1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0026838: Using GeomEvaluators for calculation of values of curves

1. Implemented evaluators for 2D and 3D offset curves
2. Removed obsolete namespace CSLib_Offset

Update of UDLIST (adding no-cdl-pack Geom2dEvaluator)

Update TKG2d/CMakeLists.txt after rebase

Correction compilation in debug mode
This commit is contained in:
azv 2015-11-06 08:49:50 +03:00 committed by bugmaster
parent badc9305ae
commit d660a72aca
22 changed files with 1693 additions and 2084 deletions

View File

@ -431,3 +431,4 @@ n IVtkTools
t TKIVtk
n IVtkDraw
t TKIVtkDraw
n Geom2dEvaluator

View File

@ -1,465 +0,0 @@
// Copyright (c) 2015-... OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <CSLib_Offset.hxx>
#include <gp_Dir2d.hxx>
#include <gp_XY.hxx>
#include <Standard_NullValue.hxx>
// ========== Offset values for 2D curves ==========
void CSLib_Offset::D0(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseDeriv,
Standard_Real theOffset,
Standard_Boolean , // unused
gp_Pnt2d& theResPoint)
{
if (theBaseDeriv.SquareMagnitude() <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Undefined normal vector "
"because tangent vector has zero-magnitude!");
gp_Dir2d aNormal(theBaseDeriv.Y(), -theBaseDeriv.X());
theResPoint.SetCoord(theBasePoint.X() + aNormal.X() * theOffset,
theBasePoint.Y() + aNormal.Y() * theOffset);
}
void CSLib_Offset::D1(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
Standard_Real theOffset,
Standard_Boolean , // unused
gp_Pnt2d& theResPoint,
gp_Vec2d& theResDeriv)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_XY Ndir(theBaseD1.Y(), -theBaseD1.X());
gp_XY DNdir(theBaseD2.Y(), -theBaseD2.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt (R2);
Standard_Real R3 = R * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
if (R3 <= gp::Resolution())
{
if (R2 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
//We try another computation but the stability is not very good.
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(theOffset / R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better
DNdir.Multiply(theOffset / R);
DNdir.Subtract(Ndir.Multiplied(theOffset * Dr / R3));
}
// P(u)
D0(theBasePoint, theBaseD1, theOffset, Standard_False, theResPoint);
// P'(u)
theResDeriv = theBaseD1.Added(gp_Vec2d(DNdir));
}
void CSLib_Offset::D2(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
const gp_Vec2d& theBaseD3,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint,
gp_Vec2d& theResD1,
gp_Vec2d& theResD2)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_XY Ndir(theBaseD1.Y(), -theBaseD1.X());
gp_XY DNdir(theBaseD2.Y(), -theBaseD2.X());
gp_XY D2Ndir(theBaseD3.Y(), -theBaseD3.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot (DNdir);
if (R5 <= gp::Resolution())
{
if (R4 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
//We try another computation but the stability is not very good dixit ISG.
// V2 = P" (U) :
D2Ndir.Subtract(DNdir.Multiplied (2.0 * Dr / R2));
D2Ndir.Add(Ndir.Multiplied (((3.0 * Dr * Dr)/R4) - (D2r/R2)));
D2Ndir.Multiply(theOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(theOffset / R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better.
// V2 = P" (U) :
D2Ndir.Multiply(theOffset / R);
D2Ndir.Subtract(DNdir.Multiplied (2.0 * theOffset * Dr / R3));
D2Ndir.Add (Ndir.Multiplied(theOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U)
DNdir.Multiply(theOffset / R);
DNdir.Subtract(Ndir.Multiplied(theOffset * Dr / R3));
}
// P(u) :
D0(theBasePoint, theBaseD1, theOffset, theIsDirectionChange, theResPoint);
// P'(u) :
theResD1 = theBaseD1.Added(gp_Vec2d(DNdir));
// P"(u) :
if (theIsDirectionChange)
theResD2 = -theBaseD2;
else
theResD2 = theBaseD2;
theResD2.Add(gp_Vec2d(D2Ndir));
}
void CSLib_Offset::D3(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
const gp_Vec2d& theBaseD3,
const gp_Vec2d& theBaseD4,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint,
gp_Vec2d& theResD1,
gp_Vec2d& theResD2,
gp_Vec2d& theResD3)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
// P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
gp_XY Ndir(theBaseD1.Y(), -theBaseD1.X());
gp_XY DNdir(theBaseD2.Y(), -theBaseD2.X());
gp_XY D2Ndir(theBaseD3.Y(), -theBaseD3.X());
gp_XY D3Ndir(theBaseD4.Y(), -theBaseD4.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt (R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real R6 = R3 * R3;
Standard_Real R7 = R5 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot (DNdir);
Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot (D2Ndir);
if (R7 <= gp::Resolution())
{
if (R6 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
//We try another computation but the stability is not very good dixit ISG.
// V3 = P"' (U) :
D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * theOffset * Dr / R2));
D3Ndir.Subtract (
(DNdir.Multiplied ((3.0 * theOffset) * ((D2r/R2) + (Dr*Dr)/R4))));
D3Ndir.Add (Ndir.Multiplied (
(theOffset * (6.0*Dr*Dr/R4 + 6.0*Dr*D2r/R4 - 15.0*Dr*Dr*Dr/R6 - D3r))));
D3Ndir.Multiply (theOffset/R);
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R2));
D2Ndir.Subtract (Ndir.Multiplied (((3.0 * Dr * Dr)/R4) - (D2r/R2)));
D2Ndir.Multiply (theOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract (Ndir.Multiplied (Dr/R));
DNdir.Multiply (theOffset/R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better.
// V3 = P"' (U) :
D3Ndir.Multiply (theOffset/R);
D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * theOffset * Dr / R3));
D3Ndir.Subtract (DNdir.Multiplied (
((3.0 * theOffset) * ((D2r/R3) + (Dr*Dr)/R5))) );
D3Ndir.Add (Ndir.Multiplied (
(theOffset * (6.0*Dr*Dr/R5 + 6.0*Dr*D2r/R5 - 15.0*Dr*Dr*Dr/R7 - D3r))));
// V2 = P" (U) :
D2Ndir.Multiply (theOffset/R);
D2Ndir.Subtract (DNdir.Multiplied (2.0 * theOffset * Dr / R3));
D2Ndir.Subtract (Ndir.Multiplied (
theOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U) :
DNdir.Multiply (theOffset/R);
DNdir.Subtract (Ndir.Multiplied (theOffset*Dr/R3));
}
// P(u)
D0(theBasePoint, theBaseD1, theOffset, theIsDirectionChange, theResPoint);
// P'(u)
theResD1 = theBaseD1.Added(gp_Vec2d(DNdir));
// P"(u)
theResD2 = theBaseD2.Added(gp_Vec2d(D2Ndir));
// P"'(u)
if (theIsDirectionChange)
theResD3 = -theBaseD3;
else
theResD3 = theBaseD3;
theResD3.Add(gp_Vec2d(D2Ndir));
}
// ========== Offset values for 3D curves ==========
void CSLib_Offset::D0(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseDeriv,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean , // unused
gp_Pnt& theResPoint)
{
gp_XYZ Ndir = (theBaseDeriv.XYZ()).Crossed(theOffsetDirection.XYZ());
Standard_Real R = Ndir.Modulus();
if (R <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Undefined normal vector "
"because tangent vector has zero-magnitude!");
Ndir.Multiply(theOffsetValue / R);
Ndir.Add(theBasePoint.XYZ());
theResPoint.SetXYZ(Ndir);
}
void CSLib_Offset::D1(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean , // unused
gp_Pnt& theResPoint,
gp_Vec& theResDeriv)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_XYZ Ndir = (theBaseD1.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ DNdir = (theBaseD2.XYZ()).Crossed(theOffsetDirection.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt (R2);
Standard_Real R3 = R * R2;
Standard_Real Dr = Ndir.Dot (DNdir);
if (R3 <= gp::Resolution()) {
if (R2 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
//We try another computation but the stability is not very good.
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(theOffsetValue / R2);
}
else {
// Same computation as IICURV in EUCLID-IS because the stability is
// better
DNdir.Multiply(theOffsetValue / R);
DNdir.Subtract(Ndir.Multiplied(theOffsetValue * Dr / R3));
}
// P(u)
D0(theBasePoint, theBaseD1, theOffsetDirection, theOffsetValue, Standard_False, theResPoint);
// P'(u)
theResDeriv = theBaseD1.Added(gp_Vec(DNdir));
}
void CSLib_Offset::D2(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Vec& theBaseD3,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint,
gp_Vec& theResD1,
gp_Vec& theResD2)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_XYZ Ndir = (theBaseD1.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ DNdir = (theBaseD2.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ D2Ndir = (theBaseD3.XYZ()).Crossed(theOffsetDirection.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt (R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real Dr = Ndir.Dot (DNdir);
Standard_Real D2r = Ndir.Dot (D2Ndir) + DNdir.Dot (DNdir);
if (R5 <= gp::Resolution()) {
if (R4 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
//We try another computation but the stability is not very good
//dixit ISG.
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R2));
D2Ndir.Add (Ndir.Multiplied (((3.0 * Dr * Dr)/R4) - (D2r/R2)));
D2Ndir.Multiply (theOffsetValue / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract (Ndir.Multiplied (Dr/R));
DNdir.Multiply (theOffsetValue/R2);
}
else {
// Same computation as IICURV in EUCLID-IS because the stability is
// better.
// V2 = P" (U) :
D2Ndir.Multiply (theOffsetValue/R);
D2Ndir.Subtract (DNdir.Multiplied (2.0 * theOffsetValue * Dr / R3));
D2Ndir.Add (Ndir.Multiplied (theOffsetValue * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U) :
DNdir.Multiply (theOffsetValue/R);
DNdir.Subtract (Ndir.Multiplied (theOffsetValue*Dr/R3));
}
// P(u) :
D0(theBasePoint, theBaseD1, theOffsetDirection, theOffsetValue, theIsDirectionChange, theResPoint);
// P'(u) :
theResD1 = theBaseD1.Added(gp_Vec(DNdir));
// P"(u) :
if (theIsDirectionChange)
theResD2 = -theBaseD2;
else
theResD2 = theBaseD2;
theResD2.Add(gp_Vec(D2Ndir));
}
void CSLib_Offset::D3(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Vec& theBaseD3,
const gp_Vec& theBaseD4,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint,
gp_Vec& theResD1,
gp_Vec& theResD2,
gp_Vec& theResD3)
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2) * D2Ndir -
// (3.0 * D2r / R2) * DNdir + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
gp_XYZ Ndir = (theBaseD1.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ DNdir = (theBaseD2.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ D2Ndir = (theBaseD3.XYZ()).Crossed(theOffsetDirection.XYZ());
gp_XYZ D3Ndir = (theBaseD4.XYZ()).Crossed(theOffsetDirection.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt (R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real R6 = R3 * R3;
Standard_Real R7 = R5 * R2;
Standard_Real Dr = Ndir.Dot (DNdir);
Standard_Real D2r = Ndir.Dot (D2Ndir) + DNdir.Dot (DNdir);
Standard_Real D3r = Ndir.Dot (D3Ndir) + 3.0 * DNdir.Dot (D2Ndir);
if (R7 <= gp::Resolution()) {
if (R6 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
// V3 = P"' (U) :
D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * Dr / R2));
D3Ndir.Subtract (DNdir.Multiplied (3.0 * ((D2r/R2) + (Dr*Dr/R4))));
D3Ndir.Add (Ndir.Multiplied (6.0*Dr*Dr/R4 + 6.0*Dr*D2r/R4 - 15.0*Dr*Dr*Dr/R6 - D3r));
D3Ndir.Multiply (theOffsetValue/R);
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R2));
D2Ndir.Subtract (Ndir.Multiplied ((3.0 * Dr * Dr / R4) - (D2r / R2)));
D2Ndir.Multiply (theOffsetValue / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract (Ndir.Multiplied (Dr/R));
DNdir.Multiply (theOffsetValue/R2);
}
else {
// V3 = P"' (U) :
D3Ndir.Divide (R);
D3Ndir.Subtract (D2Ndir.Multiplied (3.0 * Dr / R3));
D3Ndir.Subtract (DNdir.Multiplied ((3.0 * ((D2r/R3) + (Dr*Dr)/R5))));
D3Ndir.Add (Ndir.Multiplied (6.0*Dr*Dr/R5 + 6.0*Dr*D2r/R5 - 15.0*Dr*Dr*Dr/R7 - D3r));
D3Ndir.Multiply (theOffsetValue);
// V2 = P" (U) :
D2Ndir.Divide (R);
D2Ndir.Subtract (DNdir.Multiplied (2.0 * Dr / R3));
D2Ndir.Subtract (Ndir.Multiplied ((3.0 * Dr * Dr / R5) - (D2r / R3)));
D2Ndir.Multiply (theOffsetValue);
// V1 = P' (U) :
DNdir.Multiply (theOffsetValue/R);
DNdir.Subtract (Ndir.Multiplied (theOffsetValue*Dr/R3));
}
// P(u)
D0(theBasePoint, theBaseD1, theOffsetDirection, theOffsetValue, theIsDirectionChange, theResPoint);
// P'(u)
theResD1 = theBaseD1.Added(gp_Vec(DNdir));
// P"(u)
theResD2 = theBaseD2.Added(gp_Vec(D2Ndir));
// P"'(u)
if (theIsDirectionChange)
theResD3 = -theBaseD3;
else
theResD3 = theBaseD3;
theResD3.Add(gp_Vec(D2Ndir));
}

