1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

0029162: Geom2dInt_GInter algorithm does not find intersection of ellipse and line

This commit is contained in:
ifv
2017-10-13 15:43:10 +03:00
parent a7d8971008
commit 742483064b
2 changed files with 541 additions and 116 deletions

View File

@@ -16,25 +16,26 @@
// Modified: OFV Thu Nov 6 17:03:52 2003
#include <IntCurve_IntConicConic.ixx>
#include <IntCurve_IntConicConic_1.hxx>
#include <ElCLib.hxx>
#include <gp.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_Conic.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <IntCurve_IConicTool.hxx>
#include <IntCurve_IntConicConic.hxx>
#include <IntCurve_PConic.hxx>
#include <IntRes2d_Domain.hxx>
#include <gp.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <IntAna2d_AnaIntersection.hxx>
#include <IntAna2d_IntPoint.hxx>
#include <IntAna2d_Conic.hxx>
#include <ElCLib.hxx>
//=======================================================================
// Perform() for
// Line - Parabola
// Line - Elipse
// Line - Hyperbola
// Circle - Parabola
// Circle - Elipse
@@ -46,7 +47,6 @@
// Elipse - Hyperbola
// Hyperbola - Hyperbola
//=======================================================================
static const Standard_Real PARAM_MAX_ON_PARABOLA = 100000000.0;
static const Standard_Real PARAM_MAX_ON_HYPERBOLA = 10000.0;
static const Standard_Real TOL_EXACT_INTER = 1.e-7;
@@ -188,34 +188,6 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L,
}
}
//=======================================================================
//function : Perform
//purpose : Line - Elipse
//=======================================================================
void IntCurve_IntConicConic::Perform(const gp_Lin2d& L,
const IntRes2d_Domain& DL,
const gp_Elips2d& E,
const IntRes2d_Domain& DE,
const Standard_Real TolConf,
const Standard_Real Tol)
{
this->ResetFields();
IntCurve_IConicTool ITool(L);
IntCurve_PConic PCurve(E);
PCurve.SetAccuracy(20);
Inter.SetReversedParameters(ReversedParameters());
if(! DE.IsClosed()) {
IntRes2d_Domain D(DE);
D.SetEquivalentParameters(DE.FirstParameter(),DE.FirstParameter()+M_PI+M_PI);
Inter.Perform(ITool,DL,PCurve,D,TolConf,Tol);
}
else {
Inter.Perform(ITool,DL,PCurve,DE,TolConf,Tol);
}
this->SetValues(Inter);
}
//=======================================================================
//function : Perform

View File

@@ -16,24 +16,27 @@
// a modifier le cas de 2 points confondus ( Insert a la place d'append ? )
#include <IntCurve_IntConicConic.jxx>
#include <IntCurve_IConicTool.hxx>
#include <IntCurve_PConic.hxx>
#include <IntRes2d_Domain.hxx>
#include <gp.hxx>
#include <IntCurve_IntConicConic_Tool.hxx>
#include <IntImpParGen.hxx>
#include <IntCurve_IntConicConic_1.hxx>
#include <ElCLib.hxx>
#include <Standard_ConstructionError.hxx>
#include <IntRes2d_IntersectionPoint.hxx>
#include <IntRes2d_IntersectionSegment.hxx>
#include <gp.hxx>
#include <gp_Circ2d.hxx>
#include <gp_Elips2d.hxx>
#include <gp_Hypr2d.hxx>
#include <gp_Lin2d.hxx>
#include <gp_Parab2d.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Vec2d.hxx>
#include <Precision.hxx>
#include <IntCurve_IConicTool.hxx>
#include <IntCurve_IntConicConic.hxx>
#include <IntCurve_IntConicConic_Tool.hxx>
#include <IntCurve_PConic.hxx>
#include <IntImpParGen.hxx>
#include <IntRes2d_Domain.hxx>
#include <IntRes2d_IntersectionPoint.hxx>
#include <IntRes2d_IntersectionSegment.hxx>
#include <IntRes2d_TypeTrans.hxx>
#include <Precision.hxx>
#include <Standard_ConstructionError.hxx>
#include <Extrema_ExtElC2d.hxx>
Standard_Boolean Affichage=Standard_False;
Standard_Boolean AffichageGraph=Standard_True;
@@ -861,7 +864,7 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
IntRes2d_Transition T1a,T1b,T2a,T2b;
IntRes2d_Position Pos1a,Pos1b,Pos2a,Pos2b;
Standard_Boolean Opposite =
Standard_Boolean isOpposite =
((Circle1.Location().SquareDistance(Circle2.Location())) > (R1*R1+R2*R2)) ?
