1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00

0027371: Regression: BRepExtrema works too much slower in 691 (from 670)

I
Lipschitz constant tuning.
Shubert estimation for minimal value is added.

II
Math_GlobOptMin Refactoring.

III
Test case is added.

class NCollection_CellFilter_Inspector moved into math_GlobOptMin class.
This commit is contained in:
aml 2016-04-12 12:15:07 +03:00 committed by bugmaster
parent 4b5857d330
commit 246c7a7554
5 changed files with 239 additions and 201 deletions

View File

@ -210,8 +210,15 @@ void Extrema_GenExtCC::Perform()
C1.Intervals(anIntervals1, aContinuity);
C2.Intervals(anIntervals2, aContinuity);
// Lipchitz constant approximation.
// Lipchitz constant computation.
Standard_Real aLC = 9.0; // Default value.
const Standard_Real aMaxDer1 = 1.0 / C1.Resolution(1.0);
const Standard_Real aMaxDer2 = 1.0 / C2.Resolution(1.0);
const Standard_Real aMaxDer = Max(aMaxDer1, aMaxDer2) * Sqrt(2.0);
if (aLC > aMaxDer)
aLC = aMaxDer;
// Change constant value according to the concrete curve types.
Standard_Boolean isConstLockedFlag = Standard_False;
if (C1.GetType() == GeomAbs_Line)
{

View File

@ -25,6 +25,27 @@
#include <Standard_Real.hxx>
#include <Precision.hxx>
//=======================================================================
//function : DistanceToBorder
//purpose :
//=======================================================================
static Standard_Real DistanceToBorder(const math_Vector & theX,
const math_Vector & theMin,
const math_Vector & theMax)
{
Standard_Real aDist = RealLast();
for (Standard_Integer anIdx = theMin.Lower(); anIdx <= theMin.Upper(); ++anIdx)
{
const Standard_Real aDist1 = Abs (theX(anIdx) - theMin(anIdx));
const Standard_Real aDist2 = Abs (theX(anIdx) - theMax(anIdx));
aDist = Min (aDist, Min (aDist1, aDist2));
}
return aDist;
}
//=======================================================================
//function : math_GlobOptMin
@ -46,7 +67,6 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
myTmp(1, myN),
myV(1, myN),
myMaxV(1, myN),
myExpandCoeff(1, myN),
myCellSize(0, myN - 1),
myFilter(theFunc->NbVariables()),
myCont(2)
@ -75,12 +95,6 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
}
myExpandCoeff(1) = 1.0;
for(i = 2; i <= myN; i++)
{
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
}
myTol = theDiscretizationTol;
mySameTol = theSameTol;
@ -126,12 +140,6 @@ void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
}
myExpandCoeff(1) = 1.0;
for(i = 2; i <= myN; i++)
{
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
}
myTol = theDiscretizationTol;
mySameTol = theSameTol;
@ -162,12 +170,6 @@ void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
}
myExpandCoeff(1) = 1.0;
for(i = 2; i <= myN; i++)
{
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
}
myDone = Standard_False;
}
@ -193,14 +195,6 @@ void math_GlobOptMin::GetTol(Standard_Real& theDiscretizationTol,
theSameTol = mySameTol;
}
//=======================================================================
//function : ~math_GlobOptMin
//purpose :
//=======================================================================
math_GlobOptMin::~math_GlobOptMin()
{
}
//=======================================================================
//function : Perform
//purpose : Compute Global extremum point
@ -208,18 +202,20 @@ math_GlobOptMin::~math_GlobOptMin()
// In this algo indexes started from 1, not from 0.
void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
{
Standard_Integer i;
myDone = Standard_False;
// Compute parameters range
Standard_Real minLength = RealLast();
Standard_Real maxLength = RealFirst();
for(i = 1; i <= myN; i++)
for(Standard_Integer i = 1; i <= myN; i++)
{
Standard_Real currentLength = myB(i) - myA(i);
if (currentLength < minLength)
minLength = currentLength;
if (currentLength > maxLength)
maxLength = currentLength;
myV(i) = 0.0;
}
if (minLength < Precision::PConfusion())
@ -397,18 +393,16 @@ void math_GlobOptMin::computeInitialValues()
void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
{
Standard_Integer i;
Standard_Real d; // Functional in moved point.
Standard_Real d = RealLast(), aPrevVal; // Functional in original and moved points.
Standard_Real val = RealLast(); // Local extrema computed in moved point.
Standard_Real aStepBestValue = RealLast();
math_Vector aStepBestPoint(1, myN);
Standard_Boolean isInside = Standard_False;
Standard_Real r;
Standard_Boolean isReached = Standard_False;
Standard_Boolean isInside = Standard_False,
isReached = Standard_False;
Standard_Real r1, r2, r;
for(myX(j) = myA(j) + myE1;
(myX(j) < myB(j) + myE1) && (!isReached);
myX(j) += myV(j))
for(myX(j) = myA(j) + myE1; !isReached; myX(j) += myV(j))
{
if (myX(j) > myB(j))
{
@ -422,11 +416,30 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
if (j == 1)
{
isInside = Standard_False;
aPrevVal = d;
myFunc->Value(myX, d);
r = (d + myZ * myC * myLastStep - myF) * myZ;
r1 = (d + myZ * myC * myLastStep - myF) * myZ; // Evtushenko estimation.
r2 = ((d + aPrevVal - myC * myLastStep) * 0.5 - myF) * myZ; // Shubert / Piyavsky estimation.
r = Min(r1, r2);
if(r > myE3)
{
isInside = computeLocalExtremum(myX, val, myTmp);
Standard_Real aSaveParam = myX(1);
// Piyavsky midpoint estimation.
Standard_Real aParam = (2 * myX(1) - myV(1) ) * 0.5 + (aPrevVal - d) * 0.5 / myC;
if (Precision::IsInfinite(aPrevVal))
aParam = myX(1) - myV(1) * 0.5; // Protection from upper dimension step.
myX(1) = aParam;
Standard_Real aVal = 0;
myFunc->Value(myX, aVal);
myX(1) = aSaveParam;
if ( (aVal < d && aVal < