mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0024608: Development of methods of global optimization of multivariable function
math_GlobOptMin - new global optimization minimization algorithm Extrema_GlobOptFuncCC, Extrema_ExtCC, Extrema_ExtCC2d - implementation of GlobOptMin algorithm to extrema curve / curve Extrema_CurveCache - deleted as obsolete code ChFi3d_Builder.cxx - fixed processing of extrema math_NewtonMinimum.cxx - fixed step to avoid incorrect behavior Test cases modification to meet new behavior.
This commit is contained in:
parent
97385d6142
commit
4bbaf12b67
@ -419,7 +419,17 @@ static void CurveHermite (const TopOpeBRepDS_DataStructure& DStr,
|
||||
if (ext.NbExt()!=0){
|
||||
Extrema_POnCurv POnC, POnL;
|
||||
ext.Points(1, POnC, POnL);
|
||||
param.ChangeValue(nb) =POnC.Parameter();
|
||||
if (POnC.Value().Distance(POnL.Value()) < Precision::Confusion())
|
||||
param.ChangeValue(nb) =POnC.Parameter();
|
||||
else
|
||||
{
|
||||
if (!cproj.Value(nb).IsNull()) {
|
||||
cproj.Value(nb)->D0(cproj.Value(nb)->LastParameter(),p01);
|
||||
}
|
||||
else if (!cproj.Value(nb+1).IsNull()) {
|
||||
cproj.Value(nb+1)->D0(cproj.Value(nb+1)->FirstParameter(),p01);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!ext.IsDone()||ext.NbExt()==0) {
|
||||
|
@ -92,9 +92,8 @@ is
|
||||
-- generic classes for CURVE-CURVE extremas:
|
||||
----------------------------------------------
|
||||
private generic class FuncExtCC, SeqPOnC;
|
||||
generic class GenExtCC, CCF;
|
||||
generic class GenExtCC;
|
||||
generic class GenLocateExtCC, CCLocF;
|
||||
generic class CurveCache;
|
||||
|
||||
|
||||
----------------------------------------------
|
||||
@ -126,36 +125,24 @@ is
|
||||
-- Curve-Curve:
|
||||
-- 3d:
|
||||
class ExtCC;
|
||||
|
||||
class CCache instantiates CurveCache from Extrema
|
||||
(Curve from Adaptor3d,
|
||||
Pnt from gp,
|
||||
HArray1OfPnt from TColgp);
|
||||
|
||||
class ECC instantiates GenExtCC from Extrema
|
||||
(Curve from Adaptor3d,
|
||||
CurveTool from Extrema,
|
||||
Curve from Adaptor3d,
|
||||
CurveTool from Extrema,
|
||||
CCache from Extrema,
|
||||
HArray1OfPnt from TColgp,
|
||||
POnCurv from Extrema,
|
||||
Pnt from gp,
|
||||
Vec from gp);
|
||||
|
||||
class LocateExtCC;
|
||||
|
||||
class LCCache instantiates CurveCache from Extrema
|
||||
(Curve from Adaptor3d,
|
||||
Pnt from gp,
|
||||
HArray1OfPnt from TColgp);
|
||||
|
||||
class ELCC instantiates GenExtCC from Extrema
|
||||
(Curve from Adaptor3d,
|
||||
CurveTool from Extrema,
|
||||
Curve from Adaptor3d,
|
||||
CurveTool from Extrema,
|
||||
LCCache from Extrema,
|
||||
HArray1OfPnt from TColgp,
|
||||
POnCurv from Extrema,
|
||||
Pnt from gp,
|
||||
@ -173,17 +160,11 @@ is
|
||||
-- 2d:
|
||||
class ExtCC2d;
|
||||
|
||||
class CCache2d instantiates CurveCache from Extrema
|
||||
(Curve2d from Adaptor2d,
|
||||
Pnt2d from gp,
|
||||
HArray1OfPnt2d from TColgp);
|
||||
|
||||
class ECC2d instantiates GenExtCC from Extrema
|
||||
(Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
CCache2d from Extrema,
|
||||
HArray1OfPnt2d from TColgp,
|
||||
POnCurv2d from Extrema,
|
||||
Pnt2d from gp,
|
||||
@ -191,17 +172,12 @@ is
|
||||
|
||||
class LocateExtCC2d;
|
||||
|
||||
class LCCache2d instantiates CurveCache from Extrema
|
||||
(Curve2d from Adaptor2d,
|
||||
Pnt2d from gp,
|
||||
HArray1OfPnt2d from TColgp);
|
||||
|
||||
class ELCC2d instantiates GenExtCC from Extrema
|
||||
(Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
LCCache2d from Extrema,
|
||||
HArray1OfPnt2d from TColgp,
|
||||
POnCurv2d from Extrema,
|
||||
Pnt2d from gp,
|
||||
|
@ -1,114 +0,0 @@
|
||||
-- Created on: 2008-12-28
|
||||
-- Created by: Roman Lygin
|
||||
-- Copyright (c) 2008-2014 OPEN CASCADE SAS
|
||||
--
|
||||
-- This file is part of Open CASCADE Technology software library.
|
||||
--
|
||||
-- This library is free software; you can redistribute it and/or modify it under
|
||||
-- the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
-- by the Free Software Foundation, with special exception defined in the file
|
||||
-- OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
-- distribution for complete text of the license and disclaimer of any warranty.
|
||||
--
|
||||
-- Alternatively, this file may be used under the terms of Open CASCADE
|
||||
-- commercial license or contractual agreement.
|
||||
|
||||
-- roman.lygin@gmail.com
|
||||
|
||||
generic class CurveCache from Extrema
|
||||
(Curve as any; -- Adaptor3d_Curve or Adaptor2d_Curve2d
|
||||
Pnt as any; -- gp_Pnt or gp_Pnt2d
|
||||
ArrayOfPnt as Transient from Standard) -- TColgp_HArray1OfPnt or TColgp_HArray1OfPnt2d
|
||||
inherits Transient from Standard
|
||||
|
||||
---Purpose:
|
||||
|
||||
uses
|
||||
Array1OfReal from TColStd,
|
||||
HArray1OfReal from TColStd
|
||||
|
||||
raises NotDone from StdFail
|
||||
|
||||
is
|
||||
|
||||
Create returns mutable CurveCache from Extrema;
|
||||
|
||||
Create (theC: Curve; theUFirst, theULast: Real; theNbSamples: Integer;
|
||||
theToCalculate: Boolean)returns mutable CurveCache from Extrema;
|
||||
|
||||
Create (theC: Curve; theUFirst, theULast: Real;
|
||||
IntervalsCN: Array1OfReal from TColStd;
|
||||
StartIndex, EndIndex: Integer;
|
||||
Coeff: Real)
|
||||
returns mutable CurveCache from Extrema;
|
||||
|
||||
SetCurve (me: mutable; theC: Curve; theNbSamples: Integer;
|
||||
theToCalculate: Boolean);
|
||||
---Purpose: Sets the \a theRank-th curve (1 or 2) and its parameters.
|
||||
-- Caches sample points for further reuse in Perform().
|
||||
|
||||
SetCurve (me: mutable; theC: Curve;
|
||||
theUFirst, theULast: Real; theNbSamples: Integer; theToCalculate: Boolean);
|
||||
---Purpose:
|
||||
|
||||
SetRange (me: mutable; Uinf, Usup: Real; theToCalculate: Boolean);
|
||||
---Purpose:
|
||||
|
||||
CalculatePoints (me: mutable);
|
||||
---Purpose: Calculates points along the curve and stores
|
||||
-- them in internal array for further reuse in Perform().
|
||||
|
||||
IsValid (me) returns Boolean;
|
||||
---C++: inline
|
||||
---Purpose: Returns True if the points array has already been calculated
|
||||
-- for specified curve and range
|
||||
|
||||
Parameters (me) returns HArray1OfReal from TColStd
|
||||
raises NotDone from StdFail;
|
||||
---C++: inline
|
||||
---C++: return const &
|
||||
---Purpose: Raises StdFail_NotDone if points have not yet been calculated.
|
||||
|
||||
Points (me) returns ArrayOfPnt
|
||||
raises NotDone from StdFail;
|
||||
---C++: inline
|
||||
---C++: return const &
|
||||
---Purpose: Raises StdFail_NotDone if points have not yet been calculated.
|
||||
|
||||
CurvePtr (me) returns Address from Standard;
|
||||
---C++: inline
|
||||
---Purpose:
|
||||
|
||||
NbSamples (me) returns Integer;
|
||||
---C++: inline
|
||||
---Purpose:
|
||||
|
||||
FirstParameter (me) returns Real;
|
||||
---C++: inline
|
||||
---Purpose:
|
||||
|
||||
LastParameter (me) returns Real;
|
||||
---C++: inline
|
||||
---Purpose:
|
||||
|
||||
TrimFirstParameter (me) returns Real;
|
||||
---C++: inline
|
||||
---Purpose: For bounded curves returns FirstParameter(), for unbounded - -1e-10.
|
||||
|
||||
TrimLastParameter (me) returns Real;
|
||||
---C++: inline
|
||||
---Purpose: For bounded curves returns LastParameter(), for unbounded - 1e-10.
|
||||
|
||||
fields
|
||||
|
||||
myC : Address from Standard;
|
||||
myFirst : Real;
|
||||
myLast : Real;
|
||||
myTrimFirst : Real;
|
||||
myTrimLast : Real;
|
||||
myNbSamples : Integer;
|
||||
myParamArray : HArray1OfReal from TColStd;
|
||||
myPntArray : ArrayOfPnt;
|
||||
myIsArrayValid: Boolean;
|
||||
|
||||
end;
|
@ -1,196 +0,0 @@
|
||||
// Created on: 2008-12-28
|
||||
// Created by: Roman Lygin
|
||||
// Copyright (c) 2008-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
// roman.lygin@gmail.com
|
||||
|
||||
#include <Precision.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_CurveCache
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
Extrema_CurveCache::Extrema_CurveCache(const Curve& theC,
|
||||
const Standard_Real theUFirst,
|
||||
const Standard_Real theULast,
|
||||
const Standard_Integer theNbSamples,
|
||||
const Standard_Boolean theToCalculate) :
|
||||
myC (0), myNbSamples (-1), myIsArrayValid (Standard_False)
|
||||
{
|
||||
SetCurve (theC, theUFirst, theULast, theNbSamples, theToCalculate);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_CurveCache
|
||||
//purpose : with sampling by knots and between them
|
||||
//=======================================================================
|
||||
|
||||
Extrema_CurveCache::Extrema_CurveCache(const Curve& theC,
|
||||
const Standard_Real theUFirst,
|
||||
const Standard_Real theULast,
|
||||
const TColStd_Array1OfReal& IntervalsCN,
|
||||
const Standard_Integer StartIndex,
|
||||
const Standard_Integer EndIndex,
|
||||
const Standard_Real Coeff)
|
||||
{
|
||||
myC = (Standard_Address)&theC;
|
||||
myIsArrayValid = Standard_False;
|
||||
myParamArray.Nullify();
|
||||
myPntArray.Nullify();
|
||||
|
||||
myTrimFirst = myFirst = theUFirst;
|
||||
myTrimLast = myLast = theULast;
|
||||
|
||||
Standard_Integer Nbp = 3;
|
||||
if (2 * Coeff < 10000.0)
|
||||
Nbp = Max((Standard_Integer) (2 * Coeff), Nbp);
|
||||
myNbSamples = (EndIndex - StartIndex)*Nbp + 1;
|
||||
|
||||
const Standard_Integer aNbSTresh = 10000;
|
||||
if (myNbSamples > aNbSTresh)
|
||||
{
|
||||
Nbp = aNbSTresh / (EndIndex - StartIndex);
|
||||
myNbSamples = (EndIndex - StartIndex)*Nbp + 1;
|
||||
}
|
||||
|
||||
//Cache points
|
||||
myParamArray = new TColStd_HArray1OfReal(1, myNbSamples);
|
||||
myPntArray = new ArrayOfPnt (1, myNbSamples);
|
||||
|
||||
const Curve& aCurve = *((Curve*)myC);
|
||||
|
||||
Standard_Integer i, j, k = 1;
|
||||
Standard_Real aPar;
|
||||
for (i = StartIndex; i < EndIndex; i++)
|
||||
{
|
||||
Standard_Real delta = (IntervalsCN(i+1) - IntervalsCN(i)) / Nbp;
|
||||
for (j = 0; j < Nbp; j++)
|
||||
{
|
||||
aPar = IntervalsCN(i) + j*delta;
|
||||
myParamArray->SetValue(k, aPar);
|
||||
myPntArray->SetValue(k++, aCurve.Value(aPar));
|
||||
}
|
||||
}
|
||||
Standard_Real aDelta = (myTrimLast - myTrimFirst) / myNbSamples / 200.;
|
||||
myParamArray->SetValue(1, myTrimFirst + aDelta);
|
||||
myPntArray->SetValue(1, aCurve.Value(myTrimFirst + aDelta));
|
||||
myParamArray->SetValue(myNbSamples, myTrimLast - aDelta);
|
||||
myPntArray->SetValue(myNbSamples, aCurve.Value(myTrimLast - aDelta));
|
||||
|
||||
myIsArrayValid = Standard_True; //cache is available now
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_CurveCache
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
Extrema_CurveCache::Extrema_CurveCache() : myC (0), myNbSamples (-1),
|
||||
myIsArrayValid (Standard_False)
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetCurve
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void Extrema_CurveCache::SetCurve (const Curve& theC,
|
||||
const Standard_Integer theNbSamples,
|
||||
const Standard_Boolean theToCalculate)
|
||||
{
|
||||
myC = (Standard_Address)&theC;
|
||||
myNbSamples = theNbSamples;
|
||||
myIsArrayValid = Standard_False;
|
||||
myParamArray.Nullify();
|
||||
myPntArray.Nullify();
|
||||
if (theToCalculate) {
|
||||
CalculatePoints();
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetCurve
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void Extrema_CurveCache::SetCurve (const Curve& theC,
