mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
0026838: Using GeomEvaluators for calculation of values of curves
1. Implemented evaluators for 2D and 3D offset curves 2. Removed obsolete namespace CSLib_Offset Update of UDLIST (adding no-cdl-pack Geom2dEvaluator) Update TKG2d/CMakeLists.txt after rebase Correction compilation in debug mode
This commit is contained in:
@@ -1,3 +1,6 @@
|
||||
GeomEvaluator_Curve.hxx
|
||||
GeomEvaluator_OffsetCurve.cxx
|
||||
GeomEvaluator_OffsetCurve.hxx
|
||||
GeomEvaluator_OffsetSurface.cxx
|
||||
GeomEvaluator_OffsetSurface.hxx
|
||||
GeomEvaluator_Surface.hxx
|
||||
|
53
src/GeomEvaluator/GeomEvaluator_Curve.hxx
Normal file
53
src/GeomEvaluator/GeomEvaluator_Curve.hxx
Normal file
@@ -0,0 +1,53 @@
|
||||
// Created on: 2015-09-21
|
||||
// Copyright (c) 2015 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _GeomEvaluator_Curve_HeaderFile
|
||||
#define _GeomEvaluator_Curve_HeaderFile
|
||||
|
||||
#include <Standard_Transient.hxx>
|
||||
#include <Standard_Type.hxx>
|
||||
|
||||
class gp_Pnt;
|
||||
class gp_Vec;
|
||||
|
||||
//! Interface for calculation of values and derivatives for different kinds of curves in 3D.
|
||||
//! Works both with adaptors and curves.
|
||||
class GeomEvaluator_Curve : public Standard_Transient
|
||||
{
|
||||
public:
|
||||
GeomEvaluator_Curve() {}
|
||||
|
||||
//! Value of 3D curve
|
||||
virtual void D0(const Standard_Real theU,
|
||||
gp_Pnt& theValue) const = 0;
|
||||
//! Value and first derivatives of curve
|
||||
virtual void D1(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1) const = 0;
|
||||
//! Value, first and second derivatives of curve
|
||||
virtual void D2(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const = 0;
|
||||
//! Value, first, second and third derivatives of curve
|
||||
virtual void D3(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3) const = 0;
|
||||
//! Calculates N-th derivatives of curve, where N = theDerU. Raises if N < 1
|
||||
virtual gp_Vec DN(const Standard_Real theU,
|
||||
const Standard_Integer theDerU) const = 0;
|
||||
|
||||
DEFINE_STANDARD_RTTI(GeomEvaluator_Curve, Standard_Transient)
|
||||
};
|
||||
|
||||
DEFINE_STANDARD_HANDLE(GeomEvaluator_Curve, Standard_Transient)
|
||||
|
||||
|
||||
#endif // _GeomEvaluator_Curve_HeaderFile
|
447
src/GeomEvaluator/GeomEvaluator_OffsetCurve.cxx
Normal file
447
src/GeomEvaluator/GeomEvaluator_OffsetCurve.cxx
Normal file
@@ -0,0 +1,447 @@
|
||||
// Created on: 2015-09-21
|
||||
// Copyright (c) 2015 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <GeomEvaluator_OffsetCurve.hxx>
|
||||
|
||||
#include <GeomAdaptor_HCurve.hxx>
|
||||
#include <Standard_NullValue.hxx>
|
||||
|
||||
|
||||
GeomEvaluator_OffsetCurve::GeomEvaluator_OffsetCurve(
|
||||
const Handle(Geom_Curve)& theBase,
|
||||
const Standard_Real theOffset,
|
||||
const gp_Dir& theDirection)
|
||||
: GeomEvaluator_Curve(),
|
||||
myBaseCurve(theBase),
|
||||
myOffset(theOffset),
|
||||
myOffsetDir(theDirection)
|
||||
{
|
||||
}
|
||||
|
||||
GeomEvaluator_OffsetCurve::GeomEvaluator_OffsetCurve(
|
||||
const Handle(GeomAdaptor_HCurve)& theBase,
|
||||
const Standard_Real theOffset,
|
||||
const gp_Dir& theDirection)
|
||||
: GeomEvaluator_Curve(),
|
||||
myBaseAdaptor(theBase),
|
||||
myOffset(theOffset),
|
||||
myOffsetDir(theDirection)