Standard_True : Standard_False;
@@ -870,8 +873,8 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
for(i=0; i<NbSolTotal; i++)
{
Standard_Real C2inf=(Opposite)? SolutionC2[i].Bsup : SolutionC2[i].Binf;
Standard_Real C2sup=(Opposite)? SolutionC2[i].Binf : SolutionC2[i].Bsup;
Standard_Real C2inf = isOpposite ? SolutionC2[i].Bsup : SolutionC2[i].Binf;
Standard_Real C2sup = isOpposite ? SolutionC2[i].Binf : SolutionC2[i].Bsup;
Standard_Real C1tinf = SolutionC1[i].Binf, C2tinf = C2inf;
Standard_Real C1inf=NormalizeOnCircleDomain(C1tinf,DomainCirc1);
C2inf=NormalizeOnCircleDomain(C2tinf,DomainCirc2);
@@ -974,7 +977,7 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
//--------------------------------------------------
if(Opposite)
if (isOpposite)
{
if(nbsol!=3)
{
@@ -991,9 +994,7 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
}
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,PIpPI-C2sup,T1b,T2b,Standard_False);
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,
(Opposite==Standard_True)? Standard_False : Standard_True,
Standard_False);
IntRes2d_IntersectionSegment NewSeg (NewPoint1,NewPoint2, !isOpposite, Standard_False);
Append(NewSeg);
}
else
@@ -1029,7 +1030,7 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
//--------------------------------------------------
if(Opposite)
if (isOpposite)
{
if(C2inf<C2sup)
C2inf+=PIpPI;
@@ -1041,7 +1042,7 @@ void IntCurve_IntConicConic::Perform(const gp_Circ2d& Circle1
}
IntRes2d_IntersectionPoint NewPoint2(P1b,C1sup,C2sup,T1b,T2b,Standard_False);
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,Opposite,Standard_False);
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2,isOpposite,Standard_False);
Append(NewSeg);
}
else
@@ -1231,8 +1232,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
IntRes2d_IntersectionPoint PtSeg1,PtSeg2;
Standard_Real aHalfSinL1L2;
Standard_Real Tol = TolR;
if(TolR< 1e-10) Tol = 1e-10;
if(Tol < Precision::PConfusion())
Tol = Precision::PConfusion();
LineLineGeometricIntersection(L1,L2,Tol,U1,U2,aHalfSinL1L2,nbsol);
@@ -1240,7 +1241,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
gp_Vec2d Tan2=L2.Direction();
Standard_Real aCosT1T2 = Tan1.Dot(Tan2);
Standard_Boolean Opposite=(aCosT1T2 < 0.0)? Standard_True : Standard_False;
Standard_Boolean isOpposite = (aCosT1T2 < 0.0) ? Standard_True : Standard_False;
done=Standard_True;
@@ -1352,8 +1353,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
Standard_Real U2inf,U2sup;
Standard_Real Res2inf,Res2sup;
if(Opposite) { U2inf = U1pU2 -Res1sup; U2sup= U1pU2-Res1inf; }
else { U2inf = Res1inf-U1mU2; U2sup= Res1sup-U1mU2; }
if (isOpposite) { U2inf = U1pU2 -Res1sup; U2sup= U1pU2-Res1inf; }
else { U2inf = Res1inf-U1mU2; U2sup= Res1sup-U1mU2; }
DomainIntersection(Domain2,U2inf,U2sup,Res2inf,Res2sup,Pos2a,Pos2b);
@@ -1370,7 +1371,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
//-- Attention, les bornes Res1inf(sup) bougent donc il faut
//-- eventuellement recalculer les attributs
if(Opposite) { Res1inf=U1pU2-Res2sup; Res1sup=U1pU2-Res2inf;
if(isOpposite) { Res1inf=U1pU2-Res2sup; Res1sup=U1pU2-Res2inf;
Standard_Real Tampon=Res2inf; Res2inf=Res2sup; Res2sup=Tampon;
IntRes2d_Position Pos=Pos2a; Pos2a=Pos2b; Pos2b=Pos;
}
@@ -1390,8 +1391,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2a.SetValue(Standard_False,Pos2a,IntRes2d_Out);
}
else {
T1a.SetValue(Standard_False,Pos1a,IntRes2d_Unknown,Opposite);
T2a.SetValue(Standard_False,Pos2a,IntRes2d_Unknown,Opposite);
T1a.SetValue (Standard_False, Pos1a, IntRes2d_Unknown, isOpposite);
T2a.SetValue (Standard_False, Pos2a, IntRes2d_Unknown, isOpposite);
}
@@ -1449,7 +1450,6 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
if((!ResultIsAPoint) && (Pos1a!=IntRes2d_Middle || Pos2a!=IntRes2d_Middle)) {
IntRes2d_Transition T1b,T2b;
if(ProdVectTan>=TOLERANCE_ANGULAIRE) { //&&&&&&&&&&&&&&