View File

@ -1,190 +0,0 @@
// Copyright (c) 2015-... OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _CSLib_Offset_Headerfile
#define _CSLib_Offset_Headerfile
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec.hxx>
#include <gp_Vec2d.hxx>
#include <Standard.hxx>
/** \namespace CSLib_Offset
* \brief Provides a number of static methods to calculate values and derivatives
* of an offset curves and surfaces using values and derivatives of
* a base curve/surface.
*/
namespace CSLib_Offset
{
/** \brief Calculate value of offset curve in 2D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseDeriv derivative on a base curve
* \param[in] theOffset size of offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative (not used)
* \param[out] theResPoint point on offset curve
*/
Standard_EXPORT void D0(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseDeriv,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint);
/** \brief Calculate value of offset curve in 3D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseDeriv derivative on a base curve
* \param[in] theOffsetDirection direction of the offset
* \param[in] theOffsetValue length of the offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative (not used)
* \param[out] theResPoint point on offset curve
*/
Standard_EXPORT void D0(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseDeriv,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint);
/** \brief Calculate value and the first derivative of offset curve in 2D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theOffset size of offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative (not used)
* \param[out] theResPoint point on offset curve
* \param[out] theResDeriv derivative on offset curve
*/
Standard_EXPORT void D1(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint,
gp_Vec2d& theResDeriv);
/** \brief Calculate value and the first derivative of offset curve in 3D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theOffsetDirection direction of the offset
* \param[in] theOffsetValue length of the offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative (not used)
* \param[out] theResPoint point on offset curve
* \param[out] theResDeriv derivative on offset curve
*/
Standard_EXPORT void D1(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint,
gp_Vec& theResDeriv);
/** \brief Calculate value and two derivatives of offset curve in 2D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theBaseD3 third derivative on a base curve
* \param[in] theOffset size of offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative
* \param[out] theResPoint point on offset curve
* \param[out] theResD1 first derivative on offset curve
* \param[out] theResD2 second derivative on offset curve
*/
Standard_EXPORT void D2(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
const gp_Vec2d& theBaseD3,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint,
gp_Vec2d& theResD1,
gp_Vec2d& theResD2);
/** \brief Calculate value and two derivatives of offset curve in 3D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theBaseD3 third derivative on a base curve
* \param[in] theOffsetDirection direction of the offset
* \param[in] theOffsetValue length of the offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative
* \param[out] theResPoint point on offset curve
* \param[out] theResD1 first derivative on offset curve
* \param[out] theResD2 second derivative on offset curve
*/
Standard_EXPORT void D2(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Vec& theBaseD3,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint,
gp_Vec& theResD1,
gp_Vec& theResD2);
/** \brief Calculate value and three derivatives of offset curve in 2D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theBaseD3 third derivative on a base curve
* \param[in] theBaseD4 fourth derivative on a base curve
* \param[in] theOffset size of offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative
* \param[out] theResPoint point on offset curve
* \param[out] theResD1 first derivative on offset curve
* \param[out] theResD2 second derivative on offset curve
* \param[out] theResD3 third derivative on offset curve
*/
Standard_EXPORT void D3(const gp_Pnt2d& theBasePoint,
const gp_Vec2d& theBaseD1,
const gp_Vec2d& theBaseD2,
const gp_Vec2d& theBaseD3,
const gp_Vec2d& theBaseD4,
Standard_Real theOffset,
Standard_Boolean theIsDirectionChange,
gp_Pnt2d& theResPoint,
gp_Vec2d& theResD1,
gp_Vec2d& theResD2,
gp_Vec2d& theResD3);
/** \brief Calculate value and three derivatives of offset curve in 3D
* \param[in] theBasePoint point on a base curve
* \param[in] theBaseD1 first derivative on a base curve
* \param[in] theBaseD2 second derivative on a base curve
* \param[in] theBaseD3 third derivative on a base curve
* \param[in] theBaseD4 fourth derivative on a base curve
* \param[in] theOffsetDirection direction of the offset
* \param[in] theOffsetValue length of the offset
* \param[in] theIsDirectionChange shows that it is necessary to consider the direction of derivative
* \param[out] theResPoint point on offset curve
* \param[out] theResD1 first derivative on offset curve
* \param[out] theResD2 second derivative on offset curve
* \param[out] theResD3 third derivative on offset curve
*/
Standard_EXPORT void D3(const gp_Pnt& theBasePoint,
const gp_Vec& theBaseD1,
const gp_Vec& theBaseD2,
const gp_Vec& theBaseD3,
const gp_Vec& theBaseD4,
const gp_Dir& theOffsetDirection,
Standard_Real theOffsetValue,
Standard_Boolean theIsDirectionChange,
gp_Pnt& theResPoint,
gp_Vec& theResD1,
gp_Vec& theResD2,
gp_Vec& theResD3);
}
#endif // _CSLib_Offset_Headerfile

View File

@ -6,5 +6,3 @@ CSLib_DerivativeStatus.hxx
CSLib_NormalPolyDef.cxx
CSLib_NormalPolyDef.hxx
CSLib_NormalStatus.hxx
CSLib_Offset.cxx
CSLib_Offset.hxx

View File

@ -18,7 +18,6 @@
// avec discernement !
// 19-09-97 : JPI correction derivee seconde
#include <CSLib_Offset.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Circle.hxx>
@ -44,30 +43,10 @@
#include <Standard_RangeError.hxx>
#include <Standard_Type.hxx>
typedef Geom_OffsetCurve OffsetCurve;
typedef Geom_Curve Curve;
typedef gp_Dir Dir;
typedef gp_Pnt Pnt;
typedef gp_Trsf Trsf;
typedef gp_Vec Vec;
typedef gp_XYZ XYZ;
//ordre de derivation maximum pour la recherche de la premiere
//derivee non nulle
static const int maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static const Standard_Real MyAngularToleranceForG1 = Precision::Angular();
static gp_Vec dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(
const Handle(Geom_Curve)& theCurve, Standard_Integer theMaxDerivative, Standard_Real theU, gp_Vec& theD1,
gp_Vec& theD2 = dummyDerivative, gp_Vec& theD3 = dummyDerivative, gp_Vec& theD4 = dummyDerivative);
//=======================================================================
//function : Copy
//purpose :
@ -76,7 +55,7 @@ static Standard_Boolean AdjustDerivative(
Handle(Geom_Geometry) Geom_OffsetCurve::Copy () const {
Handle(Geom_OffsetCurve) C;
C = new OffsetCurve (basisCurve, offsetValue, direction);
C = new Geom_OffsetCurve (basisCurve, offsetValue, direction);
return C;
}
@ -107,6 +86,7 @@ void Geom_OffsetCurve::Reverse ()
{
basisCurve->Reverse();
offsetValue = -offsetValue;
myEvaluator->SetOffsetValue(offsetValue);
}
@ -133,8 +113,11 @@ const gp_Dir& Geom_OffsetCurve::Direction () const
//purpose :
//=======================================================================
void Geom_OffsetCurve::SetDirection (const Dir& V)
{ direction = V; }
void Geom_OffsetCurve::SetDirection (const gp_Dir& V)
{
direction = V;
myEvaluator->SetOffsetDirection(direction);
}
//=======================================================================
//function : SetOffsetValue
@ -142,7 +125,10 @@ void Geom_OffsetCurve::SetDirection (const Dir& V)
//=======================================================================
void Geom_OffsetCurve::SetOffsetValue (const Standard_Real D)
{ offsetValue = D; }
{
offsetValue = D;
myEvaluator->SetOffsetValue(offsetValue);
}
//=======================================================================
@ -242,6 +228,8 @@ void Geom_OffsetCurve::SetBasisCurve (const Handle(Geom_Curve)& C,
{
basisCurve = aCheckingCurve;
}
myEvaluator = new GeomEvaluator_OffsetCurve(basisCurve, offsetValue, direction);
}
@ -283,70 +271,40 @@ GeomAbs_Shape Geom_OffsetCurve::Continuity () const {
//purpose :
//=======================================================================
void Geom_OffsetCurve::D0 (const Standard_Real U, Pnt& P) const
void Geom_OffsetCurve::D0 (const Standard_Real U, gp_Pnt& P) const
{
gp_Pnt PBasis;
gp_Vec VBasis;
D0(U,P,PBasis,VBasis);
myEvaluator->D0(U, P);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void Geom_OffsetCurve::D1 (const Standard_Real U, Pnt& P, Vec& V1) const
void Geom_OffsetCurve::D1 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1) const
{
gp_Pnt PBasis;
gp_Vec V1Basis,V2Basis;
D1(U,P,PBasis,V1,V1Basis,V2Basis);
myEvaluator->D1(U, P, V1);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void Geom_OffsetCurve::D2 (const Standard_Real U, Pnt& P, Vec& V1, Vec& V2) const
void Geom_OffsetCurve::D2 (const Standard_Real U, gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const
{
gp_Pnt PBasis;
gp_Vec V1Basis,V2Basis,V3Basis;
D2(U,P,PBasis,V1,V2,V1Basis,V2Basis,V3Basis);
myEvaluator->D2(U, P, V1, V2);
}
//=======================================================================
//function : D3
//purpose :
//=======================================================================
void Geom_OffsetCurve::D3 (const Standard_Real theU, Pnt& theP, Vec& theV1, Vec& theV2, Vec& theV3) const
void Geom_OffsetCurve::D3 (const Standard_Real theU, gp_Pnt& theP,
gp_Vec& theV1, gp_Vec& theV2, gp_Vec& theV3) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2) * D2Ndir -
// (3.0 * D2r / R2) * DNdir + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
Standard_Boolean IsDirectionChange = Standard_False;
basisCurve->D3 (theU, theP, theV1, theV2, theV3);
Vec aV4 = basisCurve->DN (theU, 4);
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 4, theU, theV1, theV2, theV3, aV4);
CSLib_Offset::D3(theP, theV1, theV2, theV3, aV4, direction, offsetValue,
IsDirectionChange, theP, theV1, theV2, theV3);
myEvaluator->D3(theU, theP, theV1, theV2, theV3);
}
@ -355,8 +313,8 @@ void Geom_OffsetCurve::D3 (const Standard_Real theU, Pnt& theP, Vec& theV1, Vec&
//purpose :
//=======================================================================
Vec Geom_OffsetCurve::DN (const Standard_Real U, const Standard_Integer N) const
{
gp_Vec Geom_OffsetCurve::DN (const Standard_Real U, const Standard_Integer N) const
{
Standard_RangeError_Raise_if (N < 1, "Exception: "
"Geom_OffsetCurve::DN(...). N<1.");
@ -381,83 +339,14 @@ Vec Geom_OffsetCurve::DN (const Standard_Real U, const Standard_Integer N) const
return VN;
}
//=======================================================================
//function : D0
//purpose :
//=======================================================================
void Geom_OffsetCurve::D0(const Standard_Real theU, gp_Pnt& theP,
gp_Pnt& thePbasis, gp_Vec& theV1basis)const
{
basisCurve->D1(theU, thePbasis, theV1basis);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1basis.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 1, theU, theV1basis);
CSLib_Offset::D0(thePbasis, theV1basis, direction, offsetValue, IsDirectionChange, theP);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void Geom_OffsetCurve::D1 ( const Standard_Real theU,
Pnt& theP , Pnt& thePBasis ,
Vec& theV1, Vec& theV1basis, Vec& theV2basis) const {
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
basisCurve->D2 (theU, thePBasis, theV1basis, theV2basis);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1basis.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 2, theU, theV1basis, theV2basis);
CSLib_Offset::D1(thePBasis, theV1basis, theV2basis, direction, offsetValue, IsDirectionChange, theP, theV1);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void Geom_OffsetCurve::D2 (const Standard_Real theU,
Pnt& theP, Pnt& thePBasis,
Vec& theV1, Vec& theV2,
Vec& theV1basis, Vec& theV2basis, Vec& theV3basis) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
Standard_Boolean IsDirectionChange = Standard_False;
basisCurve->D3 (theU, thePBasis, theV1basis, theV2basis, theV3basis);
if(theV1basis.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 3, theU, theV1basis, theV2basis, theV3basis);
CSLib_Offset::D2(thePBasis, theV1basis, theV2basis, theV3basis, direction, offsetValue,
IsDirectionChange, theP, theV1, theV2);
}
//=======================================================================
//function : FirstParameter
//purpose :
//=======================================================================
Standard_Real Geom_OffsetCurve::FirstParameter () const {
Standard_Real Geom_OffsetCurve::FirstParameter () const
{
return basisCurve->FirstParameter();
}
@ -467,8 +356,8 @@ Standard_Real Geom_OffsetCurve::FirstParameter () const {
//purpose :
//=======================================================================
Standard_Real Geom_OffsetCurve::LastParameter () const {
Standard_Real Geom_OffsetCurve::LastParameter () const
{
return basisCurve->LastParameter();
}
@ -478,22 +367,8 @@ Standard_Real Geom_OffsetCurve::LastParameter () const {
//purpose :
//=======================================================================
Standard_Real Geom_OffsetCurve::Offset () const { return offsetValue; }
//=======================================================================
//function : Value
//purpose :
//=======================================================================
void Geom_OffsetCurve::Value (const Standard_Real theU, Pnt& theP,
Pnt& thePbasis, Vec& theV1basis) const
{
if (myBasisCurveContinuity == GeomAbs_C0)
Geom_UndefinedValue::Raise("Exception: Basis curve is C0 continuity!");
basisCurve->D1(theU, thePbasis, theV1basis);
D0(theU,theP);
}
Standard_Real Geom_OffsetCurve::Offset () const
{ return offsetValue; }
//=======================================================================
@ -528,11 +403,14 @@ Standard_Boolean Geom_OffsetCurve::IsCN (const Standard_Integer N) const {
//purpose :
//=======================================================================
void Geom_OffsetCurve::Transform (const Trsf& T) {
void Geom_OffsetCurve::Transform (const gp_Trsf& T)
{
basisCurve->Transform (T);
direction.Transform(T);
offsetValue *= T.ScaleFactor();
myEvaluator->SetOffsetValue(offsetValue);
myEvaluator->SetOffsetDirection(direction);
}
//=======================================================================
@ -565,57 +443,3 @@ GeomAbs_Shape Geom_OffsetCurve::GetBasisCurveContinuity() const
{
return myBasisCurveContinuity;
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Geom_Curve)& theCurve, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec& theD1, gp_Vec& theD2,
gp_Vec& theD3, gp_Vec& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theCurve->FirstParameter();
const Standard_Real anUsupremum = theCurve->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec V;
do
{
V = theCurve->DN(theU, ++anIndex);
}
while((V.SquareMagnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
gp_Pnt P1, P2;
theCurve->D0(Min(theU, u), P1);
theCurve->D0(Max(theU, u), P2);
gp_Vec V1(P1, P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theCurve->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}

