mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
0026838: Using GeomEvaluators for calculation of values of curves
1. Implemented evaluators for 2D and 3D offset curves 2. Removed obsolete namespace CSLib_Offset Update of UDLIST (adding no-cdl-pack Geom2dEvaluator) Update TKG2d/CMakeLists.txt after rebase Correction compilation in debug mode
This commit is contained in:
@@ -25,7 +25,6 @@
|
||||
#include <Adaptor2d_HCurve2d.hxx>
|
||||
#include <BSplCLib.hxx>
|
||||
#include <BSplCLib_Cache.hxx>
|
||||
#include <CSLib_Offset.hxx>
|
||||
#include <Geom2d_BezierCurve.hxx>
|
||||
#include <Geom2d_BSplineCurve.hxx>
|
||||
#include <Geom2d_Circle.hxx>
|
||||
@@ -40,6 +39,7 @@
|
||||
#include <Geom2d_UndefinedValue.hxx>
|
||||
#include <Geom2dAdaptor_Curve.hxx>
|
||||
#include <Geom2dAdaptor_HCurve.hxx>
|
||||
#include <Geom2dEvaluator_OffsetCurve.hxx>
|
||||
#include <GeomAbs_Shape.hxx>
|
||||
#include <gp.hxx>
|
||||
#include <gp_Circ2d.hxx>
|
||||
@@ -64,16 +64,6 @@
|
||||
//#include <Geom2dConvert_BSplineCurveKnotSplitting.hxx>
|
||||
static const Standard_Real PosTol = Precision::PConfusion() / 2;
|
||||
|
||||
static const Standard_Integer maxDerivOrder = 3;
|
||||
static const Standard_Real MinStep = 1e-7;
|
||||
|
||||
static gp_Vec2d dummyDerivative; // used as empty value for unused derivatives in AdjustDerivative
|
||||
|
||||
// Recalculate derivatives in the singular point
|
||||
// Returns true is the direction of derivatives is changed
|
||||
static Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
|
||||
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2 = dummyDerivative,
|
||||
gp_Vec2d& theD3 = dummyDerivative, gp_Vec2d& theD4 = dummyDerivative);
|
||||
|
||||
//=======================================================================
|
||||
//function : LocalContinuity
|
||||
@@ -196,6 +186,7 @@ void Geom2dAdaptor_Curve::load(const Handle(Geom2d_Curve)& C,
|
||||
if ( myCurve != C) {
|
||||
myCurve = C;
|
||||
myCurveCache = Handle(BSplCLib_Cache)();
|
||||
myNestedEvaluator = Handle(Geom2dEvaluator_Curve)();
|
||||
|
||||
Handle(Standard_Type) TheType = C->DynamicType();
|
||||
if ( TheType == STANDARD_TYPE(Geom2d_TrimmedCurve)) {
|
||||
@@ -236,9 +227,11 @@ void Geom2dAdaptor_Curve::load(const Handle(Geom2d_Curve)& C,
|
||||
else if ( TheType == STANDARD_TYPE(Geom2d_OffsetCurve))
|
||||
{
|
||||
myTypeCurve = GeomAbs_OffsetCurve;
|
||||
Handle(Geom2d_OffsetCurve) anOffsetCurve = Handle(Geom2d_OffsetCurve)::DownCast(myCurve);
|
||||
// Create nested adaptor for base curve
|
||||
Handle(Geom2d_Curve) aBase = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve();
|
||||
myOffsetBaseCurveAdaptor = new Geom2dAdaptor_HCurve(aBase);
|
||||
Handle(Geom2d_Curve) aBaseCurve = anOffsetCurve->BasisCurve();
|
||||
Handle(Geom2dAdaptor_HCurve) aBaseAdaptor = new Geom2dAdaptor_HCurve(aBaseCurve);
|
||||
myNestedEvaluator = new Geom2dEvaluator_OffsetCurve(aBaseAdaptor, anOffsetCurve->Offset());
|
||||
}
|
||||
else {
|
||||
myTypeCurve = GeomAbs_OtherCurve;
|
||||
@@ -385,7 +378,8 @@ Standard_Integer Geom2dAdaptor_Curve::NbIntervals(const GeomAbs_Shape S) const
|
||||
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
|
||||
default: BaseS = GeomAbs_CN;
|
||||
}
|
||||
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
|
||||