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Out);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_In);
@@ -1459,13 +1459,13 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Out);
}
else {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Unknown,Opposite);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Unknown,Opposite);
T1b.SetValue (Standard_False, Pos1b, IntRes2d_Unknown, isOpposite);
T2b.SetValue (Standard_False, Pos2b, IntRes2d_Unknown, isOpposite);
}
gp_Pnt2d Ptdebut;
if(Pos1a==IntRes2d_Middle) {
Standard_Real t3;
if(Opposite) {
if (isOpposite) {
t3 = (Pos2a == IntRes2d_Head)? Res2sup : Res2inf;
}
else {
@@ -1493,8 +1493,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
Res2sup=ElCLib::Parameter(L2,Ptfin);
}
PtSeg2.SetValues(Ptfin,Res1sup,Res2sup,T1b,T2b,Standard_False);
IntRes2d_IntersectionSegment Segment(PtSeg1,PtSeg2
,Opposite,Standard_False);
IntRes2d_IntersectionSegment Segment (PtSeg1, PtSeg2, isOpposite, Standard_False);
Append(Segment);
}
else { //-- Extremite(L1 ou L2) ------> Point Middle(L1 et L2)
@@ -1510,14 +1509,14 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Out);
}
else {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Unknown,Opposite);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Unknown,Opposite);
T1b.SetValue (Standard_False, Pos1b, IntRes2d_Unknown, isOpposite);
T2b.SetValue (Standard_False, Pos2b, IntRes2d_Unknown, isOpposite);
}
PtSeg2.SetValues(ElCLib::Value(U2,L2),U1,U2,T1b,T2b,Standard_False);
if((Abs(Res1inf-U1) >LongMiniSeg) && (Abs(Res2inf-U2) >LongMiniSeg)) {
IntRes2d_IntersectionSegment Segment(PtSeg1,PtSeg2,Opposite,Standard_False);
IntRes2d_IntersectionSegment Segment (PtSeg1, PtSeg2, isOpposite, Standard_False);
Append(Segment);
}
else {
@@ -1536,7 +1535,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
gp_Pnt2d Ptfin;
if(Pos1b==IntRes2d_Middle) {
Standard_Real t2;
if(Opposite) {
if (isOpposite) {
t2 = (Pos2b == IntRes2d_Head)? Res2sup : Res2inf;
}
else {
@@ -1566,8 +1565,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Out);
}
else {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Unknown,Opposite);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Unknown,Opposite);
T1b.SetValue (Standard_False, Pos1b, IntRes2d_Unknown, isOpposite);
T2b.SetValue (Standard_False, Pos2b, IntRes2d_Unknown, isOpposite);
}
PtSeg2.SetValues(Ptfin,Res1sup,Res2sup,T1b,T2b,Standard_False);
Append(PtSeg2);
@@ -1585,8 +1584,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Out);
}
else {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Unknown,Opposite);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Unknown,Opposite);
T1b.SetValue (Standard_False, Pos1b, IntRes2d_Unknown, isOpposite);
T2b.SetValue (Standard_False, Pos2b, IntRes2d_Unknown, isOpposite);
}
PtSeg1.SetValues(ElCLib::Value(U2,L2),U1,U2,T1b,T2b,Standard_False);
Append(PtSeg1);
@@ -1596,7 +1595,6 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
PtSeg1.SetValues(ElCLib::Value(U2,L2),U1,U2,T1a,T2a,Standard_False);
if((Pos1b!=IntRes2d_Middle || Pos2b!=IntRes2d_Middle)) {
IntRes2d_Transition T1b,T2b;
if(ProdVectTan>=TOLERANCE_ANGULAIRE) {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Out);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_In);
@@ -1606,8 +1604,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Out);
}
else {
T1b.SetValue(Standard_False,Pos1b,IntRes2d_Unknown,Opposite);
T2b.SetValue(Standard_False,Pos2b,IntRes2d_Unknown,Opposite);
T1b.SetValue (Standard_False, Pos1b, IntRes2d_Unknown, isOpposite);
T2b.SetValue (Standard_False, Pos2b, IntRes2d_Unknown, isOpposite);
}
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//~~ Ajustement des parametres et du point renvoye
@@ -1627,8 +1625,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
||(Abs(U2-Res2sup)>LongMiniSeg)) {
//-- Modif du 1er Octobre 92 (Pour Composites)
IntRes2d_IntersectionSegment Segment(PtSeg1,PtSeg2