|
||||
{
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::D0(const Standard_Real theU,
|
||||
gp_Pnt& theValue) const
|
||||
{
|
||||
gp_Vec aD1;
|
||||
BaseD1(theU, theValue, aD1);
|
||||
CalculateD0(theValue, aD1);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::D1(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1) const
|
||||
{
|
||||
gp_Vec aD2;
|
||||
BaseD2(theU, theValue, theD1, aD2);
|
||||
CalculateD1(theValue, theD1, aD2);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::D2(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2) const
|
||||
{
|
||||
gp_Vec aD3;
|
||||
BaseD3(theU, theValue, theD1, theD2, aD3);
|
||||
|
||||
Standard_Boolean isDirectionChange = Standard_False;
|
||||
if (theD1.SquareMagnitude() <= gp::Resolution())
|
||||
{
|
||||
gp_Vec aDummyD4;
|
||||
isDirectionChange = AdjustDerivative(3, theU, theD1, theD2, aD3, aDummyD4);
|
||||
}
|
||||
|
||||
CalculateD2(theValue, theD1, theD2, aD3, isDirectionChange);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::D3(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3) const
|
||||
{
|
||||
gp_Vec aD4;
|
||||
BaseD4(theU, theValue, theD1, theD2, theD3, aD4);
|
||||
|
||||
Standard_Boolean isDirectionChange = Standard_False;
|
||||
if (theD1.SquareMagnitude() <= gp::Resolution())
|
||||
isDirectionChange = AdjustDerivative(4, theU, theD1, theD2, theD3, aD4);
|
||||
|
||||
CalculateD3(theValue, theD1, theD2, theD3, aD4, isDirectionChange);
|
||||
}
|
||||
|
||||
gp_Vec GeomEvaluator_OffsetCurve::DN(const Standard_Real theU,
|
||||
const Standard_Integer theDeriv) const
|
||||
{
|
||||
Standard_RangeError_Raise_if(theDeriv < 1, "GeomEvaluator_OffsetCurve::DN(): theDeriv < 1");
|
||||
|
||||
gp_Pnt aPnt;
|
||||
gp_Vec aDummy, aDN;
|
||||
switch (theDeriv)
|
||||
{
|
||||
case 1:
|
||||
D1(theU, aPnt, aDN);
|
||||
break;
|
||||
case 2:
|
||||
D2(theU, aPnt, aDummy, aDN);
|
||||
break;
|
||||
case 3:
|
||||
D3(theU, aPnt, aDummy, aDummy, aDN);
|
||||
break;
|
||||
default:
|
||||
aDN = BaseDN(theU, theDeriv);
|
||||
}
|
||||
return aDN;
|
||||
}
|
||||
|
||||
|
||||
void GeomEvaluator_OffsetCurve::BaseD0(const Standard_Real theU,
|
||||
gp_Pnt& theValue) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
myBaseAdaptor->D0(theU, theValue);
|
||||
else
|
||||
myBaseCurve->D0(theU, theValue);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::BaseD1(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
myBaseAdaptor->D1(theU, theValue, theD1);
|
||||
else
|
||||
myBaseCurve->D1(theU, theValue, theD1);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::BaseD2(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
myBaseAdaptor->D2(theU, theValue, theD1, theD2);
|
||||
else
|
||||
myBaseCurve->D2(theU, theValue, theD1, theD2);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::BaseD3(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
|
||||
else
|
||||
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::BaseD4(const Standard_Real theU,
|
||||
gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3,
|
||||
gp_Vec& theD4) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
{
|
||||
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
|
||||
theD4 = myBaseAdaptor->DN(theU, 4);
|
||||
}
|
||||
else
|
||||
{
|
||||
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