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
|
||||
myNbIntervals = anAdaptor.NbIntervals(BaseS);
|
||||
}
|
||||
|
||||
return myNbIntervals;
|
||||
@@ -501,8 +495,10 @@ void Geom2dAdaptor_Curve::Intervals(TColStd_Array1OfReal& T,
|
||||
case GeomAbs_C2: BaseS = GeomAbs_C3; break;
|
||||
default: BaseS = GeomAbs_CN;
|
||||
}
|
||||
myNbIntervals = myOffsetBaseCurveAdaptor->NbIntervals(BaseS);
|
||||
myOffsetBaseCurveAdaptor->Intervals(T, BaseS);
|
||||
|
||||
Geom2dAdaptor_Curve anAdaptor( Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->BasisCurve() );
|
||||
myNbIntervals = anAdaptor.NbIntervals(BaseS);
|
||||
anAdaptor.Intervals(T, BaseS);
|
||||
}
|
||||
|
||||
T( T.Lower() ) = myFirst;
|
||||
@@ -588,6 +584,38 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsBoundary
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Geom2dAdaptor_Curve::IsBoundary(const Standard_Real theU,
|
||||
Standard_Integer& theSpanStart,
|
||||
Standard_Integer& theSpanFinish) const
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
if (!aBspl.IsNull() && (theU == myFirst || theU == myLast))
|
||||
{
|
||||
if (theU == myFirst)
|
||||
{
|
||||
aBspl->LocateU(myFirst, PosTol, theSpanStart, theSpanFinish);
|
||||
if (theSpanStart < 1)
|
||||
theSpanStart = 1;
|
||||
if (theSpanStart >= theSpanFinish)
|
||||
theSpanFinish = theSpanStart + 1;
|
||||
}
|
||||
else if (theU == myLast)
|
||||
{
|
||||
aBspl->LocateU(myLast, PosTol, theSpanStart, theSpanFinish);
|
||||
if (theSpanFinish > aBspl->NbKnots())
|
||||
theSpanFinish = aBspl->NbKnots();
|
||||
if (theSpanStart >= theSpanFinish)
|
||||
theSpanStart = theSpanFinish - 1;
|
||||
}
|
||||
return Standard_True;
|
||||
}
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
@@ -595,72 +623,9 @@ void Geom2dAdaptor_Curve::RebuildCache(const Standard_Real theParameter) const
|
||||
|
||||
gp_Pnt2d Geom2dAdaptor_Curve::Value(const Standard_Real U) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
return ValueBSpline(U);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
return ValueOffset(U);
|
||||
else if (myTypeCurve == GeomAbs_BezierCurve)
|
||||
{ // use cached data
|
||||
gp_Pnt2d aRes;
|
||||
myCurveCache->D0(U, aRes);
|
||||
return aRes;
|
||||
}
|
||||
|
||||
return myCurve->Value(U);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ValueBSpline
|
||||
//purpose : Computes the point of parameter U on the B-spline curve
|
||||
//=======================================================================
|
||||
gp_Pnt2d Geom2dAdaptor_Curve::ValueBSpline(const Standard_Real theU) const
|
||||
{
|
||||
if (theU == myFirst || theU == myLast)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (theU == myFirst)
|
||||
{
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
}
|
||||
if (theU == myLast)
|
||||
{
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
return aBspl->LocalValue(theU, Ideb, Ifin);
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached B-spline data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(theU))
|
||||
RebuildCache(theU);
|
||||
gp_Pnt2d aRes;
|
||||
myCurveCache->D0(theU, aRes);
|
||||
return aRes;
|
||||
}
|
||||
return myCurve->Value(theU);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ValueOffset
|
||||
//purpose : Computes the point of parameter U on the offset curve
