aFitDistance.ChangeValue (3) = 0.0;
aFitDistance.ChangeValue (4) = 0.0;
aFitDistance.ChangeValue (5) = 0.0;
aFitDistance.ChangeValue (6) = 0.0;
for (Standard_Integer anI = aFrustumPlane.Lower(); anI <= aFrustumPlane.Upper(); ++anI)
{
// Measure distances from center of bounding box to its corners towards the frustum plane.
const gp_Dir& aPlaneN = aFrustumPlane.ChangeValue (anI).Axis().Direction();
Standard_Real& aFitDist = aFitDistance.ChangeValue (anI);
for (Standard_Integer aJ = aBndCorner.Lower(); aJ <= aBndCorner.Upper(); ++aJ)
{
aFitDist = Max (aFitDist, gp_Vec (aBndCenter, aBndCorner (aJ)).Dot (aPlaneN));
}
}
// The center of camera is placed on the same line with center of bounding box.
// The view plane section crosses the bounding box at its center.
// To compute view plane size, evaluate coefficients converting "point -> plane distance"
// into view section size between the point and the frustum plane.
// proj
// /|\ right half of frame //
// | //
// point o<-- distance * coeff -->//---- (view plane section)
// \ //
// (distance) //
// ~ //
// (distance) //
// \/\//
// \//
// //
// (frustum plane)
aFitDistance.ChangeValue (1) *= Sqrt(1 + Pow (Tan ( aCamSide .Angle (aFrustumPlane (1).Axis().Direction())), 2.0));
aFitDistance.ChangeValue (2) *= Sqrt(1 + Pow (Tan ((-aCamSide).Angle (aFrustumPlane (2).Axis().Direction())), 2.0));
aFitDistance.ChangeValue (3) *= Sqrt(1 + Pow (Tan ( aCamUp .Angle (aFrustumPlane (3).Axis().Direction())), 2.0));
aFitDistance.ChangeValue (4) *= Sqrt(1 + Pow (Tan ((-aCamUp) .Angle (aFrustumPlane (4).Axis().Direction())), 2.0));
aFitDistance.ChangeValue (5) *= Sqrt(1 + Pow (Tan ( aCamDir .Angle (aFrustumPlane (5).Axis().Direction())), 2.0));
aFitDistance.ChangeValue (6) *= Sqrt(1 + Pow (Tan ((-aCamDir) .Angle (aFrustumPlane (6).Axis().Direction())), 2.0));
Standard_Real aViewSizeXv = aFitDistance (1) + aFitDistance (2);
Standard_Real aViewSizeYv = aFitDistance (3) + aFitDistance (4);
Standard_Real aViewSizeZv = aFitDistance (5) + aFitDistance (6);
// 3. Place center of camera on the same line with center of bounding
// box applying corresponding projection asymmetry (if any).
Standard_Real anAssymXv = anAssymX * aViewSizeXv * 0.5;
Standard_Real anAssymYv = anAssymY * aViewSizeYv * 0.5;
Standard_Real anOffsetXv = (aFitDistance (2) - aFitDistance (1)) * 0.5 + anAssymXv;
Standard_Real anOffsetYv = (aFitDistance (4) - aFitDistance (3)) * 0.5 + anAssymYv;
gp_Vec aTranslateSide = gp_Vec (aCamSide) * anOffsetXv;
gp_Vec aTranslateUp = gp_Vec (aCamUp) * anOffsetYv;
gp_Pnt aCamNewCenter = aBndCenter.Translated (aTranslateSide).Translated (aTranslateUp);
gp_Trsf aCenterTrsf;
aCenterTrsf.SetTranslation (theCamera->Center(), aCamNewCenter);
theCamera->Transform (aCenterTrsf);
theCamera->SetDistance (aFitDistance (6) + aFitDistance (5));
// Bounding box collapses to a point or thin line going in depth of the screen
if (aViewSizeXv < theResolution && aViewSizeYv < theResolution)
{
if (aViewSizeXv < theResolution || !theToEnlargeIfLine)
{
return Standard_True; // This is just one point or line and zooming has no effect.
}
// Looking along line and "theToEnlargeIfLine" is requested.
// Fit view to see whole scene on rotation.
aViewSizeXv = aViewSizeZv;
aViewSizeYv = aViewSizeZv;
}
Scale (theCamera, aViewSizeXv, aViewSizeYv);
const Standard_Real aZoomCoef = myView->ConsiderZoomPersistenceObjects();
Scale (theCamera, theCamera->ViewDimensions().X() * (aZoomCoef + theMargin), theCamera->ViewDimensions().Y() * (aZoomCoef + theMargin));
return Standard_True;
}