|
||||
theD4 = myBaseCurve->DN(theU, 4);
|
||||
}
|
||||
}
|
||||
|
||||
gp_Vec GeomEvaluator_OffsetCurve::BaseDN(const Standard_Real theU,
|
||||
const Standard_Integer theDeriv) const
|
||||
{
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
return myBaseAdaptor->DN(theU, theDeriv);
|
||||
return myBaseCurve->DN(theU, theDeriv);
|
||||
}
|
||||
|
||||
|
||||
void GeomEvaluator_OffsetCurve::CalculateD0( gp_Pnt& theValue,
|
||||
const gp_Vec& theD1) const
|
||||
{
|
||||
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
Standard_Real R = Ndir.Modulus();
|
||||
if (R <= gp::Resolution())
|
||||
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Undefined normal vector "
|
||||
"because tangent vector has zero-magnitude!");
|
||||
|
||||
Ndir.Multiply(myOffset / R);
|
||||
theValue.ChangeCoord().Add(Ndir);
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::CalculateD1( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
const gp_Vec& theD2) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
Standard_Real R2 = Ndir.SquareModulus();
|
||||
Standard_Real R = Sqrt(R2);
|
||||
Standard_Real R3 = R * R2;
|
||||
Standard_Real Dr = Ndir.Dot(DNdir);
|
||||
if (R3 <= gp::Resolution()) {
|
||||
if (R2 <= gp::Resolution())
|
||||
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Null derivative");
|
||||
//We try another computation but the stability is not very good.
|
||||
DNdir.Multiply(R);
|
||||
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
||||
DNdir.Multiply(myOffset / R2);
|
||||
}
|
||||
else {
|
||||
// Same computation as IICURV in EUCLID-IS because the stability is better
|
||||
DNdir.Multiply(myOffset / R);
|
||||
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
||||
}
|
||||
|
||||
Ndir.Multiply(myOffset / R);
|
||||
// P(u)
|
||||
theValue.ChangeCoord().Add(Ndir);
|
||||
// P'(u)
|
||||
theD1.Add(gp_Vec(DNdir));
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::CalculateD2( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
const gp_Vec& theD3,
|
||||
const Standard_Boolean theIsDirChange) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
||||
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
||||
|
||||
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ D2Ndir = (theD3.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
Standard_Real R2 = Ndir.SquareModulus();
|
||||
Standard_Real R = Sqrt(R2);
|
||||
Standard_Real R3 = R2 * R;
|
||||
Standard_Real R4 = R2 * R2;
|
||||
Standard_Real R5 = R3 * R2;
|
||||
Standard_Real Dr = Ndir.Dot(DNdir);
|
||||
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
|
||||
|
||||
if (R5 <= gp::Resolution()) {
|
||||
if (R4 <= gp::Resolution())
|
||||
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Null derivative");
|
||||
//We try another computation but the stability is not very good
|
||||
//dixit ISG.
|
||||
// V2 = P" (U) :
|
||||
R4 = R2 * R2;
|
||||
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
|
||||
D2Ndir.Add(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
|
||||
D2Ndir.Multiply(myOffset / R);
|
||||
|
||||
// V1 = P' (U) :
|
||||
DNdir.Multiply(R);
|
||||
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
||||
DNdir.Multiply(myOffset / R2);
|
||||
}
|
||||
else {
|
||||
// Same computation as IICURV in EUCLID-IS because the stability is better.
|
||||
// V2 = P" (U) :
|
||||
D2Ndir.Multiply(myOffset / R);
|
||||
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
|
||||
D2Ndir.Add(Ndir.Multiplied(myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
|
||||
|
||||
// V1 = P' (U) :
|
||||
DNdir.Multiply(myOffset / R);
|
||||
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
||||
}
|
||||
|
||||
Ndir.Multiply(myOffset / R);
|
||||
// P(u)
|
||||
theValue.ChangeCoord().Add(Ndir);
|
||||
// P'(u) :
|
||||
theD1.Add(gp_Vec(DNdir));
|
||||
// P"(u) :
|
||||
if (theIsDirChange)
|
||||
theD2.Reverse();
|
||||
theD2.Add(gp_Vec(D2Ndir));
|
||||
}
|
||||
|
||||
void GeomEvaluator_OffsetCurve::CalculateD3( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3,
|
||||
const gp_Vec& theD4,
|
||||
const Standard_Boolean theIsDirChange) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
||||
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
||||
|
||||
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2) * D2Ndir -
|
||||
// (3.0 * D2r / R2) * DNdir + (3.0 * Dr * Dr / R4) * DNdir -
|
||||
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
|
||||
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
|
||||
|
||||
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ D2Ndir = (theD3.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
gp_XYZ D3Ndir = (theD4.XYZ()).Crossed(myOffsetDir.XYZ());
|
||||
Standard_Real R2 = Ndir.SquareModulus();
|
||||
Standard_Real R = Sqrt(R2);
|
||||
Standard_Real R3 = R2 * R;
|
||||
Standard_Real R4 = R2 * R2;
|
||||
Standard_Real R5 = R3 * R2;
|
||||
Standard_Real R6 = R3 * R3;
|
||||
Standard_Real R7 = R5 * R2;
|
||||
Standard_Real Dr = Ndir.Dot(DNdir);
|
||||
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
|
||||
Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot(D2Ndir);
|
||||
if (R7 <= gp::Resolution()) {
|
||||
if (R6 <= gp::Resolution())
|
||||
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
|
||||
// V3 = P"' (U) :
|
||||
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * Dr / R2));
|
||||
D3Ndir.Subtract(DNdir.Multiplied(3.0 * ((D2r / R2) + (Dr*Dr / R4))));
|
||||
D3Ndir.Add(Ndir.Multiplied(6.0*Dr*Dr / R4 + 6.0*Dr*D2r / R4 - 15.0*Dr*Dr*Dr / R6 - D3r));
|
||||
D3Ndir.Multiply(myOffset / R);
|
||||
// V2 = P" (U) :
|
||||
R4 = R2 * R2;
|
||||
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
|
||||
D2Ndir.Subtract(Ndir.Multiplied((3.0 * Dr * Dr / R4) - (D2r / R2)));
|
||||
D2Ndir.Multiply(myOffset / R);
|
||||
// V1 = P' (U) :
|
||||
DNdir.Multiply(R);
|
||||
DNdir.Subtract(Ndir.Multiplied(Dr / R));
|
||||
DNdir.Multiply(myOffset / R2);
|
||||
}
|
||||
else {
|
||||
// V3 = P"' (U) :
|
||||
D3Ndir.Divide(R);
|
||||
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * Dr / R3));
|
||||
D3Ndir.Subtract(DNdir.Multiplied((3.0 * ((D2r / R3) + (Dr*Dr) / R5))));
|
||||
D3Ndir.Add(Ndir.Multiplied(6.0*Dr*Dr / R5 + 6.0*Dr*D2r / R5 - 15.0*Dr*Dr*Dr / R7 - D3r));
|
||||
D3Ndir.Multiply(myOffset);
|
||||
// V2 = P" (U) :
|
||||
D2Ndir.Divide(R);
|
||||
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R3));
|
||||
D2Ndir.Subtract(Ndir.Multiplied((3.0 * Dr * Dr / R5) - (D2r / R3)));
|
||||
D2Ndir.Multiply(myOffset);
|
||||
// V1 = P' (U) :
|
||||
DNdir.Multiply(myOffset / R);
|
||||
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
|
||||
}
|
||||
|
||||
Ndir.Multiply(myOffset / R);
|
||||
// P(u)
|
||||
theValue.ChangeCoord().Add(Ndir);
|
||||
// P'(u) :
|
||||
theD1.Add(gp_Vec(DNdir));
|
||||
// P"(u)
|
||||