|
||||
//=======================================================================
|
||||
gp_Pnt2d Geom2dAdaptor_Curve::ValueOffset(const Standard_Real theU) const
|
||||
{
|
||||
gp_Pnt2d aP;
|
||||
gp_Vec2d aD1;
|
||||
myOffsetBaseCurveAdaptor->D1(theU, aP, aD1);
|
||||
Standard_Boolean isDirectionChange = Standard_False;
|
||||
const Standard_Real aTol = gp::Resolution();
|
||||
if(aD1.SquareMagnitude() <= aTol)
|
||||
isDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 1, theU, aD1);
|
||||
|
||||
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
|
||||
CSLib_Offset::D0(aP, aD1, anOffset, isDirectionChange, aP);
|
||||
return aP;
|
||||
gp_Pnt2d aRes;
|
||||
D0(U, aRes);
|
||||
return aRes;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -670,56 +635,35 @@ gp_Pnt2d Geom2dAdaptor_Curve::ValueOffset(const Standard_Real theU) const
|
||||
|
||||
void Geom2dAdaptor_Curve::D0(const Standard_Real U, gp_Pnt2d& P) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
D0BSpline(U, P);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
D0Offset(U, P);
|
||||
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
|
||||
myCurveCache->D0(U, P);
|
||||
else
|
||||
switch (myTypeCurve)
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Standard_Integer aStart = 0, aFinish = 0;
|
||||
if (IsBoundary(U, aStart, aFinish))
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
aBspl->LocalD0(U, aStart, aFinish, P);
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(U))
|
||||
RebuildCache(U);
|
||||
myCurveCache->D0(U, P);
|
||||
}
|
||||
else
|
||||
myCurve->D0(U, P);
|
||||
break;
|
||||
}
|
||||
|
||||
case GeomAbs_OffsetCurve:
|
||||
myNestedEvaluator->D0(U, P);
|
||||
break;
|
||||
|
||||
default:
|
||||
myCurve->D0(U, P);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D0BSpline
|
||||
//purpose : Computes the point of parameter theU on the B-spline curve
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D0BSpline(const Standard_Real theU, gp_Pnt2d& theP) const
|
||||
{
|
||||
if (theU == myFirst || theU == myLast)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (theU == myFirst) {
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
}
|
||||
if (theU == myLast) {
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
aBspl->LocalD0(theU, Ideb, Ifin, theP);
|
||||
return;
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached B-spline data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(theU))
|
||||
RebuildCache(theU);
|
||||
myCurveCache->D0(theU, theP);
|
||||
return;
|
||||
}
|
||||
myCurve->D0(theU, theP);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D0Offset
|
||||
//purpose : Computes the point of parameter theU on the offset curve
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt2d& theP) const
|
||||
{
|
||||
theP = ValueOffset(theU);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -730,69 +674,35 @@ void Geom2dAdaptor_Curve::D0Offset(const Standard_Real theU, gp_Pnt2d& theP) con
|
||||
void Geom2dAdaptor_Curve::D1(const Standard_Real U,
|
||||
gp_Pnt2d& P, gp_Vec2d& V) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
D1BSpline(U, P, V);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
D1Offset(U, P, V);
|
||||
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
|
||||