View File

@ -26,6 +26,8 @@
#include <Geom_Curve.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
#include <GeomEvaluator_OffsetCurve.hxx>
class Geom_Curve;
class Standard_ConstructionError;
class Standard_RangeError;
@ -209,35 +211,16 @@ public:
//! direction.
//! Raised if N < 1.
Standard_EXPORT gp_Vec DN (const Standard_Real U, const Standard_Integer N) const Standard_OVERRIDE;
//! Warning! this should not be called
//! if the basis curve is not at least C1. Nevertheless
//! if used on portion where the curve is C1, it is OK
Standard_EXPORT void Value (const Standard_Real U, gp_Pnt& P, gp_Pnt& Pbasis, gp_Vec& V1basis) const;
//! Warning! this should not be called
//! if the continuity of the basis curve is not C1.
//! Nevertheless, it's OK to use it on portion
//! where the curve is C1
Standard_EXPORT void D0 (const Standard_Real U, gp_Pnt& P, gp_Pnt& Pbasis, gp_Vec& V1basis) const;
//! Warning! this should not be called
//! if the continuity of the basis curve is not C1.
//! Nevertheless, it's OK to use it on portion
//! where the curve is C1
Standard_EXPORT void D1 (const Standard_Real U, gp_Pnt& P, gp_Pnt& Pbasis, gp_Vec& V1, gp_Vec& V1basis, gp_Vec& V2basis) const;
//! Warning! this should not be called
//! if the continuity of the basis curve is not C3.
//! Nevertheless, it's OK to use it on portion
//! where the curve is C3
Standard_EXPORT void D2 (const Standard_Real U, gp_Pnt& P, gp_Pnt& Pbasis, gp_Vec& V1, gp_Vec& V2, gp_Vec& V1basis, gp_Vec& V2basis, gp_Vec& V3basis) const;
Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Returns the value of the first or last parameter of this
//! Returns the value of the first parameter of this
//! offset curve. The first parameter corresponds to the
//! start point of the curve. The last parameter
//! start point of the curve.
//! Note: the first and last parameters of this offset curve
//! are also the ones of its basis curve.
Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Returns the value of the last parameter of this
//! offset curve. The last parameter
//! corresponds to the end point.
//! Note: the first and last parameters of this offset curve
//! are also the ones of its basis curve.
@ -315,7 +298,7 @@ private:
gp_Dir direction;
Standard_Real offsetValue;
GeomAbs_Shape myBasisCurveContinuity;
Handle(GeomEvaluator_OffsetCurve) myEvaluator;
};

View File

@ -16,7 +16,6 @@
// modified by Edward AGAPOV (eap) Jan 28 2002 --- DN(), occ143(BUC60654)
#include <CSLib_Offset.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Circle.hxx>
@ -42,28 +41,9 @@
#include <Standard_RangeError.hxx>
#include <Standard_Type.hxx>
typedef Geom2d_OffsetCurve OffsetCurve;
typedef Geom2d_Curve Curve;
typedef gp_Dir2d Dir2d;
typedef gp_Pnt2d Pnt2d;
typedef gp_Vec2d Vec2d;
typedef gp_Trsf2d Trsf2d;
typedef gp_XY XY;
//ordre de derivation maximum pour la recherche de la premiere
//derivee non nulle
static const int maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static const Standard_Real MyAngularToleranceForG1 = Precision::Angular();
static gp_Vec2d dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(const Handle(Geom2d_Curve)& theCurve, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2 = dummyDerivative,
gp_Vec2d& theD3 = dummyDerivative, gp_Vec2d& theD4 = dummyDerivative);
//=======================================================================
//function : Copy
@ -73,7 +53,7 @@ static Standard_Boolean AdjustDerivative(const Handle(Geom2d_Curve)& theCurve, S
Handle(Geom2d_Geometry) Geom2d_OffsetCurve::Copy () const
{
Handle(Geom2d_OffsetCurve) C;
C = new OffsetCurve (basisCurve, offsetValue);
C = new Geom2d_OffsetCurve (basisCurve, offsetValue);
return C;
}
@ -177,6 +157,7 @@ void Geom2d_OffsetCurve::SetBasisCurve (const Handle(Geom2d_Curve)& C,
basisCurve = aCheckingCurve;
}
myEvaluator = new Geom2dEvaluator_OffsetCurve(basisCurve, offsetValue);
}
//=======================================================================
@ -184,7 +165,11 @@ void Geom2d_OffsetCurve::SetBasisCurve (const Handle(Geom2d_Curve)& C,
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::SetOffsetValue (const Standard_Real D) { offsetValue = D; }
void Geom2d_OffsetCurve::SetOffsetValue (const Standard_Real D)
{
offsetValue = D;
myEvaluator->SetOffsetValue(offsetValue);
}
//=======================================================================
//function : BasisCurve
@ -223,37 +208,18 @@ GeomAbs_Shape Geom2d_OffsetCurve::Continuity () const
//=======================================================================
void Geom2d_OffsetCurve::D0 (const Standard_Real theU,
Pnt2d& theP) const
{
Vec2d vD1;
basisCurve->D1 (theU, theP, vD1);
Standard_Boolean IsDirectionChange = Standard_False;
if(vD1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 1, theU, vD1);
CSLib_Offset::D0(theP, vD1, offsetValue, IsDirectionChange, theP);
gp_Pnt2d& theP) const
{
myEvaluator->D0(theU, theP);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::D1 (const Standard_Real theU, Pnt2d& theP, Vec2d& theV1) const
void Geom2d_OffsetCurve::D1 (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV1) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
Vec2d V2;
basisCurve->D2 (theU, theP, theV1, V2);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 2, theU, theV1, V2);
CSLib_Offset::D1(theP, theV1, V2, offsetValue, IsDirectionChange, theP, theV1);
myEvaluator->D1(theU, theP, theV1);
}
//=======================================================================
@ -262,25 +228,10 @@ void Geom2d_OffsetCurve::D1 (const Standard_Real theU, Pnt2d& theP, Vec2d& theV1
//=======================================================================
void Geom2d_OffsetCurve::D2 (const Standard_Real theU,
Pnt2d& theP,
Vec2d& theV1, Vec2d& theV2) const
gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
Vec2d V3;
basisCurve->D3 (theU, theP, theV1, theV2, V3);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 3, theU, theV1, theV2, V3);
CSLib_Offset::D2(theP, theV1, theV2, V3, offsetValue, IsDirectionChange, theP, theV1, theV2);
myEvaluator->D2(theU, theP, theV1, theV2);
}
@ -290,32 +241,10 @@ void Geom2d_OffsetCurve::D2 (const Standard_Real theU,
//=======================================================================
void Geom2d_OffsetCurve::D3 (const Standard_Real theU,
Pnt2d& theP,
Vec2d& theV1, Vec2d& theV2, Vec2d& theV3) const
gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
basisCurve->D3 (theU, theP, theV1, theV2, theV3);
Vec2d V4 = basisCurve->DN (theU, 4);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(basisCurve, 4, theU, theV1, theV2, theV3, V4);
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, offsetValue, IsDirectionChange,
theP, theV1, theV2, theV3);
myEvaluator->D3(theU, theP, theV1, theV2, theV3);
}
//=======================================================================
@ -323,10 +252,10 @@ void Geom2d_OffsetCurve::D3 (const Standard_Real theU,
//purpose :
//=======================================================================
Vec2d Geom2d_OffsetCurve::DN (const Standard_Real U,
const Standard_Integer N) const
gp_Vec2d Geom2d_OffsetCurve::DN (const Standard_Real U,
const Standard_Integer N) const
{
Standard_RangeError_Raise_if (N < 1, "Exception: Geom2d_OffsetCurve::DN(). N<1.");
Standard_RangeError_Raise_if (N < 1, "Exception: Geom2d_OffsetCurve::DN(). N<1.");
gp_Vec2d VN, VBidon;
gp_Pnt2d PBidon;
@ -342,88 +271,6 @@ Standard_RangeError_Raise_if (N < 1, "Exception: Geom2d_OffsetCurve::DN(). N<1."
return VN;
}
//=======================================================================
//function : Value
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::Value (const Standard_Real theU,
Pnt2d& theP, Pnt2d& thePbasis,
Vec2d& theV1basis ) const
{
basisCurve->D1(theU, thePbasis, theV1basis);
D0(theU,theP);
}
//=======================================================================
//function : D1
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::D1 (const Standard_Real U,
Pnt2d& P, Pnt2d& Pbasis,
Vec2d& V1, Vec2d& V1basis,
Vec2d& V2basis ) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
basisCurve->D2 (U, Pbasis, V1basis, V2basis);
V1 = V1basis;
Vec2d V2 = V2basis;
Standard_Integer Index = 2;
while (V1.Magnitude() <= gp::Resolution() && Index <= maxDerivOrder) {
V1 = basisCurve->DN (U, Index);
Index++;
}
if (Index != 2) {
V2 = basisCurve->DN (U, Index);
}
CSLib_Offset::D1(P, V1, V2, offsetValue, Standard_False, P, V1);
}
//=======================================================================
//function : D2
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::D2 (const Standard_Real U,
Pnt2d& P, Pnt2d& Pbasis,
Vec2d& V1, Vec2d& V2,
Vec2d& V1basis, Vec2d& V2basis,
Vec2d& V3basis ) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
basisCurve->D3 (U, Pbasis, V1basis, V2basis, V3basis);
Standard_Integer Index = 2;
V1 = V1basis;
V2 = V2basis;
Vec2d V3 = V3basis;
while (V1.Magnitude() <= gp::Resolution() && Index <= maxDerivOrder) {
V1 = basisCurve->DN (U, Index);
Index++;
}
if (Index != 2) {
V2 = basisCurve->DN (U, Index);
V3 = basisCurve->DN (U, Index + 1);
}
CSLib_Offset::D2(P, V1, V2, V3, offsetValue, Standard_False, P, V1, V2);
}
//=======================================================================
//function : FirstParameter
//purpose :
@ -450,7 +297,8 @@ Standard_Real Geom2d_OffsetCurve::LastParameter () const
//purpose :
//=======================================================================
Standard_Real Geom2d_OffsetCurve::Offset () const { return offsetValue; }
Standard_Real Geom2d_OffsetCurve::Offset () const
{ return offsetValue; }
//=======================================================================
//function : IsClosed
@ -501,10 +349,12 @@ Standard_Real Geom2d_OffsetCurve::Period() const
//purpose :
//=======================================================================
void Geom2d_OffsetCurve::Transform (const Trsf2d& T)
void Geom2d_OffsetCurve::Transform (const gp_Trsf2d& T)
{
basisCurve->Transform (T);
offsetValue *= Abs(T.ScaleFactor());
myEvaluator->SetOffsetValue(offsetValue);
}
@ -537,57 +387,3 @@ GeomAbs_Shape Geom2d_OffsetCurve::GetBasisCurveContinuity() const
{
return myBasisCurveContinuity;
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Geom2d_Curve)& theCurve, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2,
gp_Vec2d& theD3, gp_Vec2d& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theCurve->FirstParameter();
const Standard_Real anUsupremum = theCurve->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
Vec2d V;
do
{
V = theCurve->DN(theU, ++anIndex);
}
while((V.SquareMagnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
Pnt2d P1, P2;
theCurve->D0(Min(theU, u),P1);
theCurve->D0(Max(theU, u),P2);
Vec2d V1(P1,P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec2d* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theCurve->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}

View File

@ -25,6 +25,8 @@
#include <Geom2d_Curve.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Integer.hxx>
#include <Geom2dEvaluator_OffsetCurve.hxx>
class Geom2d_Curve;
class Standard_ConstructionError;
class Standard_RangeError;
@ -204,28 +206,15 @@ public:
//! raised if it is not possible to compute a unique offset direction.
Standard_EXPORT gp_Vec2d DN (const Standard_Real U, const Standard_Integer N) const Standard_OVERRIDE;
//! Warning! this should not be called
//! if the basis curve is not at least C1. Nevertheless
//! if used on portion where the curve is C1, it is OK
Standard_EXPORT void Value (const Standard_Real U, gp_Pnt2d& P, gp_Pnt2d& Pbasis, gp_Vec2d& V1basis) const;
//! Warning! this should not be called
//! if the continuity of the basis curve is not C1.
//! Nevertheless, it's OK to use it on portion
//! where the curve is C1
Standard_EXPORT void D1 (const Standard_Real U, gp_Pnt2d& P, gp_Pnt2d& Pbasis, gp_Vec2d& V1, gp_Vec2d& V1basis, gp_Vec2d& V2basis) const;
//! Warning! this should not be called
//! if the continuity of the basis curve is not C3.
//! Nevertheless, it's OK to use it on portion
//! where the curve is C3
Standard_EXPORT void D2 (const Standard_Real U, gp_Pnt2d& P, gp_Pnt2d& Pbasis, gp_Vec2d& V1, gp_Vec2d& V2, gp_Vec2d& V1basis, gp_Vec2d& V2basis, gp_Vec2d& V3basis) const;
Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Returns the value of the first or last parameter of this
//! Returns the value of the first parameter of this
//! offset curve. The first parameter corresponds to the
//! start point of the curve. The last parameter
//! start point of the curve.
//! Note: the first and last parameters of this offset curve
//! are also the ones of its basis curve.
Standard_EXPORT Standard_Real FirstParameter() const Standard_OVERRIDE;
//! Returns the value of the last parameter of this
//! offset curve. The last parameter
//! corresponds to the end point.
//! Note: the first and last parameters of this offset curve
//! are also the ones of its basis curve.
@ -312,7 +301,7 @@ private:
Handle(Geom2d_Curve) basisCurve;
Standard_Real offsetValue;
GeomAbs_Shape myBasisCurveContinuity;
Handle(Geom2dEvaluator_OffsetCurve) myEvaluator;
};