,Opposite,Standard_False);
IntRes2d_IntersectionSegment Segment (PtSeg1, PtSeg2, isOpposite, Standard_False);
Append(Segment);
}
else {
@@ -1697,7 +1694,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
//== 1 : L1 borne
if(Domain1.HasFirstPoint()) ResHasFirstPoint=1;
if(Domain1.HasLastPoint()) ResHasLastPoint=1;
if(Opposite) {
if (isOpposite) {
if(Domain2.HasLastPoint()) ResHasFirstPoint+=2;
if(Domain2.HasFirstPoint()) ResHasLastPoint+=2;
}
@@ -1707,17 +1704,16 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
}
if(ResHasFirstPoint==0 && ResHasLastPoint==0) {
//~~~~ Creation d un segment infini avec Opposite
Append(IntRes2d_IntersectionSegment(Opposite));
Append (IntRes2d_IntersectionSegment (isOpposite));
}
else { //-- On obtient au pire une demi-droite
switch(ResHasFirstPoint) {
case 1:
ParamStart=Domain1.FirstParameter();
ParamStart2=(Opposite)? (Org2SurL1-ParamStart)
:(ParamStart-Org2SurL1);
ParamStart2 = isOpposite ? (Org2SurL1 - ParamStart) : (ParamStart - Org2SurL1);
break;
case 2:
if(Opposite) {
if (isOpposite) {
ParamStart2=Domain2.LastParameter();
ParamStart=Org2SurL1 - ParamStart2;
}
@@ -1727,7 +1723,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
}
break;
case 3:
if(Opposite) {
if (isOpposite) {
ParamStart2=Domain2.LastParameter();
ParamStart=Org2SurL1 - ParamStart2;
if(ParamStart < Domain1.FirstParameter()) {
@@ -1751,11 +1747,10 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
switch(ResHasLastPoint) {
case 1:
ParamEnd=Domain1.LastParameter();
ParamEnd2=(Opposite)? (Org2SurL1-ParamEnd)
:(ParamEnd-Org2SurL1);
ParamEnd2 = isOpposite ? (Org2SurL1 - ParamEnd) : (ParamEnd - Org2SurL1);
break;
case 2:
if(Opposite) {
if (isOpposite) {
ParamEnd2=Domain2.FirstParameter();
ParamEnd=Org2SurL1 - ParamEnd2;
}
@@ -1765,7 +1760,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
}
break;
case 3:
if(Opposite) {
if (isOpposite) {
ParamEnd2=Domain2.FirstParameter();
ParamEnd=Org2SurL1 - ParamEnd2;
if(ParamEnd > Domain1.LastParameter()) {
@@ -1797,8 +1792,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
IntRes2d_Position Pos1,Pos2;
Pos1=FindPositionLL(ParamStart,Domain1);
Pos2=FindPositionLL(ParamStart2,Domain2);
Tinf.SetValue(Standard_True,Pos1,IntRes2d_Unknown,Opposite);
Tsup.SetValue(Standard_True,Pos2,IntRes2d_Unknown,Opposite);
Tinf.SetValue (Standard_True, Pos1, IntRes2d_Unknown, isOpposite);
Tsup.SetValue (Standard_True, Pos2, IntRes2d_Unknown, isOpposite);
IntRes2d_IntersectionPoint P1(ElCLib::Value(ParamStart,L1)
,ParamStart,ParamStart2
,Tinf,Tsup,Standard_False);
@@ -1806,13 +1801,13 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
//~~~ Le segment est assez long
Pos1=FindPositionLL(ParamEnd,Domain1);
Pos2=FindPositionLL(ParamEnd2,Domain2);
Tinf.SetValue(Standard_True,Pos1,IntRes2d_Unknown,Opposite);
Tsup.SetValue(Standard_True,Pos2,IntRes2d_Unknown,Opposite);
Tinf.SetValue (Standard_True, Pos1, IntRes2d_Unknown, isOpposite);
Tsup.SetValue (Standard_True, Pos2, IntRes2d_Unknown, isOpposite);
IntRes2d_IntersectionPoint P2(ElCLib::Value(ParamEnd,L1)
,ParamEnd,ParamEnd2
,Tinf,Tsup,Standard_False);
IntRes2d_IntersectionSegment Seg(P1,P2,Opposite,Standard_False);
IntRes2d_IntersectionSegment Seg (P1, P2, isOpposite, Standard_False);
Append(Seg);
}
else { //~~~~ le segment est de longueur inferieure a Tol
@@ -1824,26 +1819,26 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& L1
//~~~ Creation de la demi droite |----------->
IntRes2d_Position Pos1=FindPositionLL(ParamStart,Domain1);
IntRes2d_Position Pos2=FindPositionLL(ParamStart2,Domain2);
Tinf.SetValue(Standard_True,Pos1,IntRes2d_Unknown,Opposite);
Tsup.SetValue(Standard_True,Pos2,IntRes2d_Unknown,Opposite);
Tinf.SetValue (Standard_True, Pos1, IntRes2d_Unknown, isOpposite);
Tsup.SetValue (Standard_True, Pos2, IntRes2d_Unknown, isOpposite);
IntRes2d_IntersectionPoint P(ElCLib::Value(ParamStart,L1)