theD2.Add(gp_Vec(D2Ndir));
|
||||
// P"'(u)
|
||||
if (theIsDirChange)
|
||||
theD3.Reverse();
|
||||
theD3.Add(gp_Vec(D2Ndir));
|
||||
}
|
||||
|
||||
|
||||
Standard_Boolean GeomEvaluator_OffsetCurve::AdjustDerivative(
|
||||
const Standard_Integer theMaxDerivative, const Standard_Real theU,
|
||||
gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3, gp_Vec& theD4) const
|
||||
{
|
||||
static const Standard_Real aTol = gp::Resolution();
|
||||
static const Standard_Real aMinStep = 1e-7;
|
||||
static const Standard_Integer aMaxDerivOrder = 3;
|
||||
|
||||
Standard_Boolean isDirectionChange = Standard_False;
|
||||
Standard_Real anUinfium;
|
||||
Standard_Real anUsupremum;
|
||||
if (!myBaseAdaptor.IsNull())
|
||||
{
|
||||
anUinfium = myBaseAdaptor->FirstParameter();
|
||||
anUsupremum = myBaseAdaptor->LastParameter();
|
||||
}
|
||||
else
|
||||
{
|
||||
anUinfium = myBaseCurve->FirstParameter();
|
||||
anUsupremum = myBaseCurve->LastParameter();
|
||||
}
|
||||
|
||||
static const Standard_Real DivisionFactor = 1.e-3;
|
||||
Standard_Real du;
|
||||
if ((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = anUsupremum - anUinfium;
|
||||
|
||||
const Standard_Real aDelta = Max(du * DivisionFactor, aMinStep);
|
||||
|
||||
//Derivative is approximated by Taylor-series
|
||||
Standard_Integer anIndex = 1; //Derivative order
|
||||
gp_Vec V;
|
||||
|
||||
do
|
||||
{
|
||||
V = BaseDN(theU, ++anIndex);
|
||||
} while ((V.SquareMagnitude() <= aTol) && anIndex < aMaxDerivOrder);
|
||||
|
||||
Standard_Real u;
|
||||
|
||||
if (theU - anUinfium < aDelta)
|
||||
u = theU + aDelta;
|
||||
else
|
||||
u = theU - aDelta;
|
||||
|
||||
gp_Pnt P1, P2;
|
||||
BaseD0(Min(theU, u), P1);
|
||||
BaseD0(Max(theU, u), P2);
|
||||
|
||||
gp_Vec V1(P1, P2);
|
||||
isDirectionChange = V.Dot(V1) < 0.0;
|
||||
Standard_Real aSign = isDirectionChange ? -1.0 : 1.0;
|
||||
|
||||
theD1 = V * aSign;
|
||||
gp_Vec* aDeriv[3] = { &theD2, &theD3, &theD4 };
|
||||
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
|
||||
*(aDeriv[i - 1]) = BaseDN(theU, anIndex + i) * aSign;
|
||||
|
||||
return isDirectionChange;
|
||||
}
|
||||
|
124
src/GeomEvaluator/GeomEvaluator_OffsetCurve.hxx
Normal file
124
src/GeomEvaluator/GeomEvaluator_OffsetCurve.hxx
Normal file
@@ -0,0 +1,124 @@
|
||||
// Created on: 2015-09-21
|
||||
// Copyright (c) 2015 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _GeomEvaluator_OffsetCurve_HeaderFile
|
||||
#define _GeomEvaluator_OffsetCurve_HeaderFile
|
||||
|
||||
#include <Geom_Curve.hxx>
|
||||
#include <GeomEvaluator_Curve.hxx>
|
||||
#include <gp_Dir.hxx>
|
||||
|
||||
class GeomAdaptor_HCurve;
|
||||
|
||||
//! Allows to calculate values and derivatives for offset curves in 3D
|
||||
class GeomEvaluator_OffsetCurve : public GeomEvaluator_Curve
|
||||
{
|
||||
public:
|
||||
//! Initialize evaluator by curve
|
||||
Standard_EXPORT GeomEvaluator_OffsetCurve(
|
||||
const Handle(Geom_Curve)& theBase,
|
||||
const Standard_Real theOffset,
|
||||
const gp_Dir& theDirection);
|
||||
//! Initialize evaluator by curve adaptor
|
||||
Standard_EXPORT GeomEvaluator_OffsetCurve(
|
||||
const Handle(GeomAdaptor_HCurve)& theBase,
|
||||
const Standard_Real theOffset,
|
||||
const gp_Dir& theDirection);
|
||||
|
||||
//! Change the offset value
|
||||
void SetOffsetValue(Standard_Real theOffset)
|
||||
{ myOffset = theOffset; }
|
||||
|
||||
void SetOffsetDirection(const gp_Dir& theDirection)
|
||||
{ myOffsetDir = theDirection; }
|
||||
|
||||
//! Value of curve