View File

@ -25,7 +25,6 @@
#include <Adaptor2d_HCurve2d.hxx>
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <CSLib_Offset.hxx>
#include <Geom2d_BezierCurve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_Circle.hxx>
@ -40,6 +39,7 @@
#include <Geom2d_UndefinedValue.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Geom2dEvaluator_OffsetCurve.hxx>
#include <GeomAbs_Shape.hxx>
#include <gp.hxx>
#include <gp_Circ2d.hxx>
@ -64,16 +64,6 @@
//#include <Geom2dConvert_BSplineCurveKnotSplitting.hxx>
static const Standard_Real PosTol = Precision::PConfusion() / 2;
static const Standard_Integer maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static gp_Vec2d dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true is the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2 = dummyDerivative,
gp_Vec2d& theD3 = dummyDerivative, gp_Vec2d& theD4 = dummyDerivative);
//=======================================================================
//function : LocalContinuity
@ -196,6 +186,7 @@ void Geom2dAdaptor_Curve::load(const Handle(Geom2d_Curve)& C,
if ( myCurve != C) {
myCurve = C;
myCurveCache = Handle(BSplCLib_Cache)();
myNestedEvaluator = Handle(Geom2dEvaluator_Curve)();
Handle(Standard_Type) TheType = C->DynamicType();
if ( TheType == STANDARD_TYPE(Geom2d_TrimmedCurve)) {
@ -236,9 +227,11 @@ void Geom2dAdaptor_Curve::load(const Handle(Geom2d_Curve)& C,
else if ( TheType == STANDARD_TYPE(Geom2d_OffsetCurve))
{
myTypeCurve = GeomAbs_OffsetCurve;
Handle(Geom2d_OffsetCurve) anOffsetCurve = Handle(Geom2d_OffsetCurve)::DownCast(myCurve);
// Create nested adaptor for base curve
Handle(Geom2d_Curve) aBase = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve();
myOffsetBaseCurveAdaptor = new Geom2dAdaptor_HCurve(aBase);
Handle(Geom2d_Curve) aBaseCurve = anOffsetCurve->BasisCurve();
Handle(Geom2dAdaptor_HCurve) aBaseAdaptor = new Geom2dAdaptor_HCurve(aBaseCurve);
myNestedEvaluator = new Geom2dEvaluator_OffsetCurve(aBaseAdaptor, anOffsetCurve->Offset());
}
else {
myTypeCurve = GeomAbs_OtherCurve;
@ -385,7 +378,8 @@ Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
myNbIntervals = anAdaptor.NbIntervals(BaseS);
}
return myNbIntervals;
@ -501,8 +495,10 @@ void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
default: BaseS = GeomAbs_CN;
}
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
myOffsetBaseCurveAdaptor->Intervals(T, BaseS);
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
myNbIntervals = anAdaptor.NbIntervals(BaseS);
anAdaptor.Intervals(T, BaseS);
}
T( T.Lower() ) = myFirst;
@ -588,6 +584,38 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
}
}
//=======================================================================
//function : IsBoundary
//purpose :
//=======================================================================
Standard_Boolean Geom2dAdaptor_Curve::IsBoundary(const Standard_Real theU,
Standard_Integer& theSpanStart,
Standard_Integer& theSpanFinish) const
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
if (!aBspl.IsNull() && (theU == myFirst || theU == myLast))
{
if (theU == myFirst)
{
aBspl->LocateU(myFirst, PosTol, theSpanStart, theSpanFinish);
if (theSpanStart < 1)
theSpanStart = 1;
if (theSpanStart >= theSpanFinish)
theSpanFinish = theSpanStart + 1;
}
else if (theU == myLast)
{
aBspl->LocateU(myLast, PosTol, theSpanStart, theSpanFinish);
if (theSpanFinish > aBspl->NbKnots())
theSpanFinish = aBspl->NbKnots();
if (theSpanStart >= theSpanFinish)
theSpanStart = theSpanFinish - 1;
}
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : Value
//purpose :
@ -595,72 +623,9 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
gp_Pnt2d Geom2dAdaptor_Curve::Value(const Standard_Real U) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return ValueBSpline(U);
else if (myTypeCurve == GeomAbs_OffsetCurve)
return ValueOffset(U);
else if (myTypeCurve == GeomAbs_BezierCurve)
{ // use cached data
gp_Pnt2d aRes;
myCurveCache->D0(U, aRes);
return aRes;
}
return myCurve->Value(U);
}
//=======================================================================
//function : ValueBSpline
//purpose : Computes the point of parameter U on the B-spline curve
//=======================================================================
gp_Pnt2d Geom2dAdaptor_Curve::ValueBSpline(const Standard_Real theU) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst)
{
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast)
{
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return aBspl->LocalValue(theU, Ideb, Ifin);
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
gp_Pnt2d aRes;
myCurveCache->D0(theU, aRes);
return aRes;
}
return myCurve->Value(theU);
}
//=======================================================================
//function : ValueOffset
//purpose : Computes the point of parameter U on the offset curve
//=======================================================================
gp_Pnt2d Geom2dAdaptor_Curve::ValueOffset(const Standard_Real theU) const
{
gp_Pnt2d aP;
gp_Vec2d aD1;
myOffsetBaseCurveAdaptor->D1(theU, aP, aD1);
Standard_Boolean isDirectionChange = Standard_False;
const Standard_Real aTol = gp::Resolution();
if(aD1.SquareMagnitude() <= aTol)
isDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 1, theU, aD1);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D0(aP, aD1, anOffset, isDirectionChange, aP);
return aP;
gp_Pnt2d aRes;
D0(U, aRes);
return aRes;
}
//=======================================================================
@ -670,56 +635,35 @@ gp_Pnt2d Geom2dAdaptor_Curve::ValueOffset(const Standard_Real theU) const
void Geom2dAdaptor_Curve::D0(const Standard_Real U, gp_Pnt2d& P) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D0BSpline(U, P);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D0Offset(U, P);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D0(U, P);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD0(U, aStart, aFinish, P);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D0(U, P);
}
else
myCurve->D0(U, P);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D0(U, P);
break;
default:
myCurve->D0(U, P);
}
//=======================================================================
//function : D0BSpline
//purpose : Computes the point of parameter theU on the B-spline curve
//=======================================================================
void Geom2dAdaptor_Curve::D0BSpline(const Standard_Real theU, gp_Pnt2d& theP) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD0(theU, Ideb, Ifin, theP);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D0(theU, theP);
return;
}
myCurve->D0(theU, theP);
}
//=======================================================================
//function : D0Offset
//purpose : Computes the point of parameter theU on the offset curve
//=======================================================================
void Geom2dAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt2d& theP) const
{
theP = ValueOffset(theU);
}
//=======================================================================
@ -730,69 +674,35 @@ void Geom2dAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt2d& theP) con
void Geom2dAdaptor_Curve::D1(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D1BSpline(U, P, V);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D1Offset(U, P, V);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D1(U, P, V);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD1(U, aStart, aFinish, P, V);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D1(U, P, V);
}
else
myCurve->D1(U, P, V);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D1(U, P, V);
break;
default:
myCurve->D1(U, P, V);
}
//=======================================================================
//function : D1BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its derivative
//=======================================================================
void Geom2dAdaptor_Curve::D1BSpline(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD1(theU, Ideb, Ifin, theP, theV);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D1(theU, theP, theV);
return;
}
myCurve->D1(theU, theP, theV);
}
//=======================================================================
//function : D1Offset
//purpose : Computes the point of parameter theU on the offset curve and its derivative
//=======================================================================
void Geom2dAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_Vec2d V2;
myOffsetBaseCurveAdaptor->D2 (theU, theP, theV, V2);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 2, theU, theV, V2);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D1(theP, theV, V2, anOffset, IsDirectionChange, theP, theV);
}
//=======================================================================
@ -803,73 +713,35 @@ void Geom2dAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt2d& theP, gp_
void Geom2dAdaptor_Curve::D2(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D2BSpline(U, P, V1, V2);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D2Offset(U, P, V1, V2);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D2(U, P, V1, V2);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD2(U, aStart, aFinish, P, V1, V2);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D2(U, P, V1, V2);
}
else
myCurve->D2(U, P, V1, V2);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D2(U, P, V1, V2);
break;
default:
myCurve->D2(U, P, V1, V2);
}
//=======================================================================
//function : D2BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its first and second derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D2BSpline(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD2(theU, Ideb, Ifin, theP, theV1, theV2);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D2(theU, theP, theV1, theV2);
return;
}
myCurve->D2(theU, theP, theV1, theV2);
}
//=======================================================================
//function : D2Offset
//purpose : Computes the point of parameter theU on the offset curve and its first and second derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D2Offset(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_Vec2d V3;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, V3);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 3, theU, theV1, theV2, V3);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D2(theP, theV1, theV2, V3, anOffset, IsDirectionChange, theP, theV1, theV2);
}
//=======================================================================
@ -881,80 +753,35 @@ void Geom2dAdaptor_Curve::D3(const Standard_Real U,
gp_Pnt2d& P, gp_Vec2d& V1,
gp_Vec2d& V2, gp_Vec2d& V3) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D3BSpline(U, P, V1, V2, V3);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D3Offset(U, P, V1, V2, V3);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D3(U, P, V1, V2, V3);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD3(U, aStart, aFinish, P, V1, V2, V3);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D3(U, P, V1, V2, V3);
}
else
myCurve->D3(U, P, V1, V2, V3);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D3(U, P, V1, V2, V3);
break;
default:
myCurve->D3(U, P, V1, V2, V3);
}
//=======================================================================
//function : D3BSpline
//purpose : Computes the point of parameter theU on the B-spline curve and its 1st - 3rd derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D3BSpline(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD3(theU, Ideb, Ifin, theP, theV1, theV2, theV3);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D3(theU, theP, theV1, theV2, theV3);
return;
}
myCurve->D3(theU, theP, theV1, theV2, theV3);
}
//=======================================================================
//function : D3Offset
//purpose : Computes the point of parameter theU on the offset curve and its 1st - 3rd derivatives
//=======================================================================
void Geom2dAdaptor_Curve::D3Offset(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
Standard_Boolean IsDirectionChange = Standard_False;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, theV3);
gp_Vec2d V4 = myOffsetBaseCurveAdaptor->DN (theU, 4);
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 4, theU, theV1, theV2, theV3, V4);
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, anOffset, IsDirectionChange,
theP, theV1, theV2, theV3);
}
//=======================================================================
@ -965,58 +792,30 @@ void Geom2dAdaptor_Curve::D3Offset(const Standard_Real theU, gp_Pnt2d& theP,
gp_Vec2d Geom2dAdaptor_Curve::DN(const Standard_Real U,
const Standard_Integer N) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return DNBSpline(U, N);
else if (myTypeCurve == GeomAbs_OffsetCurve)
return DNOffset(U, N);
return myCurve->DN(U, N);
}
gp_Vec2d Geom2dAdaptor_Curve::DNBSpline(const Standard_Real U,
const Standard_Integer N) const
{
if (U==myFirst || U==myLast)
switch (myTypeCurve)
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
return aBspl->LocalDN(U, aStart, aFinish, N);
}
if (U==myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return aBspl->LocalDN( U, Ideb, Ifin, N);
else
return myCurve->DN(U, N);
break;
}
return myCurve->DN( U, N);
}
case GeomAbs_OffsetCurve:
return myNestedEvaluator->DN(U, N);
break;
gp_Vec2d Geom2dAdaptor_Curve::DNOffset(const Standard_Real U,
const Standard_Integer N) const
{
gp_Pnt2d aPnt;
gp_Vec2d aVec, aVN;
switch (N)
{
case 1:
D1Offset(U, aPnt, aVN);
default: // to eliminate gcc warning
break;
case 2:
D2Offset(U, aPnt, aVec, aVN);
break;
case 3:
D3Offset(U, aPnt, aVec, aVec, aVN);
break;
default:
aVN = myCurve->DN(U, N);
}
return aVN;
return myCurve->DN(U, N);
}
//=======================================================================
@ -1233,57 +1032,3 @@ Standard_Integer Geom2dAdaptor_Curve::NbSamples() const
{
return nbPoints(myCurve);
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2,
gp_Vec2d& theD3, gp_Vec2d& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theAdaptor->FirstParameter();
const Standard_Real anUsupremum = theAdaptor->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec2d V;
do
{
V = theAdaptor->DN(theU, ++anIndex);
}
while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
gp_Pnt2d P1, P2;
theAdaptor->D0(Min(theU, u),P1);
theAdaptor->D0(Max(theU, u),P2);
gp_Vec2d V1(P1, P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec2d* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theAdaptor->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}

View File

@ -29,6 +29,8 @@
#include <Standard_Integer.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Standard_Boolean.hxx>
#include <Geom2dEvaluator_Curve.hxx>
class Geom2d_Curve;
class Adaptor2d_HCurve2d;
class Standard_NoSuchObject;
@ -174,68 +176,24 @@ protected:
private:
//! Computes the point of parameter U on the B-spline curve
Standard_EXPORT gp_Pnt2d ValueBSpline (const Standard_Real U) const;
//! Computes the point of parameter U on the offset curve
Standard_EXPORT gp_Pnt2d ValueOffset (const Standard_Real U) const;
//! Computes the point of parameter U on the B-spline curve
Standard_EXPORT void D0BSpline (const Standard_Real theU, gp_Pnt2d& theP) const;
//! Computes the point of parameter U on the offset curve
Standard_EXPORT void D0Offset (const Standard_Real theU, gp_Pnt2d& theP) const;
//! Computes the point of parameter U on the B-spline curve
//! and its derivative
Standard_EXPORT void D1BSpline (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const;
//! Computes the point of parameter U on the offset curve
//! and its derivative
Standard_EXPORT void D1Offset (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const;
//! Computes the point of parameter U on the B-spline curve
//! and its first and second derivatives
Standard_EXPORT void D2BSpline (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV1, gp_Vec2d& theV2) const;
//! Computes the point of parameter U on the offset curve
//! and its first and second derivatives
Standard_EXPORT void D2Offset (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV1, gp_Vec2d& theV2) const;
//! Computes the point of parameter U on the B-spline curve
//! and its first, second and third derivatives
Standard_EXPORT void D3BSpline (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const;
//! Computes the point of parameter U on the offset curve
//! and its first, second and third derivatives
Standard_EXPORT void D3Offset (const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const;
//! The returned vector gives the value of the derivative for the
//! order of derivation N.
Standard_EXPORT gp_Vec2d DNBSpline (const Standard_Real theU, const Standard_Integer N) const;
//! The returned vector gives the value of the derivative for the
//! order of derivation N.
Standard_EXPORT gp_Vec2d DNOffset (const Standard_Real theU, const Standard_Integer N) const;
Standard_EXPORT GeomAbs_Shape LocalContinuity (const Standard_Real U1, const Standard_Real U2) const;
Standard_EXPORT void load (const Handle(Geom2d_Curve)& C, const Standard_Real UFirst, const Standard_Real ULast);
//! Check theU relates to start or finish point of B-spline curve and return indices of span the point is located
Standard_Boolean IsBoundary(const Standard_Real theU, Standard_Integer& theSpanStart, Standard_Integer& theSpanFinish) const;
//! Rebuilds B-spline cache
//! \param theParameter the value on the knot axis which identifies the caching span
Standard_EXPORT void RebuildCache (const Standard_Real theParameter) const;
void RebuildCache (const Standard_Real theParameter) const;
Handle(Geom2d_Curve) myCurve;
GeomAbs_CurveType myTypeCurve;
Standard_Real myFirst;
Standard_Real myLast;
Handle(BSplCLib_Cache) myCurveCache;
Handle(Adaptor2d_HCurve2d) myOffsetBaseCurveAdaptor;
Handle(BSplCLib_Cache) myCurveCache; ///< Cached data for B-spline or Bezier curve
Handle(Geom2dEvaluator_Curve) myNestedEvaluator; ///< Calculates value of offset curve
};

View File

@ -0,0 +1,3 @@
Geom2dEvaluator_Curve.hxx
Geom2dEvaluator_OffsetCurve.cxx
Geom2dEvaluator_OffsetCurve.hxx

View File

@ -0,0 +1,53 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom2dEvaluator_Curve_HeaderFile
#define _Geom2dEvaluator_Curve_HeaderFile
#include <Standard_Transient.hxx>
#include <Standard_Type.hxx>
class gp_Pnt2d;
class gp_Vec2d;
//! Interface for calculation of values and derivatives for different kinds of curves in 2D.
//! Works both with adaptors and curves.
class Geom2dEvaluator_Curve : public Standard_Transient
{
public:
Geom2dEvaluator_Curve() {}
//! Value of 2D curve
virtual void D0(const Standard_Real theU,
gp_Pnt2d& theValue) const = 0;
//! Value and first derivatives of curve
virtual void D1(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1) const = 0;
//! Value, first and second derivatives of curve
virtual void D2(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2) const = 0;
//! Value, first, second and third derivatives of curve
virtual void D3(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3) const = 0;
//! Calculates N-th derivatives of curve, where N = theDerU. Raises if N < 1
virtual gp_Vec2d DN(const Standard_Real theU,
const Standard_Integer theDerU) const = 0;
DEFINE_STANDARD_RTTI(Geom2dEvaluator_Curve, Standard_Transient)
};
DEFINE_STANDARD_HANDLE(Geom2dEvaluator_Curve, Standard_Transient)
#endif // _Geom2dEvaluator_Curve_HeaderFile

View File

@ -0,0 +1,450 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <Geom2dEvaluator_OffsetCurve.hxx>
#include <Geom2dAdaptor_HCurve.hxx>
#include <Standard_NullValue.hxx>
Geom2dEvaluator_OffsetCurve::Geom2dEvaluator_OffsetCurve(
const Handle(Geom2d_Curve)& theBase,
const Standard_Real theOffset)
: Geom2dEvaluator_Curve(),
myBaseCurve(theBase),
myOffset(theOffset)
{
}
Geom2dEvaluator_OffsetCurve::Geom2dEvaluator_OffsetCurve(
const Handle(Geom2dAdaptor_HCurve)& theBase,
const Standard_Real theOffset)
: Geom2dEvaluator_Curve(),
myBaseAdaptor(theBase),
myOffset(theOffset)
{
}
void Geom2dEvaluator_OffsetCurve::D0(const Standard_Real theU,
gp_Pnt2d& theValue) const
{
gp_Vec2d aD1;
BaseD1(theU, theValue, aD1);
CalculateD0(theValue, aD1);
}
void Geom2dEvaluator_OffsetCurve::D1(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1) const
{
gp_Vec2d aD2;
BaseD2(theU, theValue, theD1, aD2);
CalculateD1(theValue, theD1, aD2);
}
void Geom2dEvaluator_OffsetCurve::D2(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2) const
{
gp_Vec2d aD3;
BaseD3(theU, theValue, theD1, theD2, aD3);
Standard_Boolean isDirectionChange = Standard_False;
if (theD1.SquareMagnitude() <= gp::Resolution())
{
gp_Vec2d aDummyD4;
isDirectionChange = AdjustDerivative(3, theU, theD1, theD2, aD3, aDummyD4);
}
CalculateD2(theValue, theD1, theD2, aD3, isDirectionChange);
}
void Geom2dEvaluator_OffsetCurve::D3(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3) const
{
gp_Vec2d aD4;
BaseD4(theU, theValue, theD1, theD2, theD3, aD4);
Standard_Boolean isDirectionChange = Standard_False;
if (theD1.SquareMagnitude() <= gp::Resolution())
isDirectionChange = AdjustDerivative(4, theU, theD1, theD2, theD3, aD4);
CalculateD3(theValue, theD1, theD2, theD3, aD4, isDirectionChange);
}
gp_Vec2d Geom2dEvaluator_OffsetCurve::DN(const Standard_Real theU,
const Standard_Integer theDeriv) const
{
Standard_RangeError_Raise_if(theDeriv < 1, "Geom2dEvaluator_OffsetCurve::DN(): theDeriv < 1");
gp_Pnt2d aPnt;
gp_Vec2d aDummy, aDN;
switch (theDeriv)
{
case 1:
D1(theU, aPnt, aDN);
break;
case 2:
D2(theU, aPnt, aDummy, aDN);
break;
case 3:
D3(theU, aPnt, aDummy, aDummy, aDN);
break;
default:
aDN = BaseDN(theU, theDeriv);
}
return aDN;
}
void Geom2dEvaluator_OffsetCurve::BaseD0(const Standard_Real theU,
gp_Pnt2d& theValue) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D0(theU, theValue);
else
myBaseCurve->D0(theU, theValue);
}
void Geom2dEvaluator_OffsetCurve::BaseD1(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D1(theU, theValue, theD1);
else
myBaseCurve->D1(theU, theValue, theD1);
}
void Geom2dEvaluator_OffsetCurve::BaseD2(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D2(theU, theValue, theD1, theD2);
else
myBaseCurve->D2(theU, theValue, theD1, theD2);
}
void Geom2dEvaluator_OffsetCurve::BaseD3(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
else
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
}
void Geom2dEvaluator_OffsetCurve::BaseD4(const Standard_Real theU,
gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3,
gp_Vec2d& theD4) const
{
if (!myBaseAdaptor.IsNull())
{
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
theD4 = myBaseAdaptor->DN(theU, 4);
}
else
{
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
theD4 = myBaseCurve->DN(theU, 4);
}
}
gp_Vec2d Geom2dEvaluator_OffsetCurve::BaseDN(const Standard_Real theU,
const Standard_Integer theDeriv) const
{
if (!myBaseAdaptor.IsNull())
return myBaseAdaptor->DN(theU, theDeriv);
return myBaseCurve->DN(theU, theDeriv);
}
void Geom2dEvaluator_OffsetCurve::CalculateD0( gp_Pnt2d& theValue,
const gp_Vec2d& theD1) const
{
if (theD1.SquareMagnitude() <= gp::Resolution())
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Undefined normal vector "
"because tangent vector has zero-magnitude!");
gp_Dir2d aNormal(theD1.Y(), -theD1.X());
theValue.ChangeCoord().Add(aNormal.XY() * myOffset);
}
void Geom2dEvaluator_OffsetCurve::CalculateD1( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
const gp_Vec2d& theD2) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_XY Ndir(theD1.Y(), -theD1.X());
gp_XY DNdir(theD2.Y(), -theD2.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
if (R3 <= gp::Resolution())
{
if (R2 <= gp::Resolution())
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
//We try another computation but the stability is not very good.
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u)
theD1.Add(gp_Vec2d(DNdir));
}
void Geom2dEvaluator_OffsetCurve::CalculateD2( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
const gp_Vec2d& theD3,
const Standard_Boolean theIsDirChange) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_XY Ndir(theD1.Y(), -theD1.X());
gp_XY DNdir(theD2.Y(), -theD2.X());
gp_XY D2Ndir(theD3.Y(), -theD3.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
if (R5 <= gp::Resolution())
{
if (R4 <= gp::Resolution())
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
//We try another computation but the stability is not very good dixit ISG.
// V2 = P" (U) :
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
D2Ndir.Add(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
D2Ndir.Multiply(myOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better.
// V2 = P" (U) :
D2Ndir.Multiply(myOffset / R);
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
D2Ndir.Add(Ndir.Multiplied(myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U)
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u) :
theD1.Add(gp_Vec2d(DNdir));
// P"(u) :
if (theIsDirChange)
theD2.Reverse();
theD2.Add(gp_Vec2d(D2Ndir));
}
void Geom2dEvaluator_OffsetCurve::CalculateD3( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3,
const gp_Vec2d& theD4,
const Standard_Boolean theIsDirChange) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ Z|| and Ndir = P' ^ Z
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
// P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
gp_XY Ndir(theD1.Y(), -theD1.X());
gp_XY DNdir(theD2.Y(), -theD2.X());
gp_XY D2Ndir(theD3.Y(), -theD3.X());
gp_XY D3Ndir(theD4.Y(), -theD4.X());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real R6 = R3 * R3;
Standard_Real R7 = R5 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot(D2Ndir);
if (R7 <= gp::Resolution())
{
if (R6 <= gp::Resolution())
Standard_NullValue::Raise("Geom2dEvaluator_OffsetCurve: Null derivative");
//We try another computation but the stability is not very good dixit ISG.
// V3 = P"' (U) :
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * myOffset * Dr / R2));
D3Ndir.Subtract(
(DNdir.Multiplied((3.0 * myOffset) * ((D2r / R2) + (Dr*Dr) / R4))));
D3Ndir.Add(Ndir.Multiplied(
(myOffset * (6.0*Dr*Dr / R4 + 6.0*Dr*D2r / R4 - 15.0*Dr*Dr*Dr / R6 - D3r))));
D3Ndir.Multiply(myOffset / R);
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
D2Ndir.Subtract(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
D2Ndir.Multiply(myOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else
{
// Same computation as IICURV in EUCLID-IS because the stability is better.
// V3 = P"' (U) :
D3Ndir.Multiply(myOffset / R);
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * myOffset * Dr / R3));
D3Ndir.Subtract(DNdir.Multiplied(
((3.0 * myOffset) * ((D2r / R3) + (Dr*Dr) / R5))));
D3Ndir.Add(Ndir.Multiplied(
(myOffset * (6.0*Dr*Dr / R5 + 6.0*Dr*D2r / R5 - 15.0*Dr*Dr*Dr / R7 - D3r))));
// V2 = P" (U) :
D2Ndir.Multiply(myOffset / R);
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
D2Ndir.Subtract(Ndir.Multiplied(
myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U) :
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u) :
theD1.Add(gp_Vec2d(DNdir));
// P"(u)
theD2.Add(gp_Vec2d(D2Ndir));
// P"'(u)
if (theIsDirChange)
theD3.Reverse();
theD3.Add(gp_Vec2d(D2Ndir));
}
Standard_Boolean Geom2dEvaluator_OffsetCurve::AdjustDerivative(
const Standard_Integer theMaxDerivative, const Standard_Real theU,
gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3, gp_Vec2d& theD4) const
{
static const Standard_Real aTol = gp::Resolution();
static const Standard_Real aMinStep = 1e-7;
static const Standard_Integer aMaxDerivOrder = 3;
Standard_Boolean isDirectionChange = Standard_False;
Standard_Real anUinfium;
Standard_Real anUsupremum;
if (!myBaseAdaptor.IsNull())
{
anUinfium = myBaseAdaptor->FirstParameter();
anUsupremum = myBaseAdaptor->LastParameter();
}
else
{
anUinfium = myBaseCurve->FirstParameter();
anUsupremum = myBaseCurve->LastParameter();
}
static const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if ((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, aMinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec2d V;
do
{
V = BaseDN(theU, ++anIndex);
} while ((V.SquareMagnitude() <= aTol) && anIndex < aMaxDerivOrder);
Standard_Real u;
if (theU - anUinfium < aDelta)
u = theU + aDelta;
else
u = theU - aDelta;
gp_Pnt2d P1, P2;
BaseD0(Min(theU, u), P1);
BaseD0(Max(theU, u), P2);
gp_Vec2d V1(P1, P2);
isDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = isDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec2d* aDeriv[3] = { &theD2, &theD3, &theD4 };
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i - 1]) = BaseDN(theU, anIndex + i) * aSign;
return isDirectionChange;
}