,ParamStart,ParamStart2
,Tinf,Tsup,Standard_False);
IntRes2d_IntersectionSegment Seg(P,Standard_True,Opposite,Standard_False);
IntRes2d_IntersectionSegment Seg (P, Standard_True, isOpposite, Standard_False);
Append(Seg);
}
}
else {
IntRes2d_Position Pos1=FindPositionLL(ParamEnd,Domain1);
IntRes2d_Position Pos2=FindPositionLL(ParamEnd2,Domain2);
Tinf.SetValue(Standard_True,Pos1,IntRes2d_Unknown,Opposite);
Tsup.SetValue(Standard_True,Pos2,IntRes2d_Unknown,Opposite);
Tinf.SetValue (Standard_True, Pos1, IntRes2d_Unknown, isOpposite);
Tsup.SetValue (Standard_True, Pos2, IntRes2d_Unknown, isOpposite);
IntRes2d_IntersectionPoint P2(ElCLib::Value(ParamEnd,L1)
,ParamEnd,ParamEnd2
,Tinf,Tsup,Standard_False);
IntRes2d_IntersectionSegment Seg(P2,Standard_False,Opposite,Standard_False);
IntRes2d_IntersectionSegment Seg (P2, Standard_False, isOpposite, Standard_False);
Append(Seg);
//~~~ Creation de la demi droite <-----------|
}
@@ -1862,7 +1857,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& Line
,const Standard_Real TolConf,const Standard_Real Tol) {
//-- if(! CIRC_Domain.IsClosed()) {
//-- Standard_ConstructionError::Raise("Domaine incorrect");
//-- throw Standard_ConstructionError("Domaine incorrect");
//-- }
Standard_Boolean TheReversedParameters=ReversedParameters();
@@ -2052,7 +2047,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& Line
ElCLib::CircleD1(SolutionCircle[0].Binf,CircleAxis,R,P1a,Tan1);
ElCLib::LineD1(SolutionLine[0].Binf,LineAxis,P2a,Tan2);
Standard_Boolean Opposite=((Tan1.Dot(Tan2))<0.0)? Standard_True : Standard_False;
Standard_Boolean isOpposite = (Tan1.Dot (Tan2) < 0.0);
for(i=0; i<NbSolTotal; i++ ) {
@@ -2098,8 +2093,8 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& Line
//-- Fin 7 aout 97
Standard_Real Linf=(Opposite)? SolutionLine[i].Bsup : SolutionLine[i].Binf;
Standard_Real Lsup=(Opposite)? SolutionLine[i].Binf : SolutionLine[i].Bsup;
Standard_Real Linf = isOpposite ? SolutionLine[i].Bsup : SolutionLine[i].Binf;
Standard_Real Lsup = isOpposite ? SolutionLine[i].Binf : SolutionLine[i].Bsup;
//---------------------------------------------------------------
//-- Si les parametres sur le cercle sont en premier
@@ -2190,8 +2185,7 @@ void IntCurve_IntConicConic::Perform(const gp_Lin2d& Line
|| (T1a.TransitionType() != T2a.TransitionType())) {
//-- Verifier egalement les transitions
IntRes2d_IntersectionSegment NewSeg(NewPoint1,NewPoint2
,Opposite,ReversedParameters());
IntRes2d_IntersectionSegment NewSeg (NewPoint1, NewPoint2, isOpposite, ReversedParameters());
Append(NewSeg);
}
else {
@@ -2251,3 +2245,462 @@ const IntRes2d_IntersectionPoint SegmentToPoint( const IntRes2d_IntersectionPoin
}
return(IntRes2d_IntersectionPoint(Pa.Value(),u1,u2,t1,t2,Standard_False));
}
//=======================================================================
//function : LineEllipseGeometricIntersection
//purpose :
//=======================================================================
void LineEllipseGeometricIntersection(const gp_Lin2d& Line,
const gp_Elips2d& Ellipse,
const Standard_Real ,
const Standard_Real TolTang,
PeriodicInterval& EInt1,
PeriodicInterval& EInt2,
Standard_Integer& nbsol)
{
const gp_Ax22d& anElAxis = Ellipse.Axis();
gp_Trsf2d aTr;
aTr.SetTransformation(anElAxis.XAxis());
gp_Elips2d aTEllipse = Ellipse.Transformed(aTr);
gp_Lin2d aTLine = Line.Transformed(aTr);
//
Standard_Real a = aTEllipse.MajorRadius();
Standard_Real b = aTEllipse.MinorRadius();
Standard_Real a2 = a * a;
Standard_Real b2 = b * b;
//
Standard_Real eps0 = 1.e-12;
if (b / a < 1.e-5)
{
eps0 = 1.e-6;
}
Standard_Real anA, aB, aC;
aTLine.Coefficients(anA, aB, aC);
//
Standard_Real x1 = 0., y1 = 0., x2 = 0., y2 = 0.;
if (Abs(aB) > eps0)
{
Standard_Real m = -anA / aB;
Standard_Real m2 = m * m;
Standard_Real c = -aC / aB;
Standard_Real c2 = c * c;
Standard_Real D = a2 * m2 + b2 - c2;
if (D < 0.)
{
Extrema_ExtElC2d anExt(aTLine, aTEllipse);
Standard_Integer i, imin = 0;
Standard_Real dmin = RealLast();
for (i = 1; i <= anExt.NbExt(); ++i)
{
if (anExt.SquareDistance(i) < dmin)
{
dmin = anExt.SquareDistance(i);
imin = i;
}
}
if (imin > 0 && dmin <= TolTang * TolTang)
{
nbsol = 1;
Extrema_POnCurv2d aP1, aP2;
anExt.Points(imin, aP1, aP2);
Standard_Real pe1 = aP2.Parameter();
EInt1.SetValues(pe1, pe1);
}
else
{
nbsol = 0;
}
return;
}
D = Sqrt(D);
Standard_Real n = a2 * m2 + b2;
Standard_Real k = a * b * D / n;
Standard_Real l = -a2 * m * c / n;
x1 = l + k;
y1 = m * x1 + c;
x2 = l - k;
y2 = m * x2 + c;
nbsol = 2;
}
else
{
x1 = -aC / anA;
if (Abs(x1) > a + TolTang)
{
nbsol = 0;
return;
}
else if (Abs(x1) >= a - Epsilon(a))
{
nbsol = 1;
y1 = 0.;
}
else
{
y1 = b * Sqrt(1. - x1 * x1 / a2);
x2 = x1;
y2 = -y1;
nbsol = 2;
}
}
gp_Pnt2d aP1(x1, y1);
gp_Pnt2d aP2(x2, y2);
Standard_Real pe1 = 0., pe2 = 0.;
pe1 = ElCLib::Parameter(aTEllipse, aP1);
EInt1.SetValues(pe1, pe1);
if (nbsol > 1)
{
pe2 = ElCLib::Parameter(aTEllipse, aP2);
EInt2.SetValues(pe2, pe2);
}
}
//=======================================================================
//function : ProjectOnLAndIntersectWithLDomain
//purpose :
//=======================================================================
void ProjectOnLAndIntersectWithLDomain(const gp_Elips2d& Ellipse
, const gp_Lin2d& Line
, PeriodicInterval& EDomainAndRes
, Interval& LDomain
, PeriodicInterval* EllipseSolution
, Interval* LineSolution
, Standard_Integer &NbSolTotal
, const IntRes2d_Domain& RefLineDomain
, const IntRes2d_Domain&)
{
if (EDomainAndRes.IsNull()) return;
//-------------------------------------------------------------------------
//-- On cherche l intervalle correspondant sur C2
//-- Puis on intersecte l intervalle avec le domaine de C2
//-- Enfin, on cherche l intervalle correspondant sur C1
//--
Standard_Real Linf = ElCLib::Parameter(Line
, ElCLib::Value(EDomainAndRes.Binf, Ellipse));
Standard_Real Lsup = ElCLib::Parameter(Line
, ElCLib::Value(EDomainAndRes.Bsup, Ellipse));
Interval LInter(Linf, Lsup); //-- Necessairement Borne
Interval LInterAndDomain = LDomain.IntersectionWithBounded(LInter);
if (!LInterAndDomain.IsNull) {
Standard_Real DomLinf = (RefLineDomain.HasFirstPoint()) ? RefLineDomain.FirstParameter() : -Precision::Infinite();
Standard_Real DomLsup = (RefLineDomain.HasLastPoint()) ? RefLineDomain.LastParameter() : Precision::Infinite();
Linf = LInterAndDomain.Binf;
Lsup = LInterAndDomain.Bsup;
if (Linf<DomLinf) {
Linf = DomLinf;
}
if (Lsup<DomLinf) {
Lsup = DomLinf;
}
if (Linf>DomLsup) {
Linf = DomLsup;
}
if (Lsup>DomLsup) {
Lsup = DomLsup;
}
LInterAndDomain.Binf = Linf;
LInterAndDomain.Bsup = Lsup;
Standard_Real Einf = EDomainAndRes.Binf;
Standard_Real Esup = EDomainAndRes.Bsup;
if (Einf >= Esup) { Einf = EDomainAndRes.Binf; Esup = EDomainAndRes.Bsup; }
EllipseSolution[NbSolTotal] = PeriodicInterval(Einf, Esup);
if (EllipseSolution[NbSolTotal].Length() > M_PI)
EllipseSolution[NbSolTotal].Complement();
LineSolution[NbSolTotal] = LInterAndDomain;
NbSolTotal++;
}
}
//=======================================================================
//function : Perform
//purpose : Line - Elipse
//=======================================================================
void IntCurve_IntConicConic::Perform(const gp_Lin2d& L, const
IntRes2d_Domain& DL, const gp_Elips2d& E,
const IntRes2d_Domain& DE, const Standard_Real TolConf,
const Standard_Real Tol)
{
Standard_Boolean TheReversedParameters = ReversedParameters();
this->ResetFields();
this->SetReversedParameters(TheReversedParameters);
Standard_Integer nbsol = 0;
PeriodicInterval EInt1, EInt2;
LineEllipseGeometricIntersection(L, E, TolConf, Tol, EInt1, EInt2, nbsol);
done = Standard_True;
if (nbsol == 0)
{
return;
}
//
if (nbsol == 2 && EInt2.Bsup == EInt1.Binf + PIpPI) {
Standard_Real FirstBound = DE.FirstParameter();