|
||||
const Standard_Real theUFirst,
|
||||
const Standard_Real theULast,
|
||||
const Standard_Integer theNbSamples,
|
||||
const Standard_Boolean theToCalculate)
|
||||
{
|
||||
SetCurve (theC, theNbSamples, Standard_False); //no calculation
|
||||
SetRange (theUFirst, theULast, theToCalculate);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetRange
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void Extrema_CurveCache::SetRange (const Standard_Real theUFirst,
|
||||
const Standard_Real theULast,
|
||||
const Standard_Boolean theToCalculate)
|
||||
{
|
||||
//myTrimFirst and myTrimLast are used to compute values on unlimited curves
|
||||
myTrimFirst = myFirst = theUFirst;
|
||||
if (Precision::IsInfinite(myTrimFirst)){
|
||||
myTrimFirst = -1.0e+10;
|
||||
}
|
||||
myTrimLast = myLast = theULast;
|
||||
if (Precision::IsInfinite(myTrimLast)){
|
||||
myTrimLast = 1.0e+10;
|
||||
}
|
||||
|
||||
myIsArrayValid = Standard_False;
|
||||
myParamArray.Nullify();
|
||||
myPntArray.Nullify();
|
||||
if (theToCalculate) {
|
||||
CalculatePoints();
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : CalculatePoints
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
void Extrema_CurveCache::CalculatePoints()
|
||||
{
|
||||
if (myIsArrayValid) return; //no need to recalculate if nothing has changed
|
||||
const Curve& aCurve = *((Curve*)myC);
|
||||
|
||||
// compute myNbSamples point along the [myTrimFirst, myTrimLast] range
|
||||
|
||||
Standard_Real aDelta = myTrimLast - myTrimFirst;
|
||||
Standard_Real aPar0 = aDelta / myNbSamples / 100.;
|
||||
aDelta = (aDelta - aPar0) / (myNbSamples - 1);
|
||||
aPar0 = myTrimFirst + (aPar0/2.);
|
||||
|
||||
//Cache points
|
||||
|
||||
myParamArray = new TColStd_HArray1OfReal(1, myNbSamples);
|
||||
myPntArray = new ArrayOfPnt (1, myNbSamples);
|
||||
|
||||
Standard_Integer i;
|
||||
Standard_Real aPar;
|
||||
for (i = 1, aPar = aPar0; i <= myNbSamples; i++, aPar += aDelta) {
|
||||
myParamArray->SetValue(i, aPar);
|
||||
myPntArray->SetValue (i, aCurve.Value (aPar));
|
||||
}
|
||||
|
||||
myIsArrayValid = Standard_True; //cache is available now
|
||||
}
|
@ -1,111 +0,0 @@
|
||||
// Created on: 2008-12-28
|
||||
// Created by: Roman Lygin
|
||||
// Copyright (c) 2008-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
// roman.lygin@gmail.com
|
||||
|
||||
#include <StdFail_NotDone.hxx>
|
||||
#include <TColStd_HArray1OfReal.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : IsValid
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Boolean Extrema_CurveCache::IsValid() const
|
||||
{
|
||||
return myIsArrayValid;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Parameters
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline const Handle(TColStd_HArray1OfReal)& Extrema_CurveCache::Parameters() const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myIsArrayValid, "Extrema_CurveCache::Parameters()")
|
||||
return myParamArray;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Points
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline const Handle(ArrayOfPnt)& Extrema_CurveCache::Points() const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myIsArrayValid, "Extrema_CurveCache::Points()")
|
||||
return myPntArray;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : CurvePtr
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Address Extrema_CurveCache::CurvePtr() const
|
||||
{
|
||||
return myC;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbSamples
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Integer Extrema_CurveCache::NbSamples() const
|
||||
{
|
||||
return myNbSamples;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : FirstParameter
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Extrema_CurveCache::FirstParameter() const
|
||||
{
|
||||
return myFirst;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : LastParameter
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Extrema_CurveCache::LastParameter() const
|
||||
{
|
||||
return myLast;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TrimFirstParameter
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Extrema_CurveCache::TrimFirstParameter() const
|
||||
{
|
||||
return myTrimFirst;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : TrimLastParameter
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
|
||||
inline Standard_Real Extrema_CurveCache::TrimLastParameter() const
|
||||
{
|
||||
return myTrimLast;
|
||||
}
|
@ -147,7 +147,6 @@ fields
|
||||
myInf: Real [2];
|
||||
mySup: Real [2];
|
||||
myTol: Real [2];
|
||||
myCacheLists: ListOfTransient from TColStd [2]; -- lists of Handle(Extrema_CCache)
|
||||
P1f: Pnt;
|
||||
P1l: Pnt;
|
||||
P2f: Pnt;
|
||||
|
@ -45,7 +45,6 @@
|
||||
|
||||
#include <Adaptor3d_Curve.hxx>
|
||||
#include <Extrema_CurveTool.hxx>
|
||||
#include <Extrema_CCache.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_ExtCC
|
||||
@ -72,8 +71,9 @@ Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
|
||||
const Standard_Real V1,
|
||||
const Standard_Real V2,
|
||||
const Standard_Real TolC1,
|
||||
const Standard_Real TolC2) :
|
||||
myDone (Standard_False)
|
||||
const Standard_Real TolC2)
|
||||
: myECC(C1, C2, U1, U2, V1, V2),
|
||||
myDone (Standard_False)
|
||||
{
|
||||
SetCurve (1, C1, U1, U2);
|
||||
SetCurve (2, C2, V1, V2);
|
||||
@ -91,8 +91,9 @@ Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
|
||||
Extrema_ExtCC::Extrema_ExtCC(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2,
|
||||
const Standard_Real TolC1,
|
||||
const Standard_Real TolC2) :
|
||||
myDone (Standard_False)
|
||||
const Standard_Real TolC2)
|
||||
: myECC(C1, C2),
|
||||
myDone (Standard_False)
|
||||
{
|
||||
SetCurve (1, C1, C1.FirstParameter(), C1.LastParameter());
|
||||
SetCurve (2, C2, C2.FirstParameter(), C2.LastParameter());
|
||||
@ -111,9 +112,6 @@ void Extrema_ExtCC::SetCurve (const Standard_Integer theRank, const Adaptor3d_Cu
|
||||
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_ExtCC::SetCurve()")
|
||||
Standard_Integer anInd = theRank - 1;
|
||||
myC[anInd] = (Standard_Address)&C;
|
||||
|
||||
//clear the previous cache to rebuild it later in Perform()
|
||||
myCacheLists[anInd].Clear();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@ -163,6 +161,8 @@ void Extrema_ExtCC::SetTolerance (const Standard_Integer theRank, const Standard
|
||||
void Extrema_ExtCC::Perform()
|
||||
{
|
||||
Standard_NullObject_Raise_if (!myC[0] || !myC[1], "Extrema_ExtCC::Perform()")
|
||||
myECC.SetParams(*((Adaptor3d_Curve*)myC[0]),
|
||||
*((Adaptor3d_Curve*)myC[1]), myInf[0], mySup[0], myInf[1], mySup[1]);
|
||||
myDone = Standard_False;
|
||||
mypoints.Clear();
|
||||
mySqDist.Clear();
|
||||
@ -194,8 +194,6 @@ void Extrema_ExtCC::Perform()
|
||||
if (Precision::IsInfinite(U12) || Precision::IsInfinite(U22)) mydist22 = RealLast();
|
||||
else mydist22 = P1l.SquareDistance(P2l);
|
||||
|
||||
myECC.SetTolerance (Tol);
|
||||
|
||||
//Depending on the types of curves, the algorithm is chosen:
|
||||
//- _ExtElC, when one of the curves is a line and the other is elementary,
|
||||
// or there are two circles;
|
||||
@ -249,169 +247,12 @@ void Extrema_ExtCC::Perform()
|
||||
Results(CCXtrem, U11, U12, U21, U22);
|
||||
}
|
||||
else {
|
||||
Standard_Integer i;
|
||||
Standard_Integer aNbS = 32; //default number of sample points per interval (why 32?)
|
||||
for (i = 0; i < 2; i++) {
|
||||
TColStd_ListOfTransient& aCacheList = myCacheLists[i];
|
||||
if (aCacheList.IsEmpty()) {
|
||||
//no caches, build them
|
||||
Adaptor3d_Curve& aC = *(Adaptor3d_Curve*)myC[i];
|
||||
//single interval from myInf[i] to mySup[i]
|
||||
Handle(Extrema_CCache) aCache = new Extrema_CCache(aC, myInf[i], mySup[i], aNbS, Standard_True);
|
||||
aCacheList.Append (aCache);
|
||||
}
|
||||
}
|
||||
Handle(Extrema_CCache) aCache1 = Handle(Extrema_CCache)::DownCast (myCacheLists[0].First());
|
||||
myECC.SetCurveCache (1, aCache1);
|
||||
Handle(Extrema_CCache) aCache2 = Handle(Extrema_CCache)::DownCast (myCacheLists[1].First());
|
||||
myECC.SetCurveCache (2, aCache2);
|
||||
myECC.Perform();
|
||||
Results (myECC, U11, U12, U21, U22);
|
||||
Results(myECC, U11, U12, U21, U22);
|
||||
}
|
||||
} else {
|
||||
//common case - use _GenExtCC
|
||||
//1. check and prepare caches
|
||||
|
||||
Standard_Integer i;
|
||||
Standard_Integer aNbS[2] = {32, 32}, aNbInter[2] = {1, 1};
|
||||
Standard_Real Coeff[2] = {1., 1.};
|
||||
Standard_Real rf = 0., rl = 0., LL[2] = {-1., -1.};
|
||||
Standard_Boolean KnotSampling[2] = {Standard_False, Standard_False};
|
||||
for (i = 0; i < 2; i++) {
|
||||
TColStd_ListOfTransient& aCacheList = myCacheLists[i];
|
||||
if (aCacheList.IsEmpty()) {
|
||||
//no caches, build them
|
||||
Adaptor3d_Curve& aC = *(Adaptor3d_Curve*)myC[i];
|
||||
|
||||
Standard_Real du1 = 0., t = 0.;
|
||||
gp_Pnt P1, P2;
|
||||
GeomAbs_CurveType aType = aC.GetType();
|
||||
switch (aType) {
|
||||
case GeomAbs_BezierCurve:
|
||||
aNbS[i] = aC.NbPoles() * 2;
|
||||
break;
|
||||
case GeomAbs_BSplineCurve:
|
||||
if (aC.Degree() <= 3 &&
|
||||
aC.NbKnots() > 2)
|
||||
KnotSampling[i] = Standard_True;
|
||||
|
||||
aNbS[i] = aC.NbPoles() * 2;
|
||||
rf = (Extrema_CurveTool::BSpline(*((Adaptor3d_Curve*)myC[i])))->FirstParameter();
|
||||
rl = (Extrema_CurveTool::BSpline(*((Adaptor3d_Curve*)myC[i])))->LastParameter();
|
||||
aNbS[i] = (Standard_Integer) ( aNbS[i] * ((mySup[i] - myInf[i]) / (rl - rf)) + 1 );
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_Line:
|
||||
//adjust number of sample points for Lines, B-Splines and Other curves
|
||||
aNbInter[i] = aC.NbIntervals (GeomAbs_C2);
|
||||
aNbS[i] = Max(aNbS[i] / aNbInter[i], 3);
|
||||
LL[i] = 0.;
|
||||
du1 = (mySup[i] - myInf[i]) / ((aNbS[i]-1)*aNbInter[i]);
|
||||
P1 = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[i]), myInf[i]);
|
||||
for(t = myInf[i] + du1; t <= mySup[i]; t += du1) {
|
||||
P2 = Extrema_CurveTool::Value(*((Adaptor3d_Curve*)myC[i]), t);
|
||||
LL[i] += P1.Distance(P2);
|
||||
P1 = P2;
|
||||
}
|
||||
LL[i] /= ((aNbS[i]-1)*aNbInter[i]);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(LL[0] > 0. && LL[1] > 0.) {
|
||||
if(LL[0] > 4.*LL[1]) {
|
||||
Coeff[0] = LL[0]/LL[1]/2.;
|
||||
if (aNbS[0] * Coeff[0] <= 10000.0)
|
||||
aNbS[0] = (Standard_Integer) ( aNbS[0] * Coeff[0] );
|
||||
}
|
||||
else if(LL[1] > 4.*LL[0]) {
|
||||
Coeff[1] = LL[1]/LL[0]/2.;
|
||||
if (aNbS[1] * Coeff[1] <= 10000.0)
|
||||
aNbS[1] = (Standard_Integer) (aNbS[1] * Coeff[1] );
|
||||
}
|
||||
}
|
||||
//modified by NIZNHY-PKV Tue Apr 17 10:01:32 2012f
|
||||
Standard_Integer aNbSTresh;
|
||||
//
|
||||
aNbSTresh=10000;
|
||||
//
|
||||
for (i = 0; i < 2; ++i) {
|
||||
if (aNbS[i]>aNbSTresh) {
|
||||
aNbS[i]=aNbSTresh;
|
||||
}
|
||||
}
|
||||
//modified by NIZNHY-PKV Tue Apr 17 10:01:34 2012t
|
||||
for (i = 0; i < 2; i++) {
|
||||
TColStd_ListOfTransient& aCacheList = myCacheLists[i];
|
||||
if (aCacheList.IsEmpty()) {
|
||||
//no caches, build them
|
||||
Adaptor3d_Curve& aC = *(Adaptor3d_Curve*)myC[i];
|
||||
|
||||
if (aC.GetType() >= GeomAbs_BSplineCurve)
|
||||
{
|
||||
//can be multiple intervals, one cache per one C2 interval
|
||||
TColStd_Array1OfReal anArr (1, aNbInter[i] + 1);
|
||||
aC.Intervals (anArr, GeomAbs_C2);