View File

@ -0,0 +1,117 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _Geom2dEvaluator_OffsetCurve_HeaderFile
#define _Geom2dEvaluator_OffsetCurve_HeaderFile
#include <Geom2d_Curve.hxx>
#include <Geom2dEvaluator_Curve.hxx>
class Geom2dAdaptor_HCurve;
//! Allows to calculate values and derivatives for offset curves in 2D
class Geom2dEvaluator_OffsetCurve : public Geom2dEvaluator_Curve
{
public:
//! Initialize evaluator by curve
Standard_EXPORT Geom2dEvaluator_OffsetCurve(
const Handle(Geom2d_Curve)& theBase,
const Standard_Real theOffset);
//! Initialize evaluator by curve adaptor
Standard_EXPORT Geom2dEvaluator_OffsetCurve(
const Handle(Geom2dAdaptor_HCurve)& theBase,
const Standard_Real theOffset);
//! Change the offset value
void SetOffsetValue(Standard_Real theOffset)
{ myOffset = theOffset; }
//! Value of curve
Standard_EXPORT void D0(const Standard_Real theU,
gp_Pnt2d& theValue) const Standard_OVERRIDE;
//! Value and first derivatives of curve
Standard_EXPORT void D1(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1) const Standard_OVERRIDE;
//! Value, first and second derivatives of curve
Standard_EXPORT void D2(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2) const Standard_OVERRIDE;
//! Value, first, second and third derivatives of curve
Standard_EXPORT void D3(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1,
gp_Vec2d& theD2, gp_Vec2d& theD3) const Standard_OVERRIDE;
//! Calculates N-th derivatives of curve, where N = theDeriv. Raises if N < 1
Standard_EXPORT gp_Vec2d DN(const Standard_Real theU,
const Standard_Integer theDeriv) const Standard_OVERRIDE;
DEFINE_STANDARD_RTTI(Geom2dEvaluator_OffsetCurve, Geom2dEvaluator_Curve)
private:
//! Recalculate D1 values of base curve into D0 value of offset curve
void CalculateD0( gp_Pnt2d& theValue,
const gp_Vec2d& theD1) const;
//! Recalculate D2 values of base curve into D1 values of offset curve
void CalculateD1( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
const gp_Vec2d& theD2) const;
//! Recalculate D3 values of base curve into D2 values of offset curve
void CalculateD2( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
const gp_Vec2d& theD3,
const Standard_Boolean theIsDirChange) const;
//! Recalculate D3 values of base curve into D3 values of offset curve
void CalculateD3( gp_Pnt2d& theValue,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3,
const gp_Vec2d& theD4,
const Standard_Boolean theIsDirChange) const;
//! Calculate value of base curve/adaptor
void BaseD0(const Standard_Real theU, gp_Pnt2d& theValue) const;
//! Calculate value and first derivatives of base curve/adaptor
void BaseD1(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1) const;
//! Calculate value, first and second derivatives of base curve/adaptor
void BaseD2(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2) const;
//! Calculate value, first, second and third derivatives of base curve/adaptor
void BaseD3(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3) const;
//! Calculate value and derivatives till 4th of base curve/adaptor
void BaseD4(const Standard_Real theU,
gp_Pnt2d& theValue, gp_Vec2d& theD1, gp_Vec2d& theD2, gp_Vec2d& theD3, gp_Vec2d& theD4) const;
//! Calculate N-th derivative of base curve/adaptor
gp_Vec2d BaseDN(const Standard_Real theU, const Standard_Integer theDeriv) const;
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
Standard_Boolean AdjustDerivative(const Standard_Integer theMaxDerivative,
const Standard_Real theU,
gp_Vec2d& theD1,
gp_Vec2d& theD2,
gp_Vec2d& theD3,
gp_Vec2d& theD4) const;
private:
Handle(Geom2d_Curve) myBaseCurve;
Handle(Geom2dAdaptor_HCurve) myBaseAdaptor;
Standard_Real myOffset; ///< offset value
};
DEFINE_STANDARD_HANDLE(Geom2dEvaluator_OffsetCurve, Geom2dEvaluator_Curve)
#endif // _Geom2dEvaluator_OffsetCurve_HeaderFile

View File

@ -25,7 +25,6 @@
#include <Adaptor3d_HCurve.hxx>
#include <BSplCLib.hxx>
#include <BSplCLib_Cache.hxx>
#include <CSLib_Offset.hxx>
#include <Geom_BezierCurve.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Circle.hxx>
@ -40,6 +39,7 @@
#include <GeomAdaptor_Curve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <GeomAdaptor_Surface.hxx>
#include <GeomEvaluator_OffsetCurve.hxx>
#include <gp_Circ.hxx>
#include <gp_Elips.hxx>
#include <gp_Hypr.hxx>
@ -62,16 +62,6 @@
//#include <GeomConvert_BSplineCurveKnotSplitting.hxx>
static const Standard_Real PosTol = Precision::PConfusion() / 2;
static const Standard_Integer maxDerivOrder = 3;
static const Standard_Real MinStep = 1e-7;
static gp_Vec dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
static Standard_Boolean AdjustDerivative(
const Handle(Adaptor3d_HCurve)& theAdaptor, Standard_Integer theMaxDerivative, Standard_Real theU, gp_Vec& theD1,
gp_Vec& theD2 = dummyDerivative, gp_Vec& theD3 = dummyDerivative, gp_Vec& theD4 = dummyDerivative);
//=======================================================================
//function : LocalContinuity
@ -153,6 +143,7 @@ void GeomAdaptor_Curve::load(const Handle(Geom_Curve)& C,
if ( myCurve != C) {
myCurve = C;
myCurveCache = Handle(BSplCLib_Cache)();
myNestedEvaluator = Handle(GeomEvaluator_Curve)();
const Handle(Standard_Type)& TheType = C->DynamicType();
if ( TheType == STANDARD_TYPE(Geom_TrimmedCurve)) {
@ -191,9 +182,12 @@ void GeomAdaptor_Curve::load(const Handle(Geom_Curve)& C,
}
else if ( TheType == STANDARD_TYPE(Geom_OffsetCurve)) {
myTypeCurve = GeomAbs_OffsetCurve;
Handle(Geom_OffsetCurve) anOffsetCurve = Handle(Geom_OffsetCurve)::DownCast(myCurve);
// Create nested adaptor for base curve
Handle(Geom_Curve) aBase = Handle(Geom_OffsetCurve)::DownCast(myCurve)->BasisCurve();
myOffsetBaseCurveAdaptor = new GeomAdaptor_HCurve(aBase);
Handle(Geom_Curve) aBaseCurve = anOffsetCurve->BasisCurve();
Handle(GeomAdaptor_HCurve) aBaseAdaptor = new GeomAdaptor_HCurve(aBaseCurve);
myNestedEvaluator = new GeomEvaluator_OffsetCurve(
aBaseAdaptor, anOffsetCurve->Offset(), anOffsetCurve->Direction());
}
else {
myTypeCurve = GeomAbs_OtherCurve;
@ -570,6 +564,38 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
}
}
//=======================================================================
//function : IsBoundary
//purpose :
//=======================================================================
Standard_Boolean GeomAdaptor_Curve::IsBoundary(const Standard_Real theU,
Standard_Integer& theSpanStart,
Standard_Integer& theSpanFinish) const
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
if (!aBspl.IsNull() && (theU == myFirst || theU == myLast))
{
if (theU == myFirst)
{
aBspl->LocateU(myFirst, PosTol, theSpanStart, theSpanFinish);
if (theSpanStart < 1)
theSpanStart = 1;
if (theSpanStart >= theSpanFinish)
theSpanFinish = theSpanStart + 1;
}
else if (theU == myLast)
{
aBspl->LocateU(myLast, PosTol, theSpanStart, theSpanFinish);
if (theSpanFinish > aBspl->NbKnots())
theSpanFinish = aBspl->NbKnots();
if (theSpanStart >= theSpanFinish)
theSpanStart = theSpanFinish - 1;
}
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : Value
//purpose :
@ -577,71 +603,9 @@ void GeomAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
gp_Pnt GeomAdaptor_Curve::Value(const Standard_Real U) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return ValueBSpline(U);
else if (myTypeCurve == GeomAbs_OffsetCurve)
return ValueOffset(U);
else if (myTypeCurve == GeomAbs_BezierCurve)
{ // use cached data
gp_Pnt aRes;
myCurveCache->D0(U, aRes);
return aRes;
}
return myCurve->Value(U);
}
//=======================================================================
//function : ValueBSpline
//purpose :
//=======================================================================
gp_Pnt GeomAdaptor_Curve::ValueBSpline(const Standard_Real theU) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return aBspl->LocalValue(theU, Ideb, Ifin);
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
gp_Pnt aRes;
myCurveCache->D0(theU, aRes);
return aRes;
}
return myCurve->Value(theU);
}
//=======================================================================
//function : ValueOffset
//purpose :
//=======================================================================
gp_Pnt GeomAdaptor_Curve::ValueOffset(const Standard_Real theU) const
{
gp_Pnt aP;
gp_Vec aV;
myOffsetBaseCurveAdaptor->D1(theU, aP, aV);
Standard_Boolean IsDirectionChange = Standard_False;
if(aV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 1, theU, aV);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D0(aP, aV, anOffsetDir, anOffsetVal, IsDirectionChange, aP);
return aP;
gp_Pnt aValue;
D0(U, aValue);
return aValue;
}
//=======================================================================
@ -651,56 +615,35 @@ gp_Pnt GeomAdaptor_Curve::ValueOffset(const Standard_Real theU) const
void GeomAdaptor_Curve::D0(const Standard_Real U, gp_Pnt& P) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D0BSpline(U, P);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D0Offset(U, P);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D0(U, P);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD0(U, aStart, aFinish, P);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D0(U, P);
}
else
myCurve->D0(U, P);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D0(U, P);
break;
default:
myCurve->D0(U, P);
}
//=======================================================================
//function : D0BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D0BSpline(const Standard_Real theU, gp_Pnt& theP) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD0(theU, Ideb, Ifin, theP);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D0(theU, theP);
return;
}
myCurve->D0(theU, theP);
}
//=======================================================================
//function : D0Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt& theP) const
{
theP = ValueOffset(theU);
}
//=======================================================================
@ -710,69 +653,37 @@ void GeomAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt& theP) const
void GeomAdaptor_Curve::D1(const Standard_Real U, gp_Pnt& P, gp_Vec& V) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D1BSpline(U, P, V);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D1Offset(U, P, V);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D1(U, P, V);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD1(U, aStart, aFinish, P, V);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D1(U, P, V);
}
else
myCurve->D1(U, P, V);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D1(U, P, V);
break;
default:
myCurve->D1(U, P, V);
}
//=======================================================================
//function : D1BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D1BSpline(const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD1(theU, Ideb, Ifin, theP, theV);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D1(theU, theP, theV);
return;
}
myCurve->D1(theU, theP, theV);
}
//=======================================================================
//function : D1Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const
{
gp_Vec aV2;
myOffsetBaseCurveAdaptor->D2 (theU, theP, theV, aV2);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 2, theU, theV, aV2);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D1(theP, theV, aV2, anOffsetDir, anOffsetVal, IsDirectionChange, theP, theV);
}
//=======================================================================
//function : D2
//purpose :
@ -781,68 +692,35 @@ void GeomAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt& theP, gp_Vec&
void GeomAdaptor_Curve::D2(const Standard_Real U,
gp_Pnt& P, gp_Vec& V1, gp_Vec& V2) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D2BSpline(U, P, V1, V2);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D2Offset(U, P, V1, V2);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D2(U, P, V1, V2);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD2(U, aStart, aFinish, P, V1, V2);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D2(U, P, V1, V2);
}
else
myCurve->D2(U, P, V1, V2);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D2(U, P, V1, V2);
break;
default:
myCurve->D2(U, P, V1, V2);
}
//=======================================================================
//function : D2BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D2BSpline(const Standard_Real theU, gp_Pnt& theP,
gp_Vec& theV1, gp_Vec& theV2) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD2(theU, Ideb, Ifin, theP, theV1, theV2);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D2(theU, theP, theV1, theV2);
return;
}
myCurve->D2(theU, theP, theV1, theV2);
}
//=======================================================================
//function : D2Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D2Offset(const Standard_Real theU, gp_Pnt& theP,
gp_Vec& theV1, gp_Vec& theV2) const
{
gp_Vec V3;
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, V3);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 3, theU, theV1, theV2, V3);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D2(theP, theV1, theV2, V3, anOffsetDir, anOffsetVal, IsDirectionChange, theP, theV1, theV2);
}
//=======================================================================
@ -854,71 +732,35 @@ void GeomAdaptor_Curve::D3(const Standard_Real U,
gp_Pnt& P, gp_Vec& V1,
gp_Vec& V2, gp_Vec& V3) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
D3BSpline(U, P, V1, V2, V3);
else if (myTypeCurve == GeomAbs_OffsetCurve)
D3Offset(U, P, V1, V2, V3);
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
myCurveCache->D3(U, P, V1, V2, V3);
else
switch (myTypeCurve)
{
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
aBspl->LocalD3(U, aStart, aFinish, P, V1, V2, V3);
}
else if (!myCurveCache.IsNull()) // use cached data
{
if (!myCurveCache->IsCacheValid(U))
RebuildCache(U);
myCurveCache->D3(U, P, V1, V2, V3);
}
else
myCurve->D3(U, P, V1, V2, V3);
break;
}
case GeomAbs_OffsetCurve:
myNestedEvaluator->D3(U, P, V1, V2, V3);
break;
default:
myCurve->D3(U, P, V1, V2, V3);
}
//=======================================================================
//function : D3BSpline
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D3BSpline(const Standard_Real theU,
gp_Pnt& theP, gp_Vec& theV1,
gp_Vec& theV2, gp_Vec& theV3) const
{
if (theU == myFirst || theU == myLast)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (theU == myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
}
if (theU == myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
aBspl->LocalD3(theU, Ideb, Ifin, theP, theV1, theV2, theV3);
return;
}
else if (!myCurveCache.IsNull()) // use cached B-spline data
{
if (!myCurveCache->IsCacheValid(theU))
RebuildCache(theU);
myCurveCache->D3(theU, theP, theV1, theV2, theV3);
return;
}
myCurve->D3(theU, theP, theV1, theV2, theV3);
}
//=======================================================================
//function : D3Offset
//purpose :
//=======================================================================
void GeomAdaptor_Curve::D3Offset(const Standard_Real theU,
gp_Pnt& theP, gp_Vec& theV1,
gp_Vec& theV2, gp_Vec& theV3) const
{
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, theV3);
gp_Vec V4 = myOffsetBaseCurveAdaptor->DN(theU, 4);
Standard_Boolean IsDirectionChange = Standard_False;
if(theV1.SquareMagnitude() <= gp::Resolution())
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 4, theU, theV1, theV2, theV3, V4);
Handle(Geom_OffsetCurve) anOffC = Handle(Geom_OffsetCurve)::DownCast(myCurve);
Standard_Real anOffsetVal = anOffC->Offset();
const gp_Dir& anOffsetDir = anOffC->Direction();
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, anOffsetDir, anOffsetVal, IsDirectionChange,
theP, theV1, theV2, theV3);
}
//=======================================================================
@ -929,57 +771,30 @@ void GeomAdaptor_Curve::D3Offset(const Standard_Real theU,
gp_Vec GeomAdaptor_Curve::DN(const Standard_Real U,
const Standard_Integer N) const
{
if (myTypeCurve == GeomAbs_BSplineCurve)
return DNBSpline(U, N);
else if (myTypeCurve == GeomAbs_OffsetCurve)
return DNOffset(U, N);
return myCurve->DN(U, N);
}
gp_Vec GeomAdaptor_Curve::DNBSpline(const Standard_Real U,
const Standard_Integer N) const
{
if ((U==myFirst || U==myLast))
switch (myTypeCurve)
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
Standard_Integer Ideb = 0, Ifin = 0;
if (U==myFirst) {
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
if (Ideb<1) Ideb=1;
if (Ideb>=Ifin) Ifin = Ideb+1;
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
{
Standard_Integer aStart = 0, aFinish = 0;
if (IsBoundary(U, aStart, aFinish))
{
Handle(Geom_BSplineCurve) aBspl = Handle(Geom_BSplineCurve)::DownCast(myCurve);
return aBspl->LocalDN(U, aStart, aFinish, N);
}
if (U==myLast) {
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
if (Ideb>=Ifin) Ideb = Ifin-1;
}
return aBspl->LocalDN( U, Ideb, Ifin, N);
else
return myCurve->DN(U, N);
break;
}
return myCurve->DN( U, N);
}
gp_Vec GeomAdaptor_Curve::DNOffset(const Standard_Real U,
const Standard_Integer N) const
{
gp_Pnt aPnt;
gp_Vec aVec, aVN;
case GeomAbs_OffsetCurve:
return myNestedEvaluator->DN(U, N);
break;
switch (N)
{
case 1:
D1Offset(U, aPnt, aVN);
default: // to eliminate gcc warning
break;
case 2:
D2Offset(U, aPnt, aVec, aVN);
break;
case 3:
D3Offset(U, aPnt, aVec, aVec, aVN);
break;
default:
aVN = myCurve->DN(U, N);
}
return aVN;
return myCurve->DN(U, N);
}
//=======================================================================
@ -1164,57 +979,3 @@ Handle(Geom_BSplineCurve) GeomAdaptor_Curve::BSpline() const
return Handle(Geom_BSplineCurve)::DownCast (myCurve);
}
// ============= Auxiliary functions ===================
Standard_Boolean AdjustDerivative(const Handle(Adaptor3d_HCurve)& theAdaptor, Standard_Integer theMaxDerivative,
Standard_Real theU, gp_Vec& theD1, gp_Vec& theD2,
gp_Vec& theD3, gp_Vec& theD4)
{
static const Standard_Real aTol = gp::Resolution();
Standard_Boolean IsDirectionChange = Standard_False;
const Standard_Real anUinfium = theAdaptor->FirstParameter();
const Standard_Real anUsupremum = theAdaptor->LastParameter();
const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec V;
do
{
V = theAdaptor->DN(theU, ++anIndex);
}
while((V.SquareMagnitude() <= aTol) && anIndex < maxDerivOrder);
Standard_Real u;
if(theU-anUinfium < aDelta)
u = theU+aDelta;
else
u = theU-aDelta;
gp_Pnt P1, P2;
theAdaptor->D0(Min(theU, u), P1);
theAdaptor->D0(Max(theU, u), P2);
gp_Vec V1(P1, P2);
IsDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec* aDeriv[3] = {&theD2, &theD3, &theD4};
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i-1]) = theAdaptor->DN(theU, anIndex + i) * aSign;
return IsDirectionChange;
}