Standard_Real LastBound = DE.LastParameter();
Standard_Real FirstTol = DE.FirstTolerance();
Standard_Real LastTol = DE.LastTolerance();
if (EInt1.Binf == 0 && FirstBound - FirstTol > EInt1.Bsup)
{
nbsol = 1;
EInt1.SetValues(EInt2.Binf, EInt2.Bsup);
}
else if (EInt2.Bsup == PIpPI && LastBound + LastTol < EInt2.Binf)
{
nbsol = 1;
}
}
//
PeriodicInterval EDomain(DE);
Standard_Real deltat = EDomain.Bsup - EDomain.Binf;
while (EDomain.Binf >= PIpPI) EDomain.Binf -= PIpPI;
while (EDomain.Binf < 0.0) EDomain.Binf += PIpPI;
EDomain.Bsup = EDomain.Binf + deltat;
//
Standard_Real BinfModif = EDomain.Binf;
Standard_Real BsupModif = EDomain.Bsup;
BinfModif -= DE.FirstTolerance() / E.MinorRadius();
BsupModif += DE.LastTolerance() / E.MinorRadius();
deltat = BsupModif - BinfModif;
if (deltat <= PIpPI) {
EDomain.Binf = BinfModif;
EDomain.Bsup = BsupModif;
}
else {
Standard_Real t = PIpPI - deltat;
t *= 0.5;
EDomain.Binf = BinfModif + t;
EDomain.Bsup = BsupModif - t;
}
deltat = EDomain.Bsup - EDomain.Binf;
while (EDomain.Binf >= PIpPI) EDomain.Binf -= PIpPI;
while (EDomain.Binf < 0.0) EDomain.Binf += PIpPI;
EDomain.Bsup = EDomain.Binf + deltat;
//
Interval LDomain(DL);
Standard_Integer NbSolTotal = 0;
PeriodicInterval SolutionEllipse[4];
Interval SolutionLine[4];
//----------------------------------------------------------------------
//----------- Treatment of first geometric interval EInt1 ----
//----------------------------------------------------------------------
PeriodicInterval EDomainAndRes = EDomain.FirstIntersection(EInt1);
ProjectOnLAndIntersectWithLDomain(E, L, EDomainAndRes, LDomain, SolutionEllipse
, SolutionLine, NbSolTotal, DL, DE);
EDomainAndRes = EDomain.SecondIntersection(EInt1);
ProjectOnLAndIntersectWithLDomain(E, L, EDomainAndRes, LDomain, SolutionEllipse
, SolutionLine, NbSolTotal, DL, DE);
//----------------------------------------------------------------------
//----------- Treatment of second geometric interval EInt2 ----
//----------------------------------------------------------------------
if (nbsol == 2)
{
PeriodicInterval EDomainAndRes = EDomain.FirstIntersection(EInt2);
ProjectOnLAndIntersectWithLDomain(E, L, EDomainAndRes, LDomain, SolutionEllipse
, SolutionLine, NbSolTotal, DL, DE);
EDomainAndRes = EDomain.SecondIntersection(EInt2);
ProjectOnLAndIntersectWithLDomain(E, L, EDomainAndRes, LDomain, SolutionEllipse
, SolutionLine, NbSolTotal, DL, DE);
}
//----------------------------------------------------------------------
//-- Calculation of Transitions at Positions.
//----------------------------------------------------------------------
Standard_Real R = E.MinorRadius();
Standard_Integer i;
Standard_Real MaxTol = TolConf;
if (MaxTol<Tol) MaxTol = Tol;
if (MaxTol<1.0e-10) MaxTol = 1.0e-10;
for (i = 0; i<NbSolTotal; i++) {
if ((R * SolutionEllipse[i].Length())<MaxTol
&& (SolutionLine[i].Length())<MaxTol) {
Standard_Real t = (SolutionEllipse[i].Binf + SolutionEllipse[i].Bsup)*0.5;
SolutionEllipse[i].Binf = SolutionEllipse[i].Bsup = t;
t = (SolutionLine[i].Binf + SolutionLine[i].Bsup)*0.5;
SolutionLine[i].Binf = SolutionLine[i].Bsup = t;
}
}
//
if (NbSolTotal) {
gp_Ax22d EllipseAxis = E.Axis();
gp_Ax2d LineAxis = L.Position();
gp_Pnt2d P1a, P2a, P1b, P2b;
gp_Vec2d Tan1, Tan2, Norm1;
gp_Vec2d Norm2(0.0, 0.0);
IntRes2d_Transition T1a, T2a, T1b, T2b;
IntRes2d_Position Pos1a, Pos1b, Pos2a, Pos2b;
ElCLib::EllipseD1(SolutionEllipse[0].Binf, EllipseAxis, E.MajorRadius(), E.MinorRadius(), P1a, Tan1);
ElCLib::LineD1(SolutionLine[0].Binf, LineAxis, P2a, Tan2);
Standard_Boolean isOpposite = (Tan1.Dot(Tan2) < 0.0);
for (i = 0; i<NbSolTotal; i++)
{
Standard_Real p1 = SolutionEllipse[i].Binf;
Standard_Real p2 = SolutionEllipse[i].Bsup;
Standard_Real q1 = DE.FirstParameter();
Standard_Real q2 = DE.LastParameter();
if (p1>q2) {
do {
p1 -= PIpPI;
p2 -= PIpPI;
} while ((p1>q2));
}
else if (p2<q1) {
do {