|
||||
|
||||
if (KnotSampling[i])
|
||||
{
|
||||
Standard_Integer NbIntervCN = aC.NbIntervals(GeomAbs_CN);
|
||||
TColStd_Array1OfReal IntervalsCN(1, NbIntervCN + 1);
|
||||
aC.Intervals(IntervalsCN, GeomAbs_CN);
|
||||
|
||||
Standard_Integer j = 1, start_j = 1, k;
|
||||
Standard_Real NextKnot;
|
||||
for (k = 1; k <= aNbInter[i]; k++)
|
||||
{
|
||||
do
|
||||
{
|
||||
NextKnot = IntervalsCN(j+1);
|
||||
j++;
|
||||
}
|
||||
while (NextKnot != anArr(k+1));
|
||||
|
||||
Handle(Extrema_CCache) aCache =
|
||||
new Extrema_CCache(aC, anArr(k), anArr(k+1),
|
||||
IntervalsCN, start_j, j, Coeff[i]);
|
||||
aCacheList.Append (aCache);
|
||||
|
||||
start_j = j;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (Standard_Integer k = 1; k <= aNbInter[i]; k++) {
|
||||
Handle(Extrema_CCache) aCache =
|
||||
new Extrema_CCache(aC, anArr(k), anArr(k+1), aNbS[i], Standard_True);
|
||||
aCacheList.Append (aCache);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
//single interval from myInf[i] to mySup[i]
|
||||
Handle(Extrema_CCache) aCache = new Extrema_CCache (aC,
|
||||
myInf[i], mySup[i], aNbS[i], Standard_True);
|
||||
aCacheList.Append (aCache);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//2. process each cache from one list with each cache from the other
|
||||
TColStd_ListIteratorOfListOfTransient anIt1 (myCacheLists[0]);
|
||||
for (; anIt1.More(); anIt1.Next()) {
|
||||
Handle(Extrema_CCache) aCache1 = Handle(Extrema_CCache)::DownCast (anIt1.Value());
|
||||
myECC.SetCurveCache (1, aCache1);
|
||||
TColStd_ListIteratorOfListOfTransient anIt2 (myCacheLists[1]);
|
||||
for (; anIt2.More(); anIt2.Next()) {
|
||||
Handle(Extrema_CCache) aCache2 = Handle(Extrema_CCache)::DownCast (anIt2.Value());
|
||||
myECC.SetCurveCache (2, aCache2);
|
||||
myECC.Perform();
|
||||
Results(myECC, U11, U12, U21, U22);
|
||||
}
|
||||
}
|
||||
myECC.Perform();
|
||||
Results(myECC, U11, U12, U21, U22);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -27,7 +27,6 @@ uses POnCurv2d from Extrema,
|
||||
SequenceOfReal from TColStd,
|
||||
Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
CCache2d from Extrema,
|
||||
ECC2d from Extrema
|
||||
|
||||
|
||||
@ -126,9 +125,7 @@ is
|
||||
|
||||
is static protected;
|
||||
|
||||
-- modified by NIZHNY-EAP Thu Jan 27 16:53:25 2000 ___BEGIN___
|
||||
Results(me: in out;AlgExt: ECC2d from Extrema; C : Curve2d from Adaptor2d;
|
||||
-- modified by NIZHNY-EAP Thu Jan 27 16:53:26 2000 ___END___
|
||||
Results(me: in out;AlgExt: ECC2d from Extrema;
|
||||
Ut11, Ut12, Ut21, Ut22: Real;
|
||||
Period1 : Real from Standard = 0.0;
|
||||
Period2 : Real from Standard = 0.0)
|
||||
|
@ -38,21 +38,9 @@
|
||||
#include <Extrema_Curve2dTool.hxx>
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : IsParallelDot
|
||||
//purpose : This function returns True if angle between <theV1> and
|
||||
//<theV2> vectors or between <theV1> and <-theV2> vectors is less than
|
||||
//AngTol.
|
||||
//=======================================================================
|
||||
static Standard_Boolean IsParallelDot( gp_Vec2d theV1,
|
||||
gp_Vec2d theV2,
|
||||
Standard_Real AngTol)
|
||||
{
|
||||
return Abs(theV1.Dot(theV2)) >=
|
||||
theV1.Magnitude()*theV2.Magnitude()*cos(AngTol);
|
||||
}
|
||||
|
||||
Extrema_ExtCC2d::Extrema_ExtCC2d() {}
|
||||
Extrema_ExtCC2d::Extrema_ExtCC2d()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
Extrema_ExtCC2d::Extrema_ExtCC2d(const Adaptor2d_Curve2d& C1,
|
||||
@ -100,7 +88,6 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
{
|
||||
mypoints.Clear();
|
||||
mySqDist.Clear();
|
||||
Standard_Integer NbU = 32, NbV = 32;
|
||||
GeomAbs_CurveType type1 = Extrema_Curve2dTool::GetType(C1), type2 = Extrema_Curve2dTool::GetType(*((Adaptor2d_Curve2d*)myC));
|
||||
Standard_Real U11, U12, U21, U22, Tol = Min(mytolc1, mytolc2);
|
||||
// Extrema_POnCurv2d P1, P2;
|
||||
@ -148,11 +135,11 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 2*M_PI,Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, 2*M_PI,Period2);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Line: {
|
||||
@ -179,33 +166,33 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
break;
|
||||
case GeomAbs_Ellipse: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22,2*M_PI, 2*M_PI);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22,2*M_PI, 2*M_PI);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Parabola: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 2*M_PI, 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 2*M_PI, 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Hyperbola: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(C1), Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 2*M_PI, 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 2*M_PI, 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 2*M_PI,Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, 2*M_PI,Period2);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Line: {
|
||||
@ -233,34 +220,34 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
case GeomAbs_Ellipse: {
|
||||
//inverse = Standard_True;
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Parabola(C1));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 2*M_PI);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 2*M_PI);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Parabola: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Parabola(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Hyperbola: {
|
||||
//inverse = Standard_True;
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Parabola(C1));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Line: {
|
||||
@ -288,33 +275,33 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
case GeomAbs_Ellipse: {
|
||||
//inverse = Standard_True;
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Ellipse(*((Adaptor2d_Curve2d*)myC)), Extrema_Curve2dTool::Hyperbola(C1));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 2*M_PI );
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 2*M_PI );
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Parabola: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(C1), Extrema_Curve2dTool::Parabola(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Hyperbola: {
|
||||
//Extrema_ExtElC2d Xtrem(Extrema_Curve2dTool::Hyperbola(C1), Extrema_Curve2dTool::Hyperbola(*((Adaptor2d_Curve2d*)myC)));
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., 0.);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., 0.);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC)
|
||||
, NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Line: {
|
||||
@ -333,13 +320,13 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period1 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(C1)) Period1 = Extrema_Curve2dTool::Period(C1);
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, Period1, Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, Period1, Period2);
|
||||
}
|
||||
break;
|
||||
|
||||
@ -372,11 +359,11 @@ void Extrema_ExtCC2d::Perform (const Adaptor2d_Curve2d& C1,
|
||||
case GeomAbs_BezierCurve:
|
||||
case GeomAbs_OtherCurve:
|
||||
case GeomAbs_BSplineCurve: {
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC),
|
||||
NbU, NbV, mytolc1, mytolc2);
|
||||
Extrema_ECC2d Xtrem(C1, *((Adaptor2d_Curve2d*)myC));
|
||||
Xtrem.Perform();
|
||||
Standard_Real Period2 = 0.;
|
||||
if (Extrema_Curve2dTool::IsPeriodic(*((Adaptor2d_Curve2d*)myC))) Period2 = Extrema_Curve2dTool::Period(*((Adaptor2d_Curve2d*)myC));
|
||||
Results(Xtrem, C1, U11, U12, U21, U22, 0., Period2);
|
||||
Results(Xtrem, U11, U12, U21, U22, 0., Period2);
|
||||
}
|
||||
break;
|
||||
case GeomAbs_Line: {
|
||||
@ -511,54 +498,47 @@ void Extrema_ExtCC2d::Results(const Extrema_ExtElC2d& AlgExt,
|
||||
|
||||
|
||||
void Extrema_ExtCC2d::Results(const Extrema_ECC2d& AlgExt,
|
||||
// modified by NIZHNY-EAP Wed Feb 23 14:51:24 2000 ___BEGIN___
|
||||
const Adaptor2d_Curve2d& C1,
|
||||
// modified by NIZHNY-EAP Wed Feb 23 14:51:26 2000 ___END___
|
||||
const Standard_Real Ut11,
|
||||
const Standard_Real Ut12,
|
||||
const Standard_Real Ut21,
|
||||
const Standard_Real Ut22,
|
||||
const Standard_Real Period1,
|
||||
const Standard_Real Period2)
|
||||
const Standard_Real Ut11,
|
||||
const Standard_Real Ut12,
|
||||
const Standard_Real Ut21,
|
||||
const Standard_Real Ut22,
|
||||
const Standard_Real Period1,
|
||||
const Standard_Real Period2)
|
||||
{
|
||||
Standard_Integer i, NbExt;
|
||||
Standard_Real Val, U, U2;
|
||||
Extrema_POnCurv2d P1, P2;
|
||||
|
||||
myDone = AlgExt.IsDone();
|
||||
if (myDone) {
|
||||
if (!myIsPar) {
|
||||
NbExt = AlgExt.NbExt();
|
||||
for (i = 1; i <= NbExt; i++) {
|
||||
// Verification de la validite des parametres pour le cas trimme:
|
||||
AlgExt.Points(i, P1, P2);
|
||||
U = P1.Parameter();
|
||||
if (Period1 != 0.0) U = ElCLib::InPeriod(U,Ut11,Ut11+Period1);
|
||||
U2 = P2.Parameter();
|
||||
if (Period2 != 0.0) U2 = ElCLib::InPeriod(U2,Ut21,Ut21+Period2);
|
||||
|
||||
if ((U >= Ut11 - Precision::PConfusion()) &&
|
||||
(U <= Ut12 + Precision::PConfusion()) &&
|
||||
(U2 >= Ut21 - Precision::PConfusion()) &&
|
||||
(U2 <= Ut22 + Precision::PConfusion())) {
|
||||
// modified by NIZHNY-EAP Thu Jan 27 16:40:55 2000 ___BEGIN___
|
||||
// to be sure that it's a real extrema
|
||||
gp_Pnt2d p;
|
||||
gp_Vec2d v1, v2;
|
||||
Extrema_Curve2dTool::D1(C1,U,p, v1);
|
||||
Extrema_Curve2dTool::D1(*((Adaptor2d_Curve2d*)myC),U2,p, v2);
|
||||
if (IsParallelDot(v1, v2, Precision::Angular()))
|
||||
{
|
||||
mynbext++;
|
||||
Val = AlgExt.SquareDistance(i);
|
||||
P1.SetValues(U, P1.Value());
|
||||
P2.SetValues(U2, P2.Value());
|
||||
mySqDist.Append(Val);
|
||||
mypoints.Append(P1);
|
||||
mypoints.Append(P2);
|
||||
}
|
||||
// modified by NIZHNY-EAP Thu Jan 27 16:41:00 2000 ___END___
|
||||
}
|
||||
myDone = AlgExt.IsDone();
|
||||
if (myDone)
|
||||
{
|
||||
if (!myIsPar)
|
||||
{
|
||||
NbExt = AlgExt.NbExt();
|
||||
for (i = 1; i <= NbExt; i++)
|
||||
{
|
||||
// Verification de la validite des parametres pour le cas trimme:
|
||||
AlgExt.Points(i, P1, P2);
|
||||
U = P1.Parameter();
|
||||
if (Period1 != 0.0)
|
||||
U = ElCLib::InPeriod(U,Ut11,Ut11+Period1);
|
||||
U2 = P2.Parameter();
|
||||
if (Period2 != 0.0)
|
||||
U2 = ElCLib::InPeriod(U2,Ut21,Ut21+Period2);
|
||||
|
||||
if ((U >= Ut11 - Precision::PConfusion()) &&
|
||||
(U <= Ut12 + Precision::PConfusion()) &&
|
||||
(U2 >= Ut21 - Precision::PConfusion()) &&
|
||||
(U2 <= Ut22 + Precision::PConfusion()))
|
||||
{
|
||||
mynbext++;
|
||||
Val = AlgExt.SquareDistance(i);
|
||||
P1.SetValues(U, P1.Value());
|
||||
P2.SetValues(U2, P2.Value());
|
||||
mySqDist.Append(Val);
|
||||
mypoints.Append(P1);
|
||||
mypoints.Append(P2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -19,7 +19,6 @@ generic class GenExtCC from Extrema
|
||||
Tool1 as any; -- as ToolCurve(Curve1)
|
||||
Curve2 as any;
|
||||
Tool2 as any; -- as ToolCurve(Curve2)
|
||||
Cache as Transient from Standard; -- CurveCache from Extrema
|
||||
ArrayOfPnt as Transient from Standard; -- as returned by Extrema_CurveCache::Points()
|
||||
POnC as any;
|
||||
Pnt as any;
|
||||
@ -27,14 +26,12 @@ generic class GenExtCC from Extrema
|
||||
|
||||
---Purpose: It calculates all the distance between two curves.