View File

@ -29,6 +29,8 @@
#include <Standard_Integer.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Standard_Boolean.hxx>
#include <GeomEvaluator_Curve.hxx>
class Geom_Curve;
class Adaptor3d_HCurve;
class Standard_NoSuchObject;
@ -213,68 +215,24 @@ protected:
private:
//! Computes the point of parameter U on the B-spline curve
Standard_EXPORT gp_Pnt ValueBSpline (const Standard_Real U) const;
//! Computes the point of parameter U on the offset curve
Standard_EXPORT gp_Pnt ValueOffset (const Standard_Real U) const;
//! Computes the point of parameter U on the B-spline curve
Standard_EXPORT void D0BSpline (const Standard_Real theU, gp_Pnt& theP) const;
//! Computes the point of parameter U on the offset curve
Standard_EXPORT void D0Offset (const Standard_Real theU, gp_Pnt& theP) const;
//! Computes the point of parameter U on the B-spline curve
//! and its derivative
Standard_EXPORT void D1BSpline (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const;
//! Computes the point of parameter U on the offset curve
//! and its derivative
Standard_EXPORT void D1Offset (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV) const;
//! Computes the point of parameter U on the B-spline curve
//! and its first and second derivatives
Standard_EXPORT void D2BSpline (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV1, gp_Vec& theV2) const;
//! Computes the point of parameter U on the offset curve
//! and its first and second derivatives
Standard_EXPORT void D2Offset (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV1, gp_Vec& theV2) const;
//! Computes the point of parameter U on the B-spline curve
//! and its first, second and third derivatives
Standard_EXPORT void D3BSpline (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV1, gp_Vec& theV2, gp_Vec& theV3) const;
//! Computes the point of parameter U on the offset curve
//! and its first, second and third derivatives
Standard_EXPORT void D3Offset (const Standard_Real theU, gp_Pnt& theP, gp_Vec& theV1, gp_Vec& theV2, gp_Vec& theV3) const;
//! The returned vector gives the value of the derivative for the
//! order of derivation N.
Standard_EXPORT gp_Vec DNBSpline (const Standard_Real theU, const Standard_Integer N) const;
//! The returned vector gives the value of the derivative for the
//! order of derivation N.
Standard_EXPORT gp_Vec DNOffset (const Standard_Real theU, const Standard_Integer N) const;
Standard_EXPORT GeomAbs_Shape LocalContinuity (const Standard_Real U1, const Standard_Real U2) const;
Standard_EXPORT void load (const Handle(Geom_Curve)& C, const Standard_Real UFirst, const Standard_Real ULast);
//! Check theU relates to start or finish point of B-spline curve and return indices of span the point is located
Standard_Boolean IsBoundary(const Standard_Real theU, Standard_Integer& theSpanStart, Standard_Integer& theSpanFinish) const;
//! Rebuilds B-spline cache
//! \param theParameter the value on the knot axis which identifies the caching span
Standard_EXPORT void RebuildCache (const Standard_Real theParameter) const;
void RebuildCache (const Standard_Real theParameter) const;
Handle(Geom_Curve) myCurve;
GeomAbs_CurveType myTypeCurve;
Standard_Real myFirst;
Standard_Real myLast;
Handle(BSplCLib_Cache) myCurveCache;
Handle(Adaptor3d_HCurve) myOffsetBaseCurveAdaptor;
Handle(BSplCLib_Cache) myCurveCache; ///< Cached data for B-spline or Bezier curve
Handle(GeomEvaluator_Curve) myNestedEvaluator; ///< Calculates value of offset curve
};

View File

@ -266,7 +266,7 @@ private:
Standard_Real myVLast;
Standard_Real myTolU;
Standard_Real myTolV;
Handle(BSplSLib_Cache) mySurfaceCache; ///< Cached data for B-spline surface
Handle(BSplSLib_Cache) mySurfaceCache; ///< Cached data for B-spline or Bezier surface
protected:
GeomAbs_SurfaceType mySurfaceType;

View File

@ -1,3 +1,6 @@
GeomEvaluator_Curve.hxx
GeomEvaluator_OffsetCurve.cxx
GeomEvaluator_OffsetCurve.hxx
GeomEvaluator_OffsetSurface.cxx
GeomEvaluator_OffsetSurface.hxx
GeomEvaluator_Surface.hxx

View File

@ -0,0 +1,53 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _GeomEvaluator_Curve_HeaderFile
#define _GeomEvaluator_Curve_HeaderFile
#include <Standard_Transient.hxx>
#include <Standard_Type.hxx>
class gp_Pnt;
class gp_Vec;
//! Interface for calculation of values and derivatives for different kinds of curves in 3D.
//! Works both with adaptors and curves.
class GeomEvaluator_Curve : public Standard_Transient
{
public:
GeomEvaluator_Curve() {}
//! Value of 3D curve
virtual void D0(const Standard_Real theU,
gp_Pnt& theValue) const = 0;
//! Value and first derivatives of curve
virtual void D1(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1) const = 0;
//! Value, first and second derivatives of curve
virtual void D2(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const = 0;
//! Value, first, second and third derivatives of curve
virtual void D3(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3) const = 0;
//! Calculates N-th derivatives of curve, where N = theDerU. Raises if N < 1
virtual gp_Vec DN(const Standard_Real theU,
const Standard_Integer theDerU) const = 0;
DEFINE_STANDARD_RTTI(GeomEvaluator_Curve, Standard_Transient)
};
DEFINE_STANDARD_HANDLE(GeomEvaluator_Curve, Standard_Transient)
#endif // _GeomEvaluator_Curve_HeaderFile