p1 += PIpPI;
p2 += PIpPI;
} while ((p2<q1));
}
if (p1<q1 && p2>q1) {
p1 = q1;
}
if (p1<q2 && p2>q2) {
p2 = q2;
}
SolutionEllipse[i].Binf = p1;
SolutionEllipse[i].Bsup = p2;
Standard_Real Linf = isOpposite ? SolutionLine[i].Bsup : SolutionLine[i].Binf;
Standard_Real Lsup = isOpposite ? SolutionLine[i].Binf : SolutionLine[i].Bsup;
if (Linf > Lsup) {
Standard_Real T = SolutionEllipse[i].Binf;
SolutionEllipse[i].Binf = SolutionEllipse[i].Bsup;
SolutionEllipse[i].Bsup = T;
T = Linf; Linf = Lsup; Lsup = T;
}
ElCLib::EllipseD2(SolutionEllipse[i].Binf, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1a, Tan1, Norm1);
ElCLib::LineD1(Linf, LineAxis, P2a, Tan2);
IntImpParGen::DeterminePosition(Pos1a, DE, P1a, SolutionEllipse[i].Binf);
IntImpParGen::DeterminePosition(Pos2a, DL, P2a, Linf);
Determine_Transition_LC(Pos1a, Tan1, Norm1, T1a, Pos2a, Tan2, Norm2, T2a, Tol);
Standard_Real Einf;
if (Pos1a == IntRes2d_End) {
Einf = DE.LastParameter();
P1a = DE.LastPoint();
Linf = ElCLib::Parameter(L, P1a);
ElCLib::EllipseD2(Einf, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1a, Tan1, Norm1);
ElCLib::LineD1(Linf, LineAxis, P2a, Tan2);
IntImpParGen::DeterminePosition(Pos1a, DE, P1a, Einf);
IntImpParGen::DeterminePosition(Pos2a, DL, P2a, Linf);
Determine_Transition_LC(Pos1a, Tan1, Norm1, T1a, Pos2a, Tan2, Norm2, T2a, Tol);
}
else if (Pos1a == IntRes2d_Head) {
Einf = DE.FirstParameter();
P1a = DE.FirstPoint();
Linf = ElCLib::Parameter(L, P1a);
ElCLib::EllipseD2(Einf, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1a, Tan1, Norm1);
ElCLib::LineD1(Linf, LineAxis, P2a, Tan2);
IntImpParGen::DeterminePosition(Pos1a, DE, P1a, Einf);
IntImpParGen::DeterminePosition(Pos2a, DL, P2a, Linf);
Determine_Transition_LC(Pos1a, Tan1, Norm1, T1a, Pos2a, Tan2, Norm2, T2a, Tol);
}
else {
Einf = NormalizeOnCircleDomain(SolutionEllipse[i].Binf, DE);
}
IntRes2d_IntersectionPoint NewPoint1(P1a, Linf, Einf, T2a, T1a, ReversedParameters());
if ((SolutionLine[i].Length() + SolutionEllipse[i].Length()) >0.0) {
ElCLib::EllipseD2(SolutionEllipse[i].Binf, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1b, Tan1, Norm1);
ElCLib::LineD1(Lsup, LineAxis, P2b, Tan2);
IntImpParGen::DeterminePosition(Pos1b, DE, P1b, SolutionEllipse[i].Bsup);
IntImpParGen::DeterminePosition(Pos2b, DL, P2b, Lsup);
Determine_Transition_LC(Pos1b, Tan1, Norm1, T1b, Pos2b, Tan2, Norm2, T2b, Tol);
Standard_Real Esup;
if (Pos1b == IntRes2d_End) {
Esup = DL.LastParameter();
P1b = DE.LastPoint();
Lsup = ElCLib::Parameter(L, P1b);
ElCLib::EllipseD2(Esup, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1b, Tan1, Norm1);
ElCLib::LineD1(Lsup, LineAxis, P2b, Tan2);
IntImpParGen::DeterminePosition(Pos1b, DE, P1b, Esup);
IntImpParGen::DeterminePosition(Pos2b, DL, P2b, Lsup);
Determine_Transition_LC(Pos1b, Tan1, Norm1, T1b, Pos2b, Tan2, Norm2, T2b, Tol);
}
else if (Pos1b == IntRes2d_Head) {
Esup = DE.FirstParameter();
P1b = DE.FirstPoint();
Lsup = ElCLib::Parameter(L, P1b);
ElCLib::EllipseD2(Esup, EllipseAxis, E.MajorRadius(),
E.MinorRadius(), P1b, Tan1, Norm1);
ElCLib::LineD1(Lsup, LineAxis, P2b, Tan2);
IntImpParGen::DeterminePosition(Pos1b, DE, P1b, Esup);
IntImpParGen::DeterminePosition(Pos2b, DL, P2b, Lsup);
Determine_Transition_LC(Pos1b, Tan1, Norm1, T1b, Pos2b, Tan2, Norm2, T2b, Tol);
}
else {
Esup = NormalizeOnCircleDomain(SolutionEllipse[i].Bsup, DE);
}
IntRes2d_IntersectionPoint NewPoint2(P1b, Lsup, Esup, T2b, T1b, ReversedParameters());
if (((Abs(Esup - Einf)*R > MaxTol) && (Abs(Lsup - Linf) > MaxTol))
|| (T1a.TransitionType() != T2a.TransitionType())) {
IntRes2d_IntersectionSegment NewSeg(NewPoint1, NewPoint2, isOpposite, ReversedParameters());
Append(NewSeg);
}
else {
if (Pos1a != IntRes2d_Middle || Pos2a != IntRes2d_Middle) {
Insert(NewPoint1);
}
if (Pos1b != IntRes2d_Middle || Pos2b != IntRes2d_Middle) {
Insert(NewPoint2);
}
}
}
else
{
Insert(NewPoint1);
}
}
}
}