|
||||
-- These distances can be maximum or minimum.
|
||||
|
||||
uses SequenceOfReal from TColStd,
|
||||
Vector from math
|
||||
|
||||
raises InfiniteSolutions from StdFail,
|
||||
NotDone from StdFail,
|
||||
OutOfRange from Standard
|
||||
|
||||
private class CCF instantiates FuncExtCC from Extrema (Curve1, Tool1,
|
||||
Curve2, Tool2,
|
||||
POnC, Pnt, Vec);
|
||||
|
||||
is
|
||||
|
||||
@ -43,30 +40,20 @@ is
|
||||
-- between Uinf and Usup for C1 and between Vinf and Vsup
|
||||
-- for C2.
|
||||
|
||||
Create (C1: Curve1; C2: Curve2; NbU,NbV: Integer; TolU,TolV: Real) returns GenExtCC;
|
||||
Create (C1: Curve1; C2: Curve2) returns GenExtCC;
|
||||
---Purpose: It calculates all the distances.
|
||||
-- The function F(u,v)=distance(C1(u),C2(v)) has an
|
||||
-- extremum when gradient(f)=0. The algorithm searchs
|
||||
-- all the zeros.
|
||||
-- NbU,NbV are used to locate the close points to
|
||||
-- find the zeros. They must be great enough such that
|
||||
-- if there is N extrema, there will be N extrema
|
||||
-- between the segment and the grid.
|
||||
-- TolU and TolV are used to determinethe conditions
|
||||
-- to stop the iterations; at the iteration number n:
|
||||
-- (Un - Un-1) < TolU and (Vn - Vn-1) < TolV .
|
||||
-- extremum when gradient(f)=0. The algorithm uses
|
||||
-- Evtushenko's global optimization solver..
|
||||
|
||||
Create (C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real;
|
||||
NbU,NbV: Integer; TolU,TolV: Real) returns GenExtCC;
|
||||
Create (C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real) returns GenExtCC;
|
||||
---Purpose: Calculates all the distances as above
|
||||
-- between Uinf and Usup for C1 and between Vinf and Vsup
|
||||
-- for C2.
|
||||
|
||||
SetCurveCache (me: in out; theRank: Integer; theCache: Cache);
|
||||
---Purpose:
|
||||
|
||||
SetTolerance (me: in out; Tol: Real);
|
||||
---Purpose:
|
||||
SetParams(me: in out; C1: Curve1; C2: Curve2; Uinf, Usup, Vinf, Vsup: Real)
|
||||
---Purpose: Set params in case of empty constructor is usage.
|
||||
is static;
|
||||
|
||||
Perform(me: in out) is static;
|
||||
---Purpose: Performs calculations.
|
||||
@ -106,8 +93,12 @@ is
|
||||
is static;
|
||||
|
||||
fields
|
||||
myF : CCF from Extrema;
|
||||
myLowBorder : Vector from math;
|
||||
myUppBorder : Vector from math;
|
||||
mySolCount : Integer from Standard;
|
||||
myPoints1 : SequenceOfReal from TColStd;
|
||||
myPoints2 : SequenceOfReal from TColStd;
|
||||
myC : Address from Standard [2];
|
||||
myDone : Boolean;
|
||||
myCache: Cache [2];
|
||||
|
||||
end GenExtCC;
|
||||
|
@ -14,282 +14,171 @@
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <StdFail_NotDone.hxx>
|
||||
#include <math_FunctionSetRoot.hxx>
|
||||
#include <math_NewtonFunctionSetRoot.hxx>
|
||||
#include <TColStd_Array2OfInteger.hxx>
|
||||
#include <TColStd_Array2OfReal.hxx>
|
||||
#include <Extrema_GlobOptFuncCC.hxx>
|
||||
#include <math_GlobOptMin.hxx>
|
||||
#include <Standard_NullObject.hxx>
|
||||
#include <Standard_OutOfRange.hxx>
|
||||
#include <StdFail_NotDone.hxx>
|
||||
#include <TColStd_Array1OfReal.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
Extrema_GenExtCC::Extrema_GenExtCC () : myDone (Standard_False)
|
||||
Extrema_GenExtCC::Extrema_GenExtCC()
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
myDone(Standard_False)
|
||||
{
|
||||
}
|
||||
|
||||
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Integer NbU,
|
||||
const Standard_Integer NbV,
|
||||
const Standard_Real TolU,
|
||||
const Standard_Real TolV) : myF (C1,C2, Min(TolU, TolV)), myDone (Standard_False)
|
||||
const Curve2& C2)
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
myDone(Standard_False)
|
||||
{
|
||||
SetCurveCache (1, new Cache (C1, C1.FirstParameter(), C1.LastParameter(), NbU, Standard_True));
|
||||
SetCurveCache (2, new Cache (C2, C2.FirstParameter(), C2.LastParameter(), NbV, Standard_True));
|
||||
Perform();
|
||||
myC[0] = (Standard_Address)&C1;
|
||||
myC[1] = (Standard_Address)&C2;
|
||||
myLowBorder(1) = C1.FirstParameter();
|
||||
myLowBorder(2) = C2.FirstParameter();
|
||||
myUppBorder(1) = C1.LastParameter();
|
||||
myUppBorder(2) = C2.LastParameter();
|
||||
}
|
||||
|
||||
|
||||
Extrema_GenExtCC::Extrema_GenExtCC (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup,
|
||||
const Standard_Integer NbU,
|
||||
const Standard_Integer NbV,
|
||||
const Standard_Real /*TolU*/,
|
||||
const Standard_Real /*TolV*/) : myF (C1,C2), myDone (Standard_False)
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
: myLowBorder(1,2),
|
||||
myUppBorder(1,2),
|
||||
myDone(Standard_False)
|
||||
{
|
||||
SetCurveCache (1, new Cache (C1, Uinf, Usup, NbU, Standard_True));
|
||||
SetCurveCache (2, new Cache (C2, Vinf, Vsup, NbV, Standard_True));
|
||||
Perform();
|
||||
myC[0] = (Standard_Address)&C1;
|
||||
myC[1] = (Standard_Address)&C2;
|
||||
myLowBorder(1) = Uinf;
|
||||
myLowBorder(2) = Vinf;
|
||||
myUppBorder(1) = Usup;
|
||||
myUppBorder(2) = Vsup;
|
||||
}
|
||||
|
||||
void Extrema_GenExtCC::SetCurveCache (const Standard_Integer theRank,
|
||||
const Handle(Cache)& theCache)
|
||||
void Extrema_GenExtCC::SetParams (const Curve1& C1,
|
||||
const Curve2& C2,
|
||||
const Standard_Real Uinf,
|
||||
const Standard_Real Usup,
|
||||
const Standard_Real Vinf,
|
||||
const Standard_Real Vsup)
|
||||
{
|
||||
Standard_OutOfRange_Raise_if (theRank < 1 || theRank > 2, "Extrema_GenExtCC::SetCurveCache()")
|
||||
myF.SetCurve (theRank, *(Curve1*)theCache->CurvePtr());
|
||||
Standard_Integer anInd = theRank - 1;
|
||||
myCache[anInd] = theCache;
|
||||
myC[0] = (Standard_Address)&C1;
|
||||
myC[1] = (Standard_Address)&C2;
|
||||
myLowBorder(1) = Uinf;
|
||||
myLowBorder(2) = Vinf;
|
||||
myUppBorder(1) = Usup;
|
||||
myUppBorder(2) = Vsup;
|
||||
}
|
||||
|
||||
void Extrema_GenExtCC::SetTolerance (const Standard_Real Tol)
|
||||
{
|
||||
myF.SetTolerance (Tol);
|
||||
}
|
||||
|
||||
|
||||
//=============================================================================
|
||||
void Extrema_GenExtCC::Perform ()
|
||||
/*-----------------------------------------------------------------------------
|
||||
Fonction:
|
||||
Recherche de toutes les distances extremales entre les courbes C1 et C2.
|
||||
a partir de 2 echantillonnages (NbU,NbV).
|
||||
|
||||
Methode:
|
||||
L'algorithme part de l'hypothese que les echantillonnages sont suffisamment
|
||||
fins pour que, s'il existe N distances extremales entre les 2 courbes,
|
||||
alors il existe aussi N extrema entre les 2 ensembles de points.
|
||||
Ainsi, l'algorithme consiste a partir des extrema des echantillons
|
||||
pour trouver les extrema des courbes.
|
||||
Les extrema sont calcules par l'algorithme math_FunctionSetRoot avec les
|
||||
arguments suivants:
|
||||
- myF: Extrema_FuncExtCC cree a partir de C1 et C2,
|
||||
- UV: math_Vector dont les composantes sont les parametres des points de
|
||||
l'extremum sur les ensembles de points,
|
||||
- Tol: Min(TolU,TolV), (Prov.:math_FunctionSetRoot n'autorise pas un vecteur)
|
||||
- UVinf: math_Vector dont les composantes sont les bornes inferieures de u et
|
||||
v,
|
||||
- UVsup: math_Vector dont les composantes sont les bornes superieures de u et
|
||||
v.
|
||||
|
||||
Traitement:
|
||||
a- Constitution du tableau des square distances (TbDist2(0,NbU+1,0,NbV+1)):
|
||||
Le tableau est volontairement etendu; les lignes 0 et NbU+1 et les
|
||||
colonnes 0 et NbV+1 seront initialisees a RealFirst() ou RealLast()
|
||||
pour simplifier les tests effectues dans l'etape b
|
||||
(on n'a pas besoin de tester si le point est sur une extremite).
|
||||
b- Calcul des extrema:
|
||||
On recherche d'abord les minima et ensuite les maxima. Ces 2 traitements
|
||||
se passent de facon similaire:
|
||||
b.a- Initialisations:
|
||||
- des 'bords' du tableau TbDist2 (a RealLast() dans le cas des minima
|
||||
et a RealLast() dans le cas des maxima),
|
||||
- du tableau TbSel(0,NbU+1,0,NbV+1) de selection des points pour un
|
||||
calcul d'extremum local (a 0). Lorsqu'un couple de points sera
|
||||
selectionne, il ne sera plus selectionnable, ainsi que les couples
|
||||
adjacents (8 au maximum).
|
||||
Les adresses correspondantes seront mises a 1.
|
||||
b.b- Calcul des minima (ou maxima):
|
||||
On boucle sur toutes les square distances du tableau TbDist2:
|
||||
- recherche d'un minimum (ou maximum) sur les echantillons,
|
||||
- calcul de l'extremum sur les courbes,
|
||||
- mise a jour du tableau TbSel.
|
||||
-----------------------------------------------------------------------------*/
|
||||
{
|
||||
myDone = Standard_False;
|
||||
|
||||
const Handle(Cache)& aCache1 = myCache[0];
|
||||
const Handle(Cache)& aCache2 = myCache[1];
|
||||
Standard_NullObject_Raise_if ((aCache1.IsNull() || aCache2.IsNull()),
|
||||
"Extrema_GenExtCC::Perform()")
|
||||
Curve1 &C1 = *(Curve1*)myC[0];
|
||||
Curve2 &C2 = *(Curve2*)myC[1];
|
||||
|
||||
Standard_Integer aNbU = aCache1->NbSamples(), aNbV = aCache2->NbSamples();
|
||||
Standard_OutOfRange_Raise_if ((aNbU < 2 ||aNbV < 2), "Extrema_GenExtCC::Perform()")
|
||||
Standard_Integer aNbInter[2];
|
||||
aNbInter[0] = C1.NbIntervals(GeomAbs_C2);
|
||||
aNbInter[1] = C2.NbIntervals(GeomAbs_C2);
|
||||
TColStd_Array1OfReal anIntervals1(1, aNbInter[0] + 1);
|
||||
TColStd_Array1OfReal anIntervals2(1, aNbInter[1] + 1);
|
||||
C1.Intervals(anIntervals1, GeomAbs_C2);
|
||||
C2.Intervals(anIntervals2, GeomAbs_C2);
|
||||
|
||||
/*
|
||||
a- Constitution du tableau des distances (TbDist2(0,NbU+1,0,NbV+1)):
|
||||
---------------------------------------------------------------
|
||||
*/
|
||||
math_MultipleVarFunction *aFunc = new Extrema_GlobOptFuncCCC2(C1, C2);
|
||||
math_GlobOptMin aFinder(aFunc, myLowBorder, myUppBorder);
|
||||
|
||||
//ensure that caches have been calculated
|
||||
if (!aCache1->IsValid())
|
||||
aCache1->CalculatePoints();
|
||||
if (!aCache2->IsValid())
|
||||
aCache2->CalculatePoints();
|
||||
Standard_Integer i,j,k;
|
||||
math_Vector aFirstBorderInterval(1,2);
|
||||
math_Vector aSecondBorderInterval(1,2);
|
||||
Standard_Real aF = RealLast(); // best functional value
|
||||
Standard_Real aCurrF = RealLast(); // current functional value computed on current interval
|
||||
for(i = 1; i <= aNbInter[0]; i++)
|
||||
{
|
||||
for(j = 1; j <= aNbInter[1]; j++)
|
||||
{
|
||||
aFirstBorderInterval(1) = anIntervals1(i);
|
||||
aFirstBorderInterval(2) = anIntervals2(j);
|
||||
aSecondBorderInterval(1) = anIntervals1(i + 1);
|
||||
aSecondBorderInterval(2) = anIntervals2(j + 1);
|
||||
|
||||
// Calcul des distances
|
||||
const Handle(ArrayOfPnt)& aPntArray1 = aCache1->Points();
|
||||
const Handle(ArrayOfPnt)& aPntArray2 = aCache2->Points();
|
||||
Standard_Integer NoU, NoV;
|
||||
TColStd_Array2OfReal TbDist2(0, aNbU + 1, 0, aNbV + 1);
|
||||
for (NoU = 1; NoU <= aNbU; NoU++) {
|
||||
const Pnt& P1 = aPntArray1->Value (NoU);
|
||||
for (NoV = 1; NoV <= aNbV; NoV++) {
|
||||
const Pnt& P2 = aPntArray2->Value (NoV);
|
||||
TbDist2(NoU,NoV) = P1.SquareDistance(P2);
|
||||
aFinder.SetLocalParams(aFirstBorderInterval, aSecondBorderInterval);
|
||||
aFinder.Perform();
|
||||
|
||||
aCurrF = aFinder.GetF();
|
||||
if (aCurrF < aF + Precision::Confusion())
|
||||
{
|
||||
if (aCurrF > Abs(aF - Precision::Confusion()) || (aCurrF < 1.0e-15 && aF < 1.0e-15))
|
||||
{
|
||||
Standard_Integer myTmpSolCount = aFinder.NbExtrema();
|
||||
math_Vector sol(1,2);
|
||||
for(k = 1; k <= myTmpSolCount; k++)
|
||||
{
|
||||
aFinder.Points(k, sol);
|
||||
myPoints1.Append(sol(1));
|
||||
myPoints2.Append(sol(2));
|
||||
}
|
||||
mySolCount += myTmpSolCount;
|
||||
} // if (aCurrF > aF - Precision::Confusion())
|
||||
else
|
||||
{
|
||||
aF = aCurrF;
|
||||
mySolCount = aFinder.NbExtrema();
|
||||
myPoints1.Clear();
|
||||
myPoints2.Clear();
|
||||
math_Vector sol(1,2);
|
||||
for(k = 1; k <= mySolCount; k++)
|
||||
{
|
||||
aFinder.Points(k, sol);
|
||||
myPoints1.Append(sol(1));
|
||||
myPoints2.Append(sol(2));
|
||||
}
|
||||
} // else
|
||||
} //if (aCurrF < aF + Precision::Confusion())
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
b- Calcul des minima:
|
||||
-----------------
|
||||
b.a) Initialisations:
|
||||
*/
|
||||
// - generales
|
||||
math_Vector Tol(1, 2);
|
||||
Tol(1) = myF.Tolerance();
|
||||
Tol(2) = myF.Tolerance();
|
||||
math_Vector UV(1,2), UVinf(1,2), UVsup(1,2);
|
||||
UVinf(1) = aCache1->TrimFirstParameter();
|
||||
UVinf(2) = aCache2->TrimFirstParameter();
|
||||
UVsup(1) = aCache1->TrimLastParameter();
|
||||
UVsup(2) = aCache2->TrimLastParameter();
|
||||
|
||||
myF.SubIntervalInitialize(UVinf,UVsup);
|
||||
|
||||
// - des 'bords' du tableau TbDist2
|
||||
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
||||
TbDist2(0,NoV) = RealLast();
|
||||
TbDist2(aNbU+1,NoV) = RealLast();
|
||||
}
|
||||
for (NoU = 1; NoU <= aNbU; NoU++) {
|
||||
TbDist2(NoU,0) = RealLast();
|
||||
TbDist2(NoU,aNbV+1) = RealLast();
|
||||
}
|
||||
|
||||
// - du tableau TbSel(0,aNbU+1,0,aNbV+1) de selection des points
|
||||
TColStd_Array2OfInteger TbSel(0,aNbU+1,0,aNbV+1);
|
||||
TbSel.Init(0);
|
||||
|
||||
/*
|
||||
b.b) Calcul des minima:
|
||||
*/
|
||||
// - recherche d un minimum sur la grille
|
||||
Standard_Integer Nu, Nv;
|
||||
Standard_Real Dist2;
|
||||
const Handle(TColStd_HArray1OfReal)& aParamArray1 = aCache1->Parameters();
|
||||
const Handle(TColStd_HArray1OfReal)& aParamArray2 = aCache2->Parameters();
|
||||
for (NoU = 1; NoU <= aNbU; NoU++) {
|
||||
for (NoV = 1; NoV <= aNbV; NoV++) {
|
||||
if (TbSel(NoU,NoV) == 0) {
|
||||
Dist2 = TbDist2(NoU,NoV);
|
||||
if ((TbDist2(NoU-1,NoV-1) >= Dist2) &&
|
||||
(TbDist2(NoU-1,NoV ) >= Dist2) &&
|
||||
(TbDist2(NoU-1,NoV+1) >= Dist2) &&
|
||||
(TbDist2(NoU ,NoV-1) >= Dist2) &&
|
||||
(TbDist2(NoU ,NoV+1) >= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV-1) >= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV ) >= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV+1) >= Dist2)) {
|
||||
|
||||
// - calcul de l extremum sur la surface:
|
||||
|
||||
UV(1) = aParamArray1->Value(NoU);
|
||||
UV(2) = aParamArray2->Value(NoV);
|
||||
|
||||
math_FunctionSetRoot S (myF,UV,Tol,UVinf,UVsup);
|
||||
|
||||
|
||||
// - mise a jour du tableau TbSel
|
||||
for (Nu = NoU-1; Nu <= NoU+1; Nu++) {
|
||||
for (Nv = NoV-1; Nv <= NoV+1; Nv++) {
|
||||
TbSel(Nu,Nv) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // if (TbSel(NoU,NoV)
|
||||
} // for (NoV = 1; ...
|
||||
} // for (NoU = 1; ...
|
||||
/*
|
||||
c- Calcul des maxima:
|
||||
-----------------
|
||||
c.a) Initialisations:
|
||||
*/
|
||||
// - des 'bords' du tableau TbDist2
|
||||
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
||||
TbDist2(0,NoV) = RealFirst();
|
||||
TbDist2(aNbU+1,NoV) = RealFirst();
|
||||
}
|
||||
for (NoU = 1; NoU <= aNbU; NoU++) {
|
||||
TbDist2(NoU,0) = RealFirst();
|
||||
TbDist2(NoU,aNbV+1) = RealFirst();
|
||||
}
|
||||
|
||||
// - du tableau TbSel(0,aNbU+1,0,aNbV+1) de selection des points
|
||||
TbSel.Init(0);
|
||||
/*for (NoU = 0; NoU <= aNbU+1; NoU++) {
|
||||
for (NoV = 0; NoV <= aNbV+1; NoV++) {
|
||||
TbSel(NoU,NoV) = 0;
|
||||
// Clear solutions clusters if it is necessary.
|
||||
for(i = 1; i <= mySolCount - 1; i++)
|
||||
{
|
||||
for(j = i + 1; j <= mySolCount; j++)
|
||||
{
|
||||
if ((myPoints1(i) - myPoints1(j)) < (myUppBorder(1) - myLowBorder(1)) * Precision::Confusion() &&
|
||||
(myPoints2(i) - myPoints2(j)) < (myUppBorder(2) - myLowBorder(2)) * Precision::Confusion())
|
||||
{
|
||||
// Points with indexes i and j is in same cluster, delete j point from it.
|
||||
myPoints1.Remove(j);
|
||||
myPoints2.Remove(j);
|
||||
j--;
|
||||
mySolCount--;
|
||||
}
|
||||
}
|
||||
}*/
|
||||
/*
|
||||
c.b) Calcul des maxima:
|
||||
*/
|
||||
// - recherche d un maximum sur la grille
|
||||
for (NoU = 1; NoU <= aNbU; NoU++) {
|
||||
for (NoV = 1; NoV <= aNbV; NoV++) {
|
||||
if (TbSel(NoU,NoV) == 0) {
|
||||
Dist2 = TbDist2(NoU,NoV);
|
||||
if ((TbDist2(NoU-1,NoV-1) <= Dist2) &&
|
||||
(TbDist2(NoU-1,NoV ) <= Dist2) &&
|
||||
(TbDist2(NoU-1,NoV+1) <= Dist2) &&
|
||||
(TbDist2(NoU ,NoV-1) <= Dist2) &&
|
||||
(TbDist2(NoU ,NoV+1) <= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV-1) <= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV ) <= Dist2) &&
|
||||
(TbDist2(NoU+1,NoV+1) <= Dist2)) {
|
||||
}
|
||||
|
||||
// - calcul de l extremum sur la surface:
|
||||
|
||||
UV(1) = aParamArray1->Value(NoU);
|
||||
UV(2) = aParamArray2->Value(NoV);
|
||||
|
||||
math_FunctionSetRoot S (myF,UV,Tol,UVinf,UVsup);
|
||||
|
||||
// - mise a jour du tableau TbSel
|
||||
for (Nu = NoU-1; Nu <= NoU+1; Nu++) {
|
||||
for (Nv = NoV-1; Nv <= NoV+1; Nv++) {
|
||||
TbSel(Nu,Nv) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
} // if (TbSel(NoU,NoV))
|
||||
} // for (NoV = 1; ...)
|
||||
} // for (NoU = 1; ...)