View File

@ -0,0 +1,447 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <GeomEvaluator_OffsetCurve.hxx>
#include <GeomAdaptor_HCurve.hxx>
#include <Standard_NullValue.hxx>
GeomEvaluator_OffsetCurve::GeomEvaluator_OffsetCurve(
const Handle(Geom_Curve)& theBase,
const Standard_Real theOffset,
const gp_Dir& theDirection)
: GeomEvaluator_Curve(),
myBaseCurve(theBase),
myOffset(theOffset),
myOffsetDir(theDirection)
{
}
GeomEvaluator_OffsetCurve::GeomEvaluator_OffsetCurve(
const Handle(GeomAdaptor_HCurve)& theBase,
const Standard_Real theOffset,
const gp_Dir& theDirection)
: GeomEvaluator_Curve(),
myBaseAdaptor(theBase),
myOffset(theOffset),
myOffsetDir(theDirection)
{
}
void GeomEvaluator_OffsetCurve::D0(const Standard_Real theU,
gp_Pnt& theValue) const
{
gp_Vec aD1;
BaseD1(theU, theValue, aD1);
CalculateD0(theValue, aD1);
}
void GeomEvaluator_OffsetCurve::D1(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1) const
{
gp_Vec aD2;
BaseD2(theU, theValue, theD1, aD2);
CalculateD1(theValue, theD1, aD2);
}
void GeomEvaluator_OffsetCurve::D2(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2) const
{
gp_Vec aD3;
BaseD3(theU, theValue, theD1, theD2, aD3);
Standard_Boolean isDirectionChange = Standard_False;
if (theD1.SquareMagnitude() <= gp::Resolution())
{
gp_Vec aDummyD4;
isDirectionChange = AdjustDerivative(3, theU, theD1, theD2, aD3, aDummyD4);
}
CalculateD2(theValue, theD1, theD2, aD3, isDirectionChange);
}
void GeomEvaluator_OffsetCurve::D3(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3) const
{
gp_Vec aD4;
BaseD4(theU, theValue, theD1, theD2, theD3, aD4);
Standard_Boolean isDirectionChange = Standard_False;
if (theD1.SquareMagnitude() <= gp::Resolution())
isDirectionChange = AdjustDerivative(4, theU, theD1, theD2, theD3, aD4);
CalculateD3(theValue, theD1, theD2, theD3, aD4, isDirectionChange);
}
gp_Vec GeomEvaluator_OffsetCurve::DN(const Standard_Real theU,
const Standard_Integer theDeriv) const
{
Standard_RangeError_Raise_if(theDeriv < 1, "GeomEvaluator_OffsetCurve::DN(): theDeriv < 1");
gp_Pnt aPnt;
gp_Vec aDummy, aDN;
switch (theDeriv)
{
case 1:
D1(theU, aPnt, aDN);
break;
case 2:
D2(theU, aPnt, aDummy, aDN);
break;
case 3:
D3(theU, aPnt, aDummy, aDummy, aDN);
break;
default:
aDN = BaseDN(theU, theDeriv);
}
return aDN;
}
void GeomEvaluator_OffsetCurve::BaseD0(const Standard_Real theU,
gp_Pnt& theValue) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D0(theU, theValue);
else
myBaseCurve->D0(theU, theValue);
}
void GeomEvaluator_OffsetCurve::BaseD1(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D1(theU, theValue, theD1);
else
myBaseCurve->D1(theU, theValue, theD1);
}
void GeomEvaluator_OffsetCurve::BaseD2(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D2(theU, theValue, theD1, theD2);
else
myBaseCurve->D2(theU, theValue, theD1, theD2);
}
void GeomEvaluator_OffsetCurve::BaseD3(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3) const
{
if (!myBaseAdaptor.IsNull())
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
else
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
}
void GeomEvaluator_OffsetCurve::BaseD4(const Standard_Real theU,
gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3,
gp_Vec& theD4) const
{
if (!myBaseAdaptor.IsNull())
{
myBaseAdaptor->D3(theU, theValue, theD1, theD2, theD3);
theD4 = myBaseAdaptor->DN(theU, 4);
}
else
{
myBaseCurve->D3(theU, theValue, theD1, theD2, theD3);
theD4 = myBaseCurve->DN(theU, 4);
}
}
gp_Vec GeomEvaluator_OffsetCurve::BaseDN(const Standard_Real theU,
const Standard_Integer theDeriv) const
{
if (!myBaseAdaptor.IsNull())
return myBaseAdaptor->DN(theU, theDeriv);
return myBaseCurve->DN(theU, theDeriv);
}
void GeomEvaluator_OffsetCurve::CalculateD0( gp_Pnt& theValue,
const gp_Vec& theD1) const
{
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
Standard_Real R = Ndir.Modulus();
if (R <= gp::Resolution())
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Undefined normal vector "
"because tangent vector has zero-magnitude!");
Ndir.Multiply(myOffset / R);
theValue.ChangeCoord().Add(Ndir);
}
void GeomEvaluator_OffsetCurve::CalculateD1( gp_Pnt& theValue,
gp_Vec& theD1,
const gp_Vec& theD2) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
if (R3 <= gp::Resolution()) {
if (R2 <= gp::Resolution())
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Null derivative");
//We try another computation but the stability is not very good.
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else {
// Same computation as IICURV in EUCLID-IS because the stability is better
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u)
theD1.Add(gp_Vec(DNdir));
}
void GeomEvaluator_OffsetCurve::CalculateD2( gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
const gp_Vec& theD3,
const Standard_Boolean theIsDirChange) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ D2Ndir = (theD3.XYZ()).Crossed(myOffsetDir.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
if (R5 <= gp::Resolution()) {
if (R4 <= gp::Resolution())
Standard_NullValue::Raise("GeomEvaluator_OffsetCurve: Null derivative");
//We try another computation but the stability is not very good
//dixit ISG.
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
D2Ndir.Add(Ndir.Multiplied(((3.0 * Dr * Dr) / R4) - (D2r / R2)));
D2Ndir.Multiply(myOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else {
// Same computation as IICURV in EUCLID-IS because the stability is better.
// V2 = P" (U) :
D2Ndir.Multiply(myOffset / R);
D2Ndir.Subtract(DNdir.Multiplied(2.0 * myOffset * Dr / R3));
D2Ndir.Add(Ndir.Multiplied(myOffset * (((3.0 * Dr * Dr) / R5) - (D2r / R3))));
// V1 = P' (U) :
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u) :
theD1.Add(gp_Vec(DNdir));
// P"(u) :
if (theIsDirChange)
theD2.Reverse();
theD2.Add(gp_Vec(D2Ndir));
}
void GeomEvaluator_OffsetCurve::CalculateD3( gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3,
const gp_Vec& theD4,
const Standard_Boolean theIsDirChange) const
{
// P(u) = p(u) + Offset * Ndir / R
// with R = || p' ^ V|| and Ndir = P' ^ direction (local normal direction)
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2) * D2Ndir -
// (3.0 * D2r / R2) * DNdir + (3.0 * Dr * Dr / R4) * DNdir -
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
gp_XYZ Ndir = (theD1.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ DNdir = (theD2.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ D2Ndir = (theD3.XYZ()).Crossed(myOffsetDir.XYZ());
gp_XYZ D3Ndir = (theD4.XYZ()).Crossed(myOffsetDir.XYZ());
Standard_Real R2 = Ndir.SquareModulus();
Standard_Real R = Sqrt(R2);
Standard_Real R3 = R2 * R;
Standard_Real R4 = R2 * R2;
Standard_Real R5 = R3 * R2;
Standard_Real R6 = R3 * R3;
Standard_Real R7 = R5 * R2;
Standard_Real Dr = Ndir.Dot(DNdir);
Standard_Real D2r = Ndir.Dot(D2Ndir) + DNdir.Dot(DNdir);
Standard_Real D3r = Ndir.Dot(D3Ndir) + 3.0 * DNdir.Dot(D2Ndir);
if (R7 <= gp::Resolution()) {
if (R6 <= gp::Resolution())
Standard_NullValue::Raise("CSLib_Offset: Null derivative");
// V3 = P"' (U) :
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * Dr / R2));
D3Ndir.Subtract(DNdir.Multiplied(3.0 * ((D2r / R2) + (Dr*Dr / R4))));
D3Ndir.Add(Ndir.Multiplied(6.0*Dr*Dr / R4 + 6.0*Dr*D2r / R4 - 15.0*Dr*Dr*Dr / R6 - D3r));
D3Ndir.Multiply(myOffset / R);
// V2 = P" (U) :
R4 = R2 * R2;
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R2));
D2Ndir.Subtract(Ndir.Multiplied((3.0 * Dr * Dr / R4) - (D2r / R2)));
D2Ndir.Multiply(myOffset / R);
// V1 = P' (U) :
DNdir.Multiply(R);
DNdir.Subtract(Ndir.Multiplied(Dr / R));
DNdir.Multiply(myOffset / R2);
}
else {
// V3 = P"' (U) :
D3Ndir.Divide(R);
D3Ndir.Subtract(D2Ndir.Multiplied(3.0 * Dr / R3));
D3Ndir.Subtract(DNdir.Multiplied((3.0 * ((D2r / R3) + (Dr*Dr) / R5))));
D3Ndir.Add(Ndir.Multiplied(6.0*Dr*Dr / R5 + 6.0*Dr*D2r / R5 - 15.0*Dr*Dr*Dr / R7 - D3r));
D3Ndir.Multiply(myOffset);
// V2 = P" (U) :
D2Ndir.Divide(R);
D2Ndir.Subtract(DNdir.Multiplied(2.0 * Dr / R3));
D2Ndir.Subtract(Ndir.Multiplied((3.0 * Dr * Dr / R5) - (D2r / R3)));
D2Ndir.Multiply(myOffset);
// V1 = P' (U) :
DNdir.Multiply(myOffset / R);
DNdir.Subtract(Ndir.Multiplied(myOffset * Dr / R3));
}
Ndir.Multiply(myOffset / R);
// P(u)
theValue.ChangeCoord().Add(Ndir);
// P'(u) :
theD1.Add(gp_Vec(DNdir));
// P"(u)
theD2.Add(gp_Vec(D2Ndir));
// P"'(u)
if (theIsDirChange)
theD3.Reverse();
theD3.Add(gp_Vec(D2Ndir));
}
Standard_Boolean GeomEvaluator_OffsetCurve::AdjustDerivative(
const Standard_Integer theMaxDerivative, const Standard_Real theU,
gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3, gp_Vec& theD4) const
{
static const Standard_Real aTol = gp::Resolution();
static const Standard_Real aMinStep = 1e-7;
static const Standard_Integer aMaxDerivOrder = 3;
Standard_Boolean isDirectionChange = Standard_False;
Standard_Real anUinfium;
Standard_Real anUsupremum;
if (!myBaseAdaptor.IsNull())
{
anUinfium = myBaseAdaptor->FirstParameter();
anUsupremum = myBaseAdaptor->LastParameter();
}
else
{
anUinfium = myBaseCurve->FirstParameter();
anUsupremum = myBaseCurve->LastParameter();
}
static const Standard_Real DivisionFactor = 1.e-3;
Standard_Real du;
if ((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
du = 0.0;
else
du = anUsupremum - anUinfium;
const Standard_Real aDelta = Max(du * DivisionFactor, aMinStep);
//Derivative is approximated by Taylor-series
Standard_Integer anIndex = 1; //Derivative order
gp_Vec V;
do
{
V = BaseDN(theU, ++anIndex);
} while ((V.SquareMagnitude() <= aTol) && anIndex < aMaxDerivOrder);
Standard_Real u;
if (theU - anUinfium < aDelta)
u = theU + aDelta;
else
u = theU - aDelta;
gp_Pnt P1, P2;
BaseD0(Min(theU, u), P1);
BaseD0(Max(theU, u), P2);
gp_Vec V1(P1, P2);
isDirectionChange = V.Dot(V1) < 0.0;
Standard_Real aSign = isDirectionChange ? -1.0 : 1.0;
theD1 = V * aSign;
gp_Vec* aDeriv[3] = { &theD2, &theD3, &theD4 };
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
*(aDeriv[i - 1]) = BaseDN(theU, anIndex + i) * aSign;
return isDirectionChange;
}

View File

@ -0,0 +1,124 @@
// Created on: 2015-09-21
// Copyright (c) 2015 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _GeomEvaluator_OffsetCurve_HeaderFile
#define _GeomEvaluator_OffsetCurve_HeaderFile
#include <Geom_Curve.hxx>
#include <GeomEvaluator_Curve.hxx>
#include <gp_Dir.hxx>
class GeomAdaptor_HCurve;
//! Allows to calculate values and derivatives for offset curves in 3D
class GeomEvaluator_OffsetCurve : public GeomEvaluator_Curve
{
public:
//! Initialize evaluator by curve
Standard_EXPORT GeomEvaluator_OffsetCurve(
const Handle(Geom_Curve)& theBase,
const Standard_Real theOffset,
const gp_Dir& theDirection);
//! Initialize evaluator by curve adaptor
Standard_EXPORT GeomEvaluator_OffsetCurve(
const Handle(GeomAdaptor_HCurve)& theBase,
const Standard_Real theOffset,
const gp_Dir& theDirection);
//! Change the offset value
void SetOffsetValue(Standard_Real theOffset)
{ myOffset = theOffset; }
void SetOffsetDirection(const gp_Dir& theDirection)
{ myOffsetDir = theDirection; }
//! Value of curve
Standard_EXPORT void D0(const Standard_Real theU,
gp_Pnt& theValue) const Standard_OVERRIDE;
//! Value and first derivatives of curve
Standard_EXPORT void D1(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1) const Standard_OVERRIDE;
//! Value, first and second derivatives of curve
Standard_EXPORT void D2(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const Standard_OVERRIDE;
//! Value, first, second and third derivatives of curve
Standard_EXPORT void D3(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1,
gp_Vec& theD2, gp_Vec& theD3) const Standard_OVERRIDE;
//! Calculates N-th derivatives of curve, where N = theDeriv. Raises if N < 1
Standard_EXPORT gp_Vec DN(const Standard_Real theU,
const Standard_Integer theDeriv) const Standard_OVERRIDE;
DEFINE_STANDARD_RTTI(GeomEvaluator_OffsetCurve, GeomEvaluator_Curve)
private:
//! Recalculate D1 values of base curve into D0 value of offset curve
void CalculateD0( gp_Pnt& theValue,
const gp_Vec& theD1) const;
//! Recalculate D2 values of base curve into D1 values of offset curve
void CalculateD1( gp_Pnt& theValue,
gp_Vec& theD1,
const gp_Vec& theD2) const;
//! Recalculate D3 values of base curve into D2 values of offset curve
void CalculateD2( gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
const gp_Vec& theD3,
const Standard_Boolean theIsDirChange) const;
//! Recalculate D3 values of base curve into D3 values of offset curve
void CalculateD3( gp_Pnt& theValue,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3,
const gp_Vec& theD4,
const Standard_Boolean theIsDirChange) const;
//! Calculate value of base curve/adaptor
void BaseD0(const Standard_Real theU, gp_Pnt& theValue) const;
//! Calculate value and first derivatives of base curve/adaptor
void BaseD1(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1) const;
//! Calculate value, first and second derivatives of base curve/adaptor
void BaseD2(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2) const;
//! Calculate value, first, second and third derivatives of base curve/adaptor
void BaseD3(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3) const;
//! Calculate value and derivatives till 4th of base curve/adaptor
void BaseD4(const Standard_Real theU,
gp_Pnt& theValue, gp_Vec& theD1, gp_Vec& theD2, gp_Vec& theD3, gp_Vec& theD4) const;
//! Calculate N-th derivative of base curve/adaptor
gp_Vec BaseDN(const Standard_Real theU, const Standard_Integer theDeriv) const;
// Recalculate derivatives in the singular point
// Returns true if the direction of derivatives is changed
Standard_Boolean AdjustDerivative(const Standard_Integer theMaxDerivative,
const Standard_Real theU,
gp_Vec& theD1,
gp_Vec& theD2,
gp_Vec& theD3,
gp_Vec& theD4) const;
private:
Handle(Geom_Curve) myBaseCurve;
Handle(GeomAdaptor_HCurve) myBaseAdaptor;
Standard_Real myOffset; ///< offset value
gp_Dir myOffsetDir; ///< offset direction
};
DEFINE_STANDARD_HANDLE(GeomEvaluator_OffsetCurve, GeomEvaluator_Curve)
#endif // _GeomEvaluator_OffsetCurve_HeaderFile

View File

@ -5,3 +5,4 @@ Adaptor2d
Geom2dLProp
Geom2dAdaptor
GProp
Geom2dEvaluator