1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00

0024608: Development of methods of global optimization of multivariable function

math_GlobOptMin - new global optimization minimization algorithm
Extrema_GlobOptFuncCC, Extrema_ExtCC, Extrema_ExtCC2d - implementation of GlobOptMin algorithm to extrema curve / curve
Extrema_CurveCache - deleted as obsolete code
ChFi3d_Builder.cxx  - fixed processing of extrema
math_NewtonMinimum.cxx - fixed step to avoid incorrect behavior
Test cases modification to meet new behavior.
This commit is contained in:
aml
2014-04-15 10:36:52 +04:00
committed by apn
parent 97385d6142
commit 4bbaf12b67
32 changed files with 1319 additions and 1064 deletions

View File

@@ -0,0 +1,101 @@
// Created on: 2014-01-20
// Created by: Alexaner Malyshev
// Copyright (c) 2014-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _math_GlobOptMin_HeaderFile
#define _math_GlobOptMin_HeaderFile
#include <math_MultipleVarFunction.hxx>
#include <NCollection_Sequence.hxx>
#include <Standard_Type.hxx>
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
class math_GlobOptMin
{
public:
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
const math_Vector& theA,
const math_Vector& theB,
Standard_Real theC = 9);
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
const math_Vector& theA,
const math_Vector& theB,
Standard_Real theC = 9);
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
const math_Vector& theLocalB);
Standard_EXPORT ~math_GlobOptMin();
Standard_EXPORT void Perform();
//! Get best functional value.
Standard_EXPORT Standard_Real GetF();
//! Return count of global extremas. NbExtrema <= MAX_SOLUTIONS.
Standard_EXPORT Standard_Integer NbExtrema();
//! Return solution i, 1 <= i <= NbExtrema.
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
private:
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
void computeGlobalExtremum(Standard_Integer theIndex);
//! Check that myA <= pnt <= myB
Standard_Boolean isInside(const math_Vector& thePnt);
Standard_Boolean isStored(const math_Vector &thePnt);
Standard_Boolean isDone();
// Input.
math_MultipleVarFunction* myFunc;
Standard_Integer myN;
math_Vector myA; // Left border on current C2 interval.
math_Vector myB; // Right border on current C2 interval.
math_Vector myGlobA; // Global left border.
math_Vector myGlobB; // Global right border.
// Output.
Standard_Boolean myDone;
NCollection_Sequence<Standard_Real> myY;// Current solutions.
Standard_Integer mySolCount; // Count of solutions.
// Algorithm data.
Standard_Real myZ;
Standard_Real myC; //Lipschitz constant
Standard_Real myE1; // Border coeff.
Standard_Real myE2; // Minimum step size.
Standard_Real myE3; // Local extrema starting parameter.
math_Vector myX; // Current modified solution
math_Vector myTmp; // Current modified solution
math_Vector myV; // Steps array.
Standard_Real myF; // Current value of Global optimum.
};
const Handle(Standard_Type)& TYPE(math_GlobOptMin);
#endif