|
||||
delete aFunc;
|
||||
myDone = Standard_True;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Boolean Extrema_GenExtCC::IsDone () const { return myDone; }
|
||||
Standard_Boolean Extrema_GenExtCC::IsDone () const
|
||||
{
|
||||
return myDone;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
Standard_Integer Extrema_GenExtCC::NbExt () const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::NbExt()")
|
||||
return myF.NbExt();
|
||||
|
||||
return mySolCount;
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
@ -297,14 +186,18 @@ Standard_Real Extrema_GenExtCC::SquareDistance (const Standard_Integer N) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::SquareDistance()")
|
||||
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::SquareDistance()")
|
||||
return myF.SquareDistance(N);
|
||||
|
||||
return Tool1::Value(*((Curve1*)myC[0]), myPoints1(N)).SquareDistance(Tool2::Value(*((Curve2*)myC[1]), myPoints2(N)));
|
||||
}
|
||||
//=============================================================================
|
||||
|
||||
void Extrema_GenExtCC::Points (const Standard_Integer N,
|
||||
POnC& P1, POnC& P2) const
|
||||
POnC& P1,
|
||||
POnC& P2) const
|
||||
{
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::SquareDistance()")
|
||||
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::SquareDistance()")
|
||||
myF.Points(N,P1,P2);
|
||||
}
|
||||
StdFail_NotDone_Raise_if (!myDone, "Extrema_GenExtCC::Points()")
|
||||
Standard_OutOfRange_Raise_if ((N < 1 || N > NbExt()), "Extrema_GenExtCC::Points()")
|
||||
|
||||
P1.SetValues(myPoints1(N), Tool1::Value(*((Curve1*)myC[0]), myPoints1(N)));
|
||||
P2.SetValues(myPoints2(N), Tool2::Value(*((Curve2*)myC[1]), myPoints2(N)));
|
||||
}
|
410
src/Extrema/Extrema_GlobOptFuncCC.cxx
Normal file
410
src/Extrema/Extrema_GlobOptFuncCC.cxx
Normal file
@ -0,0 +1,410 @@
|
||||
// Created on: 2014-01-20
|
||||
// Created by: Alexaner Malyshev
|
||||
// Copyright (c) 2014-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement
|
||||
|
||||
#include <Extrema_GlobOptFuncCC.hxx>
|
||||
|
||||
#include <gp_Pnt.hxx>
|
||||
#include <gp_Pnt2d.hxx>
|
||||
#include <gp_Vec.hxx>
|
||||
#include <gp_Vec2d.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <Standard_Integer.hxx>
|
||||
#include <Standard_OutOfRange.hxx>
|
||||
|
||||
static Standard_Integer _NbVariables()
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
|
||||
// 3d _Value
|
||||
static Standard_Boolean _Value(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2,
|
||||
const math_Vector& X,
|
||||
Standard_Real& F)
|
||||
{
|
||||
Standard_Real u = X(1);
|
||||
Standard_Real v = X(2);
|
||||
|
||||
if (u < C1.FirstParameter() ||
|
||||
u > C1.LastParameter() ||
|
||||
v < C2.FirstParameter() ||
|
||||
v > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
F = C2.Value(v).Distance(C1.Value(u));
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// 2d _Value
|
||||
static Standard_Boolean _Value(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2,
|
||||
const math_Vector& X,
|
||||
Standard_Real& F)
|
||||
{
|
||||
Standard_Real u = X(1);
|
||||
Standard_Real v = X(2);
|
||||
|
||||
if (u < C1.FirstParameter() ||
|
||||
u > C1.LastParameter() ||
|
||||
v < C2.FirstParameter() ||
|
||||
v > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
F = C2.Value(v).Distance(C1.Value(u));
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
//! F = (x2(v) - x1(u))^2 + (y2(v) - y1(u))^2 + (z2(v) - z1(u))^2
|
||||
|
||||
// 3d _Gradient
|
||||
static Standard_Boolean _Gradient(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2,
|
||||
const math_Vector& X,
|
||||
math_Vector& G)
|
||||
{
|
||||
gp_Pnt C1D0, C2D0;
|
||||
gp_Vec C1D1, C2D1;
|
||||
|
||||
if(X(1) < C1.FirstParameter() ||
|
||||
X(1) > C1.LastParameter() ||
|
||||
X(2) < C2.FirstParameter() ||
|
||||
X(2) > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
C1.D1(X(1), C1D0, C1D1);
|
||||
C2.D1(X(2), C2D0, C2D1);
|
||||
|
||||
G(1) = - (C2D0.X() - C1D0.X()) * C1D1.X()
|
||||
- (C2D0.Y() - C1D0.Y()) * C1D1.Y()
|
||||
- (C2D0.Z() - C1D0.Z()) * C1D1.Z();
|
||||
G(2) = (C2D0.X() - C1D0.X()) * C2D1.X()
|
||||
+ (C2D0.Y() - C1D0.Y()) * C2D1.Y()
|
||||
+ (C2D0.Z() - C1D0.Z()) * C2D1.Z();
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// 2d _Graient
|
||||
static Standard_Boolean _Gradient(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2,
|
||||
const math_Vector& X,
|
||||
math_Vector& G)
|
||||
{
|
||||
gp_Pnt2d C1D0, C2D0;
|
||||
gp_Vec2d C1D1, C2D1;
|
||||
|
||||
if(X(1) < C1.FirstParameter() ||
|
||||
X(1) > C1.LastParameter() ||
|
||||
X(2) < C2.FirstParameter() ||
|
||||
X(2) > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
C1.D1(X(1), C1D0, C1D1);
|
||||
C2.D1(X(2), C2D0, C2D1);
|
||||
|
||||
G(1) = - (C2D0.X() - C1D0.X()) * C1D1.X()
|
||||
- (C2D0.Y() - C1D0.Y()) * C1D1.Y();
|
||||
G(2) = (C2D0.X() - C1D0.X()) * C2D1.X()
|
||||
+ (C2D0.Y() - C1D0.Y()) * C2D1.Y();
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// 3d _Hessian
|
||||
static Standard_Boolean _Hessian (const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2,
|
||||
const math_Vector& X,
|
||||
math_Matrix & H)
|
||||
{
|
||||
gp_Pnt C1D0, C2D0;
|
||||
gp_Vec C1D1, C2D1;
|
||||
gp_Vec C1D2, C2D2;
|
||||
|
||||
if(X(1) < C1.FirstParameter() ||
|
||||
X(1) > C1.LastParameter() ||
|
||||
X(2) < C2.FirstParameter() ||
|
||||
X(2) > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
C1.D2(X(1), C1D0, C1D1, C1D2);
|
||||
C2.D2(X(2), C2D0, C2D1, C2D2);
|
||||
|
||||
H(1, 1) = C1D1.X() * C1D1.X()
|
||||
+ C1D1.Y() * C1D1.Y()
|
||||
+ C1D1.Z() * C1D1.Z()
|
||||
- (C2D0.X() - C1D0.X()) * C1D2.X()
|
||||
- (C2D0.Y() - C1D0.Y()) * C1D2.Y()
|
||||
- (C2D0.Z() - C1D0.Z()) * C1D2.Z();
|
||||
|
||||
H(1, 2) = - C2D1.X() * C1D1.X()
|
||||
- C2D1.Y() * C1D1.Y()
|
||||
- C2D1.Z() * C1D1.Z();
|
||||
|
||||
H(2,1) = H(1,2);
|
||||
|
||||
H(2,2) = C2D1.X() * C2D1.X()
|
||||
+ C2D1.Y() * C2D1.Y()
|
||||
+ C2D1.Z() * C2D1.Z()
|
||||
+ (C2D0.X() - C1D0.X()) * C2D2.X()
|
||||
+ (C2D0.Y() - C1D0.Y()) * C2D2.Y()
|
||||
+ (C2D0.Z() - C1D0.Z()) * C2D2.Z();
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// 2d _Hessian
|
||||
static Standard_Boolean _Hessian (const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2,
|
||||
const math_Vector& X,
|
||||
math_Matrix & H)
|
||||
{
|
||||
gp_Pnt2d C1D0, C2D0;
|
||||
gp_Vec2d C1D1, C2D1;
|
||||
gp_Vec2d C1D2, C2D2;
|
||||
|
||||
if(X(1) < C1.FirstParameter() ||
|
||||
X(1) > C1.LastParameter() ||
|
||||
X(2) < C2.FirstParameter() ||
|
||||
X(2) > C2.LastParameter())
|
||||
{
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
C1.D2(X(1), C1D0, C1D1, C1D2);
|
||||
C2.D2(X(2), C2D0, C2D1, C2D2);
|
||||
|
||||
H(1, 1) = C1D1.X() * C1D1.X()
|
||||
+ C1D1.Y() * C1D1.Y()
|
||||
- (C2D0.X() - C1D0.X()) * C1D2.X()
|
||||
- (C2D0.Y() - C1D0.Y()) * C1D2.Y();
|
||||
|
||||
H(1, 2) = - C2D1.X() * C1D1.X()
|
||||
- C2D1.Y() * C1D1.Y();
|
||||
|
||||
H(2,1) = H(1,2);
|
||||
|
||||
H(2,2) = C2D1.X() * C2D1.X()
|
||||
+ C2D1.Y() * C2D1.Y()
|
||||
+ (C2D0.X() - C1D0.X()) * C2D2.X()
|
||||
+ (C2D0.Y() - C1D0.Y()) * C2D2.Y();
|
||||
return Standard_True;
|
||||
}
|
||||
|
||||
// C0
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC0
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC0::Extrema_GlobOptFuncCCC0(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2)
|
||||
: myC1_3d(&C1),
|
||||
myC2_3d(&C2)
|
||||
{
|
||||
myType = 1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC0
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC0::Extrema_GlobOptFuncCCC0(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2)
|
||||
: myC1_2d(&C1),
|
||||
myC2_2d(&C2)
|
||||
{
|
||||
myType = 2;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer Extrema_GlobOptFuncCCC0::NbVariables() const
|
||||
{
|
||||
return _NbVariables();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC0::Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
if (myType == 1)
|
||||
return _Value(*myC1_3d, *myC2_3d, X, F);
|
||||
else
|
||||
return _Value(*myC1_2d, *myC2_2d, X, F);
|
||||
}
|
||||
|
||||
// C1
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC1
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC1::Extrema_GlobOptFuncCCC1(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2)
|
||||
: myC1_3d(&C1),
|
||||
myC2_3d(&C2)
|
||||
{
|
||||
myType = 1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC1
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC1::Extrema_GlobOptFuncCCC1(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2)
|
||||
: myC1_2d(&C1),
|
||||
myC2_2d(&C2)
|
||||
{
|
||||
myType = 2;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer Extrema_GlobOptFuncCCC1::NbVariables() const
|
||||
{
|
||||
return _NbVariables();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC1::Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
if (myType == 1)
|
||||
return _Value(*myC1_3d, *myC2_3d, X, F);
|
||||
else
|
||||
return _Value(*myC1_2d, *myC2_2d, X, F);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Gradient
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC1::Gradient(const math_Vector& X,math_Vector& G)
|
||||
{
|
||||
if (myType == 1)
|
||||
return _Gradient(*myC1_3d, *myC2_3d, X, G);
|
||||
else
|
||||
return _Gradient(*myC1_2d, *myC2_2d, X, G);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Values
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC1::Values(const math_Vector& X,Standard_Real& F,math_Vector& G)
|
||||
{
|
||||
return (Value(X, F) && Gradient(X, G));
|
||||
}
|
||||
|
||||
// C2
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC2
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC2::Extrema_GlobOptFuncCCC2(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2)
|
||||
: myC1_3d(&C1),
|
||||
myC2_3d(&C2)
|
||||
{
|
||||
myType = 1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Extrema_GlobOptFuncCCC2
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
Extrema_GlobOptFuncCCC2::Extrema_GlobOptFuncCCC2(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2)
|
||||
: myC1_2d(&C1),
|
||||
myC2_2d(&C2)
|
||||
{
|
||||
myType = 2;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbVariables
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer Extrema_GlobOptFuncCCC2::NbVariables() const
|
||||
{
|
||||
return _NbVariables();
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Value
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC2::Value(const math_Vector& X,Standard_Real& F)
|
||||
{
|
||||
if (myType == 1)
|
||||
return _Value(*myC1_3d, *myC2_3d, X, F);
|
||||
else
|
||||
return _Value(*myC1_2d, *myC2_2d, X, F);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Gradient
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC2::Gradient(const math_Vector& X,math_Vector& G)
|
||||
{
|
||||
if (myType == 1)
|
||||
return _Gradient(*myC1_3d, *myC2_3d, X, G);
|
||||
else
|
||||
return _Gradient(*myC1_2d, *myC2_2d, X, G);
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Values
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC2::Values(const math_Vector& X,Standard_Real& F,math_Vector& G)
|
||||
{
|
||||
return (Value(X, F) && Gradient(X, G));
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Values
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean Extrema_GlobOptFuncCCC2::Values(const math_Vector& X,Standard_Real& F,math_Vector& G,math_Matrix& H)
|
||||
{
|
||||
Standard_Boolean isHessianComputed = Standard_False;
|
||||
if (myType == 1)
|
||||
isHessianComputed = _Hessian(*myC1_3d, *myC2_3d, X, H);
|
||||
else
|
||||
isHessianComputed = _Hessian(*myC1_2d, *myC2_2d, X, H);
|
||||
|
||||
|
||||
return (Value(X, F) && Gradient(X, G) && isHessianComputed);
|
||||
}
|
119
src/Extrema/Extrema_GlobOptFuncCC.hxx
Normal file
119
src/Extrema/Extrema_GlobOptFuncCC.hxx
Normal file
@ -0,0 +1,119 @@
|
||||
// Created on: 2014-01-20
|
||||
// Created by: Alexaner Malyshev
|
||||
// Copyright (c) 2014-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement
|
||||
|
||||
#ifndef _Extrema_GlobOptFuncCC_HeaderFile
|
||||
#define _Extrema_GlobOptFuncCC_HeaderFile
|
||||
|
||||
#include <Adaptor2d_Curve2d.hxx>
|
||||
#include <Adaptor3d_Curve.hxx>
|
||||
#include <math_Matrix.hxx>
|
||||
#include <math_Vector.hxx>
|
||||
#include <math_MultipleVarFunction.hxx>
|
||||
#include <math_MultipleVarFunctionWithGradient.hxx>
|
||||
#include <math_MultipleVarFunctionWithHessian.hxx>
|
||||
|
||||
//! This class implements function which operates with Eucluidean distance <br>
|
||||
//! between 2 curves in case of C1 and C2 continuity is C0.
|
||||
class Extrema_GlobOptFuncCCC0 : public math_MultipleVarFunction
|
||||
{
|
||||
public:
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC0(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2);
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC0(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2);
|
||||
|
||||
|
||||
|
||||
Standard_EXPORT virtual Standard_Integer NbVariables() const;
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Value(const math_Vector& X,Standard_Real& F);
|
||||
|
||||
|
||||
private:
|
||||
|
||||
Extrema_GlobOptFuncCCC0 & operator = (const Extrema_GlobOptFuncCCC0 & theOther);
|
||||
|
||||
const Adaptor3d_Curve *myC1_3d, *myC2_3d;
|
||||
const Adaptor2d_Curve2d *myC1_2d, *myC2_2d;
|
||||
Standard_Integer myType;
|
||||
};
|
||||
|
||||
|
||||
//! This class implements function which operates with Eucluidean distance <br>
|
||||
//! between 2 curves in case of C1 and C2 continuity is C1.
|
||||
class Extrema_GlobOptFuncCCC1 : public math_MultipleVarFunctionWithGradient
|
||||
{
|
||||
public:
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC1(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2);
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC1(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2);
|
||||
|
||||
Standard_EXPORT virtual Standard_Integer NbVariables() const;
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Value(const math_Vector& X,Standard_Real& F);
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Gradient(const math_Vector& X,math_Vector& G);
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G);
|
||||
|
||||
|
||||
private:
|
||||
|
||||
Extrema_GlobOptFuncCCC1 & operator = (const Extrema_GlobOptFuncCCC1 & theOther);
|
||||
|
||||
const Adaptor3d_Curve *myC1_3d, *myC2_3d;
|
||||
const Adaptor2d_Curve2d *myC1_2d, *myC2_2d;
|
||||
Standard_Integer myType;
|
||||
};
|
||||
|
||||
|
||||
//! This class implements function which operates with Eucluidean distance <br>
|
||||
//! between 2 curves in case of C1 and C2 continuity is C2 or more.
|
||||
class Extrema_GlobOptFuncCCC2 : public math_MultipleVarFunctionWithHessian
|
||||
{
|
||||
public:
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC2(const Adaptor3d_Curve& C1,
|
||||
const Adaptor3d_Curve& C2);
|
||||
|
||||
Standard_EXPORT Extrema_GlobOptFuncCCC2(const Adaptor2d_Curve2d& C1,
|
||||
const Adaptor2d_Curve2d& C2);
|
||||
|
||||
Standard_EXPORT virtual Standard_Integer NbVariables() const;
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Value(const math_Vector& X,Standard_Real& F);
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Gradient(const math_Vector& X,math_Vector& G);
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G);
|
||||
|
||||
Standard_EXPORT virtual Standard_Boolean Values(const math_Vector& X,Standard_Real& F,math_Vector& G,math_Matrix& H);
|
||||
|
||||
|
||||
private:
|
||||
|
||||
Extrema_GlobOptFuncCCC2 & operator = (const Extrema_GlobOptFuncCCC2 & theOther);
|
||||
|
||||
const Adaptor3d_Curve *myC1_3d, *myC2_3d;
|
||||
const Adaptor2d_Curve2d *myC1_2d, *myC2_2d;
|
||||
Standard_Integer myType;
|
||||
};
|
||||
|
||||
#endif
|
@ -25,8 +25,7 @@ uses POnCurv2d from Extrema,
|
||||
Vec2d from gp,
|
||||
HArray1OfPnt2d from TColgp,
|
||||
Curve2d from Adaptor2d,
|
||||
Curve2dTool from Extrema,
|
||||
LCCache2d from Extrema
|
||||
Curve2dTool from Extrema
|
||||
|
||||
raises DomainError from Standard,
|
||||
NotDone from StdFail
|
||||
|
@ -1 +1,3 @@
|
||||
Extrema_HUBTreeOfSphere.hxx
|
||||
Extrema_GlobOptFuncCC.hxx
|
||||
Extrema_GlobOptFuncCC.cxx
|
||||
|
@ -1158,7 +1158,7 @@ void FindInternalIntersections(const TopoDS_Edge& theEdge,
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!IntersFound) //intersection is inside "theEdge" => split
|
||||
if (!IntersFound && aDist <= Precision::Confusion()) //intersection is inside "theEdge" => split
|
||||
{
|
||||
gp_Pnt aPoint = aCurve->Value(anIntPar);
|
||||
if (aPoint.Distance(thePnt[0]) > BRep_Tool::Tolerance(theVertices[0]) &&
|
||||
|
@ -8,4 +8,6 @@ math_Vector.hxx
|
||||
math_Vector.cxx
|
||||
math_IntegerVector.hxx
|
||||
math_IntegerVector.cxx
|
||||
math_SingleTab.hxx
|
||||
math_SingleTab.hxx
|
||||
math_GlobOptMin.hxx
|
||||
math_GlobOptMin.cxx
|
@ -51,6 +51,7 @@ is
|
||||
deferred class MultipleVarFunctionWithHessian;
|
||||
deferred class FunctionSet;
|
||||
deferred class FunctionSetWithDerivatives;
|
||||
imported GlobOptMin;
|
||||
class IntegerRandom;
|
||||
class Gauss;
|
||||
class GaussLeastSquare;
|
||||
|
386
src/math/math_GlobOptMin.cxx
Normal file
386
src/math/math_GlobOptMin.cxx
Normal file
@ -0,0 +1,386 @@
|
||||
// Created on: 2014-01-20
|
||||
// Created by: Alexaner Malyshev
|
||||
// Copyright (c) 2014-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement
|
||||
|
||||
#include <math_GlobOptMin.hxx>
|
||||
|
||||
#include <math_BFGS.hxx>
|
||||
#include <math_Matrix.hxx>
|
||||
#include <math_MultipleVarFunctionWithGradient.hxx>
|
||||
#include <math_MultipleVarFunctionWithHessian.hxx>
|
||||
#include <math_NewtonMinimum.hxx>
|
||||
#include <math_Powell.hxx>
|
||||
#include <Precision.hxx>
|
||||
#include <Standard_Integer.hxx>
|
||||
#include <Standard_Real.hxx>
|
||||
|
||||
const Handle(Standard_Type)& STANDARD_TYPE(math_GlobOptMin)
|
||||
{
|
||||
static Handle(Standard_Type) _atype = new Standard_Type ("math_GlobOptMin", sizeof (math_GlobOptMin));
|
||||
return _atype;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : math_GlobOptMin
|
||||
//purpose : Constructor
|
||||
//=======================================================================
|
||||
math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC)
|
||||
: myN(theFunc->NbVariables()),
|
||||
myA(1, myN),
|
||||
myB(1, myN),
|
||||
myGlobA(1, myN),
|
||||
myGlobB(1, myN),
|
||||
myX(1, myN),
|
||||
myTmp(1, myN),
|
||||
myV(1, myN)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
myFunc = theFunc;
|
||||
myC = theC;
|
||||
myZ = -1;
|
||||
mySolCount = 0;
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myGlobA(i) = theA(i);
|
||||
myGlobB(i) = theB(i);
|
||||
|
||||
myA(i) = theA(i);
|
||||
myB(i) = theB(i);
|
||||
}
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetGlobalParams
|
||||
//purpose : Set params without memory allocation.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
myFunc = theFunc;
|
||||
myC = theC;
|
||||
myZ = -1;
|
||||
mySolCount = 0;
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myGlobA(i) = theA(i);
|
||||
myGlobB(i) = theB(i);
|
||||
|
||||
myA(i) = theA(i);
|
||||
myB(i) = theB(i);
|
||||
}
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetLocalParams
|
||||
//purpose : Set params without memory allocation.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
||||
const math_Vector& theLocalB)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
myZ = -1;
|
||||
mySolCount = 0;
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myA(i) = theLocalA(i);
|
||||
myB(i) = theLocalB(i);
|
||||
}
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ~math_GlobOptMin
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
math_GlobOptMin::~math_GlobOptMin()
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Perform
|
||||
//purpose : Compute Global extremum point
|
||||
//=======================================================================
|
||||
// In this algo indexes started from 1, not from 0.
|
||||
void math_GlobOptMin::Perform()
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
// Compute parameters range
|
||||
Standard_Real minLength = RealLast();
|
||||
Standard_Real maxLength = RealFirst();
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
Standard_Real currentLength = myB(i) - myA(i);
|
||||
if (currentLength < minLength)
|
||||
minLength = currentLength;
|
||||
if (currentLength > maxLength)
|
||||
maxLength = currentLength;
|
||||
}
|
||||
|
||||
Standard_Real myTol = 1e-2;
|
||||
|
||||
myE1 = minLength * myTol / myC;
|
||||
myE2 = 2.0 * myTol / myC * maxLength;
|
||||
myE3 = - maxLength * myTol / 4;
|
||||
|
||||
// Compure start point.
|
||||
math_Vector aPnt(1,2);
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
Standard_Real currCentral = (myA(i) + myB(i)) / 2.0;
|
||||
aPnt(i) = currCentral;
|
||||
myY.Append(currCentral);
|
||||
}
|
||||
|
||||
myFunc->Value(aPnt, myF);
|
||||
mySolCount++;
|
||||
|
||||
computeGlobalExtremum(myN);
|
||||
|
||||
myDone = Standard_True;
|
||||
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : computeLocalExtremum
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::computeLocalExtremum(const math_Vector& thePnt,
|
||||
Standard_Real& theVal,
|
||||
math_Vector& theOutPnt)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
//Newton method
|
||||
if (dynamic_cast<math_MultipleVarFunctionWithHessian*>(myFunc))
|
||||
{
|
||||
math_MultipleVarFunctionWithHessian* myTmp =
|
||||
dynamic_cast<math_MultipleVarFunctionWithHessian*> (myFunc);
|
||||
|
||||
math_NewtonMinimum newtonMinimum(*myTmp, thePnt);
|
||||
if (newtonMinimum.IsDone())
|
||||
{
|
||||
newtonMinimum.Location(theOutPnt);
|
||||
theVal = newtonMinimum.Minimum();
|
||||
}
|
||||
else return Standard_False;
|
||||
} else
|
||||
|
||||
// BFGS method used.
|
||||
if (dynamic_cast<math_MultipleVarFunctionWithGradient*>(myFunc))
|
||||
{
|
||||
math_MultipleVarFunctionWithGradient* myTmp =
|
||||
dynamic_cast<math_MultipleVarFunctionWithGradient*> (myFunc);
|
||||
math_BFGS bfgs(*myTmp, thePnt);
|
||||
if (bfgs.IsDone())
|
||||
{
|
||||
bfgs.Location(theOutPnt);
|
||||
theVal = bfgs.Minimum();
|
||||
}
|
||||
else return Standard_False;
|
||||
} else
|
||||
|
||||
// Powell method used.
|
||||
if (dynamic_cast<math_MultipleVarFunction*>(myFunc))
|
||||
{
|
||||
math_Matrix m(1, myN, 1, myN, 0.0);
|
||||
for(i = 1; i <= myN; i++)
|
||||
m(1, 1) = 1.0;
|
||||
|
||||
math_Powell powell(*myFunc, thePnt, m, 1e-10);
|
||||
|
||||
if (powell.IsDone())
|
||||
{
|
||||
powell.Location(theOutPnt);
|
||||
theVal = powell.Minimum();
|
||||
}
|
||||
else return Standard_False;
|
||||
}
|
||||
|
||||
if (isInside(theOutPnt))
|
||||
return Standard_True;
|
||||
else
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ComputeGlobalExtremum
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
{
|
||||
Standard_Integer i;
|
||||
Standard_Real d; // Functional in moved point.
|
||||
Standard_Real val = RealLast(); // Local extrema computed in moved point.
|
||||
Standard_Real stepBestValue = RealLast();
|
||||
math_Vector stepBestPoint(1,2);
|
||||
Standard_Boolean isInside = Standard_False;
|
||||
Standard_Real r;
|
||||
|
||||
for(myX(j) = myA(j) + myE1; myX(j) < myB(j) + myE1; myX(j) += myV(j))
|
||||
{
|
||||
if (myX(j) > myB(j))
|
||||
myX(j) = myB(j);
|
||||
|
||||
if (j == 1)
|
||||
{
|
||||
isInside = Standard_False;
|
||||
myFunc->Value(myX, d);
|
||||
r = (d - myF) * myZ;
|
||||
if(r > myE3)
|
||||
{
|
||||
isInside = computeLocalExtremum(myX, val, myTmp);
|
||||
}
|
||||
stepBestValue = (isInside && (val < d))? val : d;
|
||||
stepBestPoint = (isInside && (val < d))? myTmp : myX;
|
||||
|
||||
// Solutions are close to each other.
|
||||
if (Abs(stepBestValue - myF) < Precision::Confusion() * 0.01)
|
||||
{
|
||||
if (!isStored(stepBestPoint))
|
||||
{
|
||||
if ((stepBestValue - myF) * myZ > 0.0)
|
||||
myF = stepBestValue;
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(stepBestPoint(i));
|
||||
mySolCount++;
|
||||
}
|
||||
}
|
||||
|
||||
// New best solution.
|
||||
if ((stepBestValue - myF) * myZ > Precision::Confusion() * 0.01)
|
||||
{
|
||||
mySolCount = 0;
|
||||
myF = stepBestValue;
|
||||
myY.Clear();
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(stepBestPoint(i));
|
||||
mySolCount++;
|
||||
}
|
||||
|
||||
myV(1) = myE2 + Abs(myF - d) / myC;
|
||||
}
|
||||
else
|
||||
{
|
||||
myV(j) = RealLast() / 2.0;
|
||||
computeGlobalExtremum(j - 1);
|
||||
}
|
||||
if ((j < myN) && (myV(j + 1) > myV(j)))
|
||||
{
|
||||
if (myV(j) > (myB(j + 1) - myA(j + 1)) / 3.0) // Case of too big step.
|
||||
myV(j + 1) = (myB(j + 1) - myA(j + 1)) / 3.0;
|
||||
else
|
||||
myV(j + 1) = myV(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsInside
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::isInside(const math_Vector& thePnt)
|
||||
{
|
||||
Standard_Integer i;
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
if (thePnt(i) < myGlobA(i) || thePnt(i) > myGlobB(i))
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
return Standard_True;
|
||||
}
|
||||
//=======================================================================
|
||||
//function : IsStored
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt)
|
||||
{
|
||||
Standard_Integer i,j;
|
||||
Standard_Boolean isSame = Standard_True;
|
||||
|
||||
for(i = 0; i < mySolCount; i++)
|
||||
{
|
||||
isSame = Standard_True;
|
||||
for(j = 1; j <= myN; j++)
|
||||
{
|
||||
if ((Abs(thePnt(j) - myY(i * myN + j))) > (myB(j) - myA(j)) * Precision::Confusion())
|
||||
{
|
||||
isSame = Standard_False;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (isSame == Standard_True)
|
||||
return Standard_True;
|
||||
|
||||
}
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbExtrema
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer math_GlobOptMin::NbExtrema()
|
||||
{
|
||||
return mySolCount;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetF
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Real math_GlobOptMin::GetF()
|
||||
{
|
||||
return myF;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsDone
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::isDone()
|
||||
{
|
||||
return myDone;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Points
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::Points(const Standard_Integer theIndex, math_Vector& theSol)
|
||||
{
|
||||
Standard_Integer j;
|
||||
|
||||
for(j = 1; j <= myN; j++)
|
||||
theSol(j) = myY((theIndex - 1) * myN + j);
|
||||
}
|
101
src/math/math_GlobOptMin.hxx
Normal file
101
src/math/math_GlobOptMin.hxx
Normal file
@ -0,0 +1,101 @@
|
||||
// Created on: 2014-01-20
|
||||
// Created by: Alexaner Malyshev
|
||||
// Copyright (c) 2014-2014 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _math_GlobOptMin_HeaderFile
|
||||
#define _math_GlobOptMin_HeaderFile
|
||||
|
||||
#include <math_MultipleVarFunction.hxx>
|
||||
#include <NCollection_Sequence.hxx>
|
||||
#include <Standard_Type.hxx>
|
||||
|
||||
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
|
||||
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
|
||||
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
|
||||
|
||||
class math_GlobOptMin
|
||||
{
|
||||
public:
|
||||
|
||||
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC = 9);
|
||||
|
||||
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
const math_Vector& theB,
|
||||
Standard_Real theC = 9);
|
||||
|
||||
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
|
||||
const math_Vector& theLocalB);
|
||||
|
||||
Standard_EXPORT ~math_GlobOptMin();
|
||||
|
||||
Standard_EXPORT void Perform();
|
||||
|
||||
//! Get best functional value.