|
||||
Standard_EXPORT void D0(const Standard_Real theU,
|
||||
gp_Pnt& theValue) const Standard_OVERRIDE;
|
||||
//! Value and first derivatives of curve
|
||||
Standard_EXPORT void D1(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1) const Standard_OVERRIDE;
|
||||
//! Value, first and second derivatives of curve
|
||||
Standard_EXPORT void D2(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const Standard_OVERRIDE;
|
||||
//! Value, first, second and third derivatives of curve
|
||||
Standard_EXPORT void D3(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1,
|
||||
gp_Vec& theD2, gp_Vec& theD3) const Standard_OVERRIDE;
|
||||
//! Calculates N-th derivatives of curve, where N = theDeriv. Raises if N < 1
|
||||
Standard_EXPORT gp_Vec DN(const Standard_Real theU,
|
||||
const Standard_Integer theDeriv) const Standard_OVERRIDE;
|
||||
|
||||
DEFINE_STANDARD_RTTI(GeomEvaluator_OffsetCurve, GeomEvaluator_Curve)
|
||||
|
||||
private:
|
||||
//! Recalculate D1 values of base curve into D0 value of offset curve
|
||||
void CalculateD0( gp_Pnt& theValue,
|
||||
const gp_Vec& theD1) const;
|
||||
//! Recalculate D2 values of base curve into D1 values of offset curve
|
||||
void CalculateD1( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
const gp_Vec& theD2) const;
|
||||
//! Recalculate D3 values of base curve into D2 values of offset curve
|
||||
void CalculateD2( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
const gp_Vec& theD3,
|
||||
const Standard_Boolean theIsDirChange) const;
|
||||
//! Recalculate D3 values of base curve into D3 values of offset curve
|
||||
void CalculateD3( gp_Pnt& theValue,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3,
|
||||
const gp_Vec& theD4,
|
||||
const Standard_Boolean theIsDirChange) const;
|
||||
|
||||
//! Calculate value of base curve/adaptor
|
||||
void BaseD0(const Standard_Real theU, gp_Pnt& theValue) const;
|
||||
//! Calculate value and first derivatives of base curve/adaptor
|
||||
void BaseD1(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1) const;
|
||||
//! Calculate value, first and second derivatives of base curve/adaptor
|
||||
void BaseD2(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const;
|
||||
//! Calculate value, first, second and third derivatives of base curve/adaptor
|
||||
void BaseD3(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3) const;
|
||||
//! Calculate value and derivatives till 4th of base curve/adaptor
|
||||
void BaseD4(const Standard_Real theU,
|
||||
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3, gp_Vec& theD4) const;
|
||||
//! Calculate N-th derivative of base curve/adaptor
|
||||
gp_Vec BaseDN(const Standard_Real theU, const Standard_Integer theDeriv) const;
|
||||
|
||||
// Recalculate derivatives in the singular point
|
||||
// Returns true if the direction of derivatives is changed
|
||||
Standard_Boolean AdjustDerivative(const Standard_Integer theMaxDerivative,
|
||||
const Standard_Real theU,
|
||||
gp_Vec& theD1,
|
||||
gp_Vec& theD2,
|
||||
gp_Vec& theD3,
|
||||
gp_Vec& theD4) const;
|
||||
|
||||
private:
|
||||
Handle(Geom_Curve) myBaseCurve;
|
||||
Handle(GeomAdaptor_HCurve) myBaseAdaptor;
|
||||
|
||||
Standard_Real myOffset; ///< offset value
|
||||
gp_Dir myOffsetDir; ///< offset direction
|
||||
};
|
||||
|
||||
DEFINE_STANDARD_HANDLE(GeomEvaluator_OffsetCurve, GeomEvaluator_Curve)
|
||||
|
||||
|
||||
#endif // _GeomEvaluator_OffsetCurve_HeaderFile
|
Reference in New Issue
Block a user