myCurveCache->D1(U, P, V);
|
||||
else
|
||||
switch (myTypeCurve)
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Standard_Integer aStart = 0, aFinish = 0;
|
||||
if (IsBoundary(U, aStart, aFinish))
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
aBspl->LocalD1(U, aStart, aFinish, P, V);
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(U))
|
||||
RebuildCache(U);
|
||||
myCurveCache->D1(U, P, V);
|
||||
}
|
||||
else
|
||||
myCurve->D1(U, P, V);
|
||||
break;
|
||||
}
|
||||
|
||||
case GeomAbs_OffsetCurve:
|
||||
myNestedEvaluator->D1(U, P, V);
|
||||
break;
|
||||
|
||||
default:
|
||||
myCurve->D1(U, P, V);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D1BSpline
|
||||
//purpose : Computes the point of parameter theU on the B-spline curve and its derivative
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D1BSpline(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
|
||||
{
|
||||
if (theU == myFirst || theU == myLast)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (theU == myFirst) {
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
}
|
||||
if (theU == myLast) {
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
aBspl->LocalD1(theU, Ideb, Ifin, theP, theV);
|
||||
return;
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached B-spline data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(theU))
|
||||
RebuildCache(theU);
|
||||
myCurveCache->D1(theU, theP, theV);
|
||||
return;
|
||||
}
|
||||
myCurve->D1(theU, theP, theV);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D1Offset
|
||||
//purpose : Computes the point of parameter theU on the offset curve and its derivative
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt2d& theP, gp_Vec2d& theV) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
gp_Vec2d V2;
|
||||
myOffsetBaseCurveAdaptor->D2 (theU, theP, theV, V2);
|
||||
|
||||
Standard_Boolean IsDirectionChange = Standard_False;
|
||||
if(theV.SquareMagnitude() <= gp::Resolution())
|
||||
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 2, theU, theV, V2);
|
||||
|
||||
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
|
||||
CSLib_Offset::D1(theP, theV, V2, anOffset, IsDirectionChange, theP, theV);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -803,73 +713,35 @@ void Geom2dAdaptor_Curve::D1Offset(const Standard_Real theU, gp_Pnt2d& theP, gp_
|
||||
void Geom2dAdaptor_Curve::D2(const Standard_Real U,
|
||||
gp_Pnt2d& P, gp_Vec2d& V1, gp_Vec2d& V2) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
D2BSpline(U, P, V1, V2);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
D2Offset(U, P, V1, V2);
|
||||
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
|
||||
myCurveCache->D2(U, P, V1, V2);
|
||||
else
|
||||
switch (myTypeCurve)
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Standard_Integer aStart = 0, aFinish = 0;
|
||||
if (IsBoundary(U, aStart, aFinish))
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
aBspl->LocalD2(U, aStart, aFinish, P, V1, V2);
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(U))
|
||||
RebuildCache(U);
|
||||
myCurveCache->D2(U, P, V1, V2);
|
||||
}
|
||||
else
|
||||
myCurve->D2(U, P, V1, V2);
|
||||
break;
|
||||
}
|
||||
|
||||
case GeomAbs_OffsetCurve:
|
||||
myNestedEvaluator->D2(U, P, V1, V2);
|
||||
break;
|
||||
|
||||
default:
|
||||
myCurve->D2(U, P, V1, V2);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D2BSpline
|
||||
//purpose : Computes the point of parameter theU on the B-spline curve and its first and second derivatives
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D2BSpline(const Standard_Real theU, gp_Pnt2d& theP,
|
||||
gp_Vec2d& theV1, gp_Vec2d& theV2) const
|
||||
{
|
||||
if (theU == myFirst || theU == myLast)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (theU == myFirst) {
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
}
|
||||
if (theU == myLast) {
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
aBspl->LocalD2(theU, Ideb, Ifin, theP, theV1, theV2);
|
||||
return;
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached B-spline data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(theU))
|
||||
RebuildCache(theU);
|
||||
myCurveCache->D2(theU, theP, theV1, theV2);
|
||||
return;
|
||||
}
|
||||
myCurve->D2(theU, theP, theV1, theV2);
|
||||
}
|
||||
//=======================================================================
|
||||
//function : D2Offset
|
||||
//purpose : Computes the point of parameter theU on the offset curve and its first and second derivatives
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D2Offset(const Standard_Real theU, gp_Pnt2d& theP,
|
||||
gp_Vec2d& theV1, gp_Vec2d& theV2) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
||||
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
||||
|
||||
gp_Vec2d V3;
|
||||
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, V3);
|
||||
|
||||
Standard_Boolean IsDirectionChange = Standard_False;
|
||||
if(theV1.SquareMagnitude() <= gp::Resolution())
|
||||
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 3, theU, theV1, theV2, V3);
|
||||
|
||||
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
|
||||
CSLib_Offset::D2(theP, theV1, theV2, V3, anOffset, IsDirectionChange, theP, theV1, theV2);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -881,80 +753,35 @@ void Geom2dAdaptor_Curve::D3(const Standard_Real U,
|
||||
gp_Pnt2d& P, gp_Vec2d& V1,
|
||||
gp_Vec2d& V2, gp_Vec2d& V3) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
D3BSpline(U, P, V1, V2, V3);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
D3Offset(U, P, V1, V2, V3);
|
||||
else if (myTypeCurve == GeomAbs_BezierCurve) // use cached data
|
||||
myCurveCache->D3(U, P, V1, V2, V3);
|
||||
else
|
||||
switch (myTypeCurve)
|
||||
{
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Standard_Integer aStart = 0, aFinish = 0;
|
||||
if (IsBoundary(U, aStart, aFinish))
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
aBspl->LocalD3(U, aStart, aFinish, P, V1, V2, V3);
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(U))
|
||||
RebuildCache(U);
|
||||
myCurveCache->D3(U, P, V1, V2, V3);
|
||||
}
|
||||
else
|
||||
myCurve->D3(U, P, V1, V2, V3);
|
||||
break;
|
||||
}
|
||||
|
||||
case GeomAbs_OffsetCurve:
|
||||
myNestedEvaluator->D3(U, P, V1, V2, V3);
|
||||
break;
|
||||
|
||||
default:
|
||||
myCurve->D3(U, P, V1, V2, V3);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : D3BSpline
|
||||
//purpose : Computes the point of parameter theU on the B-spline curve and its 1st - 3rd derivatives
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D3BSpline(const Standard_Real theU, gp_Pnt2d& theP,
|
||||
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
|
||||
{
|
||||
if (theU == myFirst || theU == myLast)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (theU == myFirst) {
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
}
|
||||
if (theU == myLast) {
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
aBspl->LocalD3(theU, Ideb, Ifin, theP, theV1, theV2, theV3);
|
||||
return;
|
||||
}
|
||||
else if (!myCurveCache.IsNull()) // use cached B-spline data
|
||||
{
|
||||
if (!myCurveCache->IsCacheValid(theU))
|
||||
RebuildCache(theU);
|
||||
myCurveCache->D3(theU, theP, theV1, theV2, theV3);
|
||||
return;
|
||||
}
|
||||
myCurve->D3(theU, theP, theV1, theV2, theV3);
|
||||
}
|
||||
//=======================================================================
|
||||
//function : D3Offset
|
||||
//purpose : Computes the point of parameter theU on the offset curve and its 1st - 3rd derivatives
|
||||
//=======================================================================
|
||||
void Geom2dAdaptor_Curve::D3Offset(const Standard_Real theU, gp_Pnt2d& theP,
|
||||
gp_Vec2d& theV1, gp_Vec2d& theV2, gp_Vec2d& theV3) const
|
||||
{
|
||||
// P(u) = p(u) + Offset * Ndir / R
|
||||
// with R = || p' ^ Z|| and Ndir = P' ^ Z
|
||||
|
||||
// P'(u) = p'(u) + (Offset / R**2) * (DNdir/DU * R - Ndir * (DR/R))
|
||||
|
||||
// P"(u) = p"(u) + (Offset / R) * (D2Ndir/DU - DNdir * (2.0 * Dr/ R**2) +
|
||||
// Ndir * ( (3.0 * Dr**2 / R**4) - (D2r / R**2)))
|
||||
|
||||
//P"'(u) = p"'(u) + (Offset / R) * (D3Ndir - (3.0 * Dr/R**2 ) * D2Ndir -
|
||||
// (3.0 * D2r / R2) * DNdir) + (3.0 * Dr * Dr / R4) * DNdir -
|
||||
// (D3r/R2) * Ndir + (6.0 * Dr * Dr / R4) * Ndir +
|
||||
// (6.0 * Dr * D2r / R4) * Ndir - (15.0 * Dr* Dr* Dr /R6) * Ndir
|
||||
|
||||
Standard_Boolean IsDirectionChange = Standard_False;
|
||||
|
||||
myOffsetBaseCurveAdaptor->D3 (theU, theP, theV1, theV2, theV3);
|
||||
gp_Vec2d V4 = myOffsetBaseCurveAdaptor->DN (theU, 4);
|
||||
|
||||
if(theV1.SquareMagnitude() <= gp::Resolution())
|
||||
IsDirectionChange = AdjustDerivative(myOffsetBaseCurveAdaptor, 4, theU, theV1, theV2, theV3, V4);
|
||||
|
||||
Standard_Real anOffset = Handle(Geom2d_OffsetCurve)::DownCast(myCurve)->Offset();
|
||||
CSLib_Offset::D3(theP, theV1, theV2, theV3, V4, anOffset, IsDirectionChange,
|
||||
theP, theV1, theV2, theV3);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -965,58 +792,30 @@ void Geom2dAdaptor_Curve::D3Offset(const Standard_Real theU, gp_Pnt2d& theP,
|
||||
gp_Vec2d Geom2dAdaptor_Curve::DN(const Standard_Real U,
|
||||
const Standard_Integer N) const
|
||||
{
|
||||
if (myTypeCurve == GeomAbs_BSplineCurve)
|
||||
return DNBSpline(U, N);
|
||||
else if (myTypeCurve == GeomAbs_OffsetCurve)
|
||||
return DNOffset(U, N);
|
||||
|
||||
return myCurve->DN(U, N);
|
||||
}
|
||||
|
||||
gp_Vec2d Geom2dAdaptor_Curve::DNBSpline(const Standard_Real U,
|
||||
const Standard_Integer N) const
|
||||
{
|
||||
if (U==myFirst || U==myLast)
|
||||
switch (myTypeCurve)
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
Standard_Integer Ideb = 0, Ifin = 0;
|
||||
if (U==myFirst) {
|
||||
aBspl->LocateU(myFirst, PosTol, Ideb, Ifin);
|
||||
if (Ideb<1) Ideb=1;
|
||||
if (Ideb>=Ifin) Ifin = Ideb+1;
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve:
|
||||
{
|
||||
Standard_Integer aStart = 0, aFinish = 0;
|
||||
if (IsBoundary(U, aStart, aFinish))
|
||||
{
|
||||
Handle(Geom2d_BSplineCurve) aBspl = Handle(Geom2d_BSplineCurve)::DownCast(myCurve);
|
||||
return aBspl->LocalDN(U, aStart, aFinish, N);
|
||||
}
|
||||
if (U==myLast) {
|
||||
aBspl->LocateU(myLast, PosTol, Ideb, Ifin);
|
||||
if (Ifin > aBspl->NbKnots()) Ifin = aBspl->NbKnots();
|
||||
if (Ideb>=Ifin) Ideb = Ifin-1;
|
||||
}
|
||||
return aBspl->LocalDN( U, Ideb, Ifin, N);
|
||||
else
|
||||
return myCurve->DN(U, N);
|
||||
break;
|
||||
}
|
||||
|
||||
return myCurve->DN( U, N);
|
||||
}
|
||||
case GeomAbs_OffsetCurve:
|
||||
return myNestedEvaluator->DN(U, N);
|
||||
break;
|
||||
|
||||
gp_Vec2d Geom2dAdaptor_Curve::DNOffset(const Standard_Real U,
|
||||
const Standard_Integer N) const
|
||||
{
|
||||
gp_Pnt2d aPnt;
|
||||
gp_Vec2d aVec, aVN;
|
||||
|
||||
switch (N)
|
||||
{
|
||||
case 1:
|
||||
D1Offset(U, aPnt, aVN);
|
||||
default: // to eliminate gcc warning
|
||||
break;
|
||||
case 2:
|
||||
D2Offset(U, aPnt, aVec, aVN);
|
||||
break;
|
||||
case 3:
|
||||
D3Offset(U, aPnt, aVec, aVec, aVN);
|
||||
break;
|
||||
default:
|
||||
aVN = myCurve->DN(U, N);
|
||||
}
|
||||
return aVN;
|
||||
return myCurve->DN(U, N);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@@ -1233,57 +1032,3 @@ Standard_Integer Geom2dAdaptor_Curve::NbSamples() const
|
||||
{
|
||||
return nbPoints(myCurve);
|
||||
}
|
||||
|
||||
|
||||
// ============= Auxiliary functions ===================
|
||||
Standard_Boolean AdjustDerivative(const Handle(Adaptor2d_HCurve2d)& theAdaptor, Standard_Integer theMaxDerivative,
|
||||
Standard_Real theU, gp_Vec2d& theD1, gp_Vec2d& theD2,
|
||||
gp_Vec2d& theD3, gp_Vec2d& theD4)
|
||||
{
|
||||
static const Standard_Real aTol = gp::Resolution();
|
||||
|
||||
Standard_Boolean IsDirectionChange = Standard_False;
|
||||
const Standard_Real anUinfium = theAdaptor->FirstParameter();
|
||||
const Standard_Real anUsupremum = theAdaptor->LastParameter();
|
||||
|
||||
const Standard_Real DivisionFactor = 1.e-3;
|
||||
Standard_Real du;
|
||||
if((anUsupremum >= RealLast()) || (anUinfium <= RealFirst()))
|
||||
du = 0.0;
|
||||
else
|
||||
du = anUsupremum - anUinfium;
|
||||
|
||||
const Standard_Real aDelta = Max(du * DivisionFactor, MinStep);
|
||||
|
||||
//Derivative is approximated by Taylor-series
|
||||
Standard_Integer anIndex = 1; //Derivative order
|
||||
gp_Vec2d V;
|
||||
|
||||
do
|
||||
{
|
||||
V = theAdaptor->DN(theU, ++anIndex);
|
||||
}
|
||||
while((V.Magnitude() <= aTol) && anIndex < maxDerivOrder);
|
||||
|
||||
Standard_Real u;
|
||||
|
||||
if(theU-anUinfium < aDelta)
|
||||
u = theU+aDelta;
|
||||
else
|
||||
u = theU-aDelta;
|
||||
|
||||
gp_Pnt2d P1, P2;
|
||||
theAdaptor->D0(Min(theU, u),P1);
|
||||
theAdaptor->D0(Max(theU, u),P2);
|
||||
|
||||
gp_Vec2d V1(P1, P2);
|
||||
IsDirectionChange = V.Dot(V1) < 0.0;
|
||||
Standard_Real aSign = IsDirectionChange ? -1.0 : 1.0;
|
||||
|
||||
theD1 = V * aSign;
|
||||
gp_Vec2d* aDeriv[3] = {&theD2, &theD3, &theD4};
|
||||
for (Standard_Integer i = 1; i < theMaxDerivative; i++)
|
||||
*(aDeriv[i-1]) = theAdaptor->DN(theU, anIndex + i) * aSign;
|
||||
|
||||
return IsDirectionChange;
|
||||
}
|
||||
|
Reference in New Issue
Block a user