|
||||
Standard_EXPORT Standard_Real GetF();
|
||||
|
||||
//! Return count of global extremas. NbExtrema <= MAX_SOLUTIONS.
|
||||
Standard_EXPORT Standard_Integer NbExtrema();
|
||||
|
||||
//! Return solution i, 1 <= i <= NbExtrema.
|
||||
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
|
||||
|
||||
private:
|
||||
|
||||
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
|
||||
|
||||
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
|
||||
|
||||
void computeGlobalExtremum(Standard_Integer theIndex);
|
||||
|
||||
//! Check that myA <= pnt <= myB
|
||||
Standard_Boolean isInside(const math_Vector& thePnt);
|
||||
|
||||
Standard_Boolean isStored(const math_Vector &thePnt);
|
||||
|
||||
Standard_Boolean isDone();
|
||||
|
||||
// Input.
|
||||
math_MultipleVarFunction* myFunc;
|
||||
Standard_Integer myN;
|
||||
math_Vector myA; // Left border on current C2 interval.
|
||||
math_Vector myB; // Right border on current C2 interval.
|
||||
math_Vector myGlobA; // Global left border.
|
||||
math_Vector myGlobB; // Global right border.
|
||||
|
||||
// Output.
|
||||
Standard_Boolean myDone;
|
||||
NCollection_Sequence<Standard_Real> myY;// Current solutions.
|
||||
Standard_Integer mySolCount; // Count of solutions.
|
||||
|
||||
// Algorithm data.
|
||||
Standard_Real myZ;
|
||||
Standard_Real myC; //Lipschitz constant
|
||||
Standard_Real myE1; // Border coeff.
|
||||
Standard_Real myE2; // Minimum step size.
|
||||
Standard_Real myE3; // Local extrema starting parameter.
|
||||
|
||||
math_Vector myX; // Current modified solution
|
||||
math_Vector myTmp; // Current modified solution
|
||||
math_Vector myV; // Steps array.
|
||||
|
||||
Standard_Real myF; // Current value of Global optimum.
|
||||
};
|
||||
|
||||
const Handle(Standard_Type)& TYPE(math_GlobOptMin);
|
||||
|
||||
#endif
|
@ -143,12 +143,19 @@ void math_NewtonMinimum::Perform(math_MultipleVarFunctionWithHessian& F,
|
||||
}
|
||||
|
||||
LU.Solve(TheGradient, TheStep);
|
||||
*suivant = *precedent - TheStep;
|
||||
Standard_Boolean hasProblem = Standard_False;
|
||||
do
|
||||
{
|
||||
*suivant = *precedent - TheStep;
|
||||
|
||||
// Gestion de la convergence
|
||||
hasProblem = !(F.Value(*suivant, TheMinimum));
|
||||
|
||||
// Gestion de la convergence
|
||||
|
||||
F.Value(*suivant, TheMinimum);
|
||||
if (hasProblem)
|
||||
{
|
||||
TheStep /= 2.0;
|
||||
}
|
||||
} while (hasProblem);
|
||||
|
||||
if (IsConverged()) { NbConv++; }
|
||||
else { NbConv=0; }
|
||||
|
@ -8,9 +8,19 @@ puts ""
|
||||
|
||||
bsplinecurve r3 2 6 1 3 2 1 3 1 4 1 5 1 6 3 2 5 3 1 3 7 3 1 4 8 3 1 4 8 3 1 4 8 3 1 5 9 3 1 9 7 3 1
|
||||
bsplinecurve r4 2 6 2 3 2.5 1 3 1 3.5 1 4 1 4.5 3 -1 2 3 1 1 11 3 1 3 9 3 1 3 9 3 1 3 9 3 1 5 7 3 1 7 4 3 1
|
||||
set info [extrema r3 r4]
|
||||
extrema r3 r4
|
||||
|
||||
if { [regexp "Extrema 3 is point : 4 8 3" $info] != 1 || [regexp "Extrema 8 is point : 4 8 3" $info] != 1 } {
|
||||
cvalue ext_1 0 x y z
|
||||
set info [dump x]
|
||||
regexp "(\[-0-9.+eE\])" $info full xx
|
||||
set info [dump y]
|
||||
regexp "(\[-0-9.+eE\])" $info full yy
|
||||
set info [dump z]
|
||||
regexp "(\[-0-9.+eE\])" $info full zz
|
||||
|
||||
if { sqrt(($xx - 4.0) * ($xx - 4.0) +
|
||||
($yy - 8.0) * ($yy - 8.0) +
|
||||
($zz - 3.0) * ($zz - 3.0)) > 1.0e-7} {
|
||||
puts "Error : Point of extrema is wrong"
|
||||
} else {
|
||||
puts "OK: Point of extrema is valid"
|
||||
|
@ -10,7 +10,7 @@ bsplinecurve r1 2 5 1 3 2 1 3 1 4 1 5 3 2 5 3 1 3 7 3 1 4 8 3 1 4 8 3 1 5 9 3 1
|
||||
bsplinecurve r2 2 5 2 3 2.5 1 3 1 3.5 1 4 3 -1 2 3 1 1 11 3 1 3 9 3 1 3 9 3 1 3 9 3 1 5 7 3 1 7 4 3 1
|
||||
set info [extrema r1 r2]
|
||||
|
||||
if { [llength $info] != 3 } {
|
||||
if { [llength $info] != 1 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
} else {
|
||||
puts "OK: Extrema is valid"
|
||||
|
@ -11,7 +11,7 @@ bsplinecurve r10 2 6 2 3 2.5 1 3 1 3.5 1 4 1 4.5 3 5 20 3 1 8 15 3 1 12 18 3 1 1
|
||||
|
||||
set info [extrema r9 r10]
|
||||
|
||||
if { [llength $info] != 6 } {
|
||||
if { [llength $info] != 1 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
} else {
|
||||
puts "OK: Extrema is valid"
|
||||
|
@ -11,13 +11,11 @@ puts ""
|
||||
|
||||
set info [2dextrema b3 b4]
|
||||
set status 0
|
||||
for { set i 1 } { $i <= 15 } { incr i 1 } {
|
||||
regexp "dist $i: +(\[-0-9.+eE\]+)" $info full pp
|
||||
if { $pp != 1.4142135623730951 } {
|
||||
puts "Error : Extrema is wrong on dist $i"
|
||||
regexp "dist 1: +(\[-0-9.+eE\]+)" $info full pp
|
||||
if { $pp > 1.0e-7 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
set status 1
|
||||
}
|
||||
}
|
||||
|
||||
if { $status != 0 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
|
@ -11,37 +11,14 @@ puts ""
|
||||
set info [2dextrema b9 b10]
|
||||
|
||||
set status 0
|
||||
for { set i 1 } { $i <= 9 } { incr i } {
|
||||
regexp "dist $i: +(\[-0-9.+eE\]+)" $info full pp1
|
||||
if { $pp1 != 7.2801098892805181 } {
|
||||
for { set i 1 } { $i <= 6 } { incr i 1 } {
|
||||
regexp "dist $i: +(\[-0-9.+eE\]+)" $info full pp
|
||||
if { abs($pp - 4.316921907096100) > 1.0e-7 } {
|
||||
puts "Error : Extrema is wrong on dist $i"
|
||||
set status 1
|
||||
}
|
||||
}
|
||||
|
||||
for { set j 11 } { $j <= 19 } { incr j 1 } {
|
||||
regexp "dist $j: +(\[-0-9.+eE\]+)" $info full pp2
|
||||
if { $pp2 != 7.2801098892805181 } {
|
||||
puts "Error : Extrema is wrong on dist $j"
|
||||
set status 1
|
||||
}
|
||||
}
|
||||
|
||||
regexp {dist 10: +([-0-9.+eE]+)} $info full pp3
|
||||
regexp {dist 20: +([-0-9.+eE]+)} $info full pp4
|
||||
regexp {dist 21: +([-0-9.+eE]+)} $info full pp5
|
||||
set pp_c 4.316921907096102
|
||||
set pp_ch 4.3169219070961038
|
||||
|
||||
if { $pp3 != $pp_c } {
|
||||
puts "Error : Extrema is wrong on dist 10"
|
||||
set status 1
|
||||
}
|
||||
if { $pp4 != $pp_ch || $pp5 != $pp_ch} {
|
||||
puts "Error : Extrema is wrong on dist 20 or 21"
|
||||
set status 1
|
||||
}
|
||||
|
||||
if { $status != 0 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
} else {
|
||||
|
@ -11,21 +11,12 @@ puts ""
|
||||
set info [2dextrema b7 b8]
|
||||
|
||||
set status 0
|
||||
for { set i 2 } { $i <= 5 } { incr i } {
|
||||
regexp "dist $i: +(\[-0-9.+eE\]+)" $info full pp1
|
||||
if { $pp1 !=4.3624023150195192 } {
|
||||
puts "Error : Extrema is wrong on dist $i"
|
||||
set status 1
|
||||
}
|
||||
}
|
||||
|
||||
regexp {dist 1: +([-0-9.+eE]+)} $info full pp2
|
||||
set pp_ch 4.3624023150195184
|
||||
|
||||
if { $pp2 != $pp_ch } {
|
||||
puts "Error : Extrema is wrong on dist 1"
|
||||
regexp "dist 1: +(\[-0-9.+eE\]+)" $info full pp
|
||||
if { abs($pp - 2.3246777409727225) < 1.0e-7 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
set status 1
|
||||
}
|
||||
}
|
||||
|
||||
if { $status != 0 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
|
@ -10,12 +10,6 @@ restore [locate_data_file bug24200_c1] c1
|
||||
restore [locate_data_file bug24200_c2] c2
|
||||
set info_1 [extrema c1 c2]
|
||||
|
||||
if { [regexp "ext_15" $info_1] != 1 } {
|
||||
puts "Error : Extrema is wrong"
|
||||
} else {
|
||||
puts "OK : Extrema is correct"
|
||||
}
|
||||
|
||||
trim c1t c1 677.8 678.8
|
||||
trim c2t c2 2477 2479
|
||||
extrema c1t c2t
|
||||
@ -34,4 +28,3 @@ if { [expr 1.*abs($checkdist - $dist)/$checkdist] > 0.1 } {
|
||||
} else {
|
||||
puts "OK: Distance is correct"
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ checkshape aEdge2
|
||||
|
||||
distmini d aEdge1 aEdge2
|
||||
regexp {NB RESULTS +: +([-0-9.+eE]+)} [BUC60825 aEdge1 aEdge2] full ext
|
||||
if { $ext != 0 } {
|
||||
if { $ext != 1 } {
|
||||
puts "Error : The extrema has not been calculated."
|
||||
}
|
||||
|
||||
|
@ -15,7 +15,7 @@ circle curve_2 5.3 -0.5 2
|
||||
|
||||
set err [llength [2dextrema curve_1 curve_2]]
|
||||
|
||||
if {$err == 16} {
|
||||
if {$err == 6} {
|
||||
puts "BUC60890 OK: Function 2dextrema works properly."
|
||||
} else {
|
||||
puts "Faulty BUC60890 : Function 2dextrema works wrongly."
|
||||
|
@ -11,7 +11,7 @@ restore [locate_data_file OCC862_2.draw] c2
|
||||
|
||||
set result [extrema c1 c2]
|
||||
set err [llength $result]
|
||||
if { $err <= 1} {
|
||||
if { $err != 1} {
|
||||
puts "Faulty OCC862 (amount of solution): command extrema does NOT work properly"
|
||||
} else {
|
||||
puts "OCC862 OK (amount of solution): command extrema works properly"
|
||||
|
@ -27,13 +27,6 @@ extrema airfl rhomb
|
||||
|
||||
if { [isdraw ext_1] } {
|
||||
mkedge result ext_1
|
||||
set length 9.09515
|
||||
} else {
|
||||
puts "${BugNumber}: invalid result"
|
||||
}
|
||||
|
||||
if { [isdraw ext_2] } {
|
||||
mkedge result ext_2
|
||||
set length 5.14563
|
||||
} else {
|
||||
puts "${BugNumber}: invalid result"
|
||||
|
Loading…
x
Reference in New Issue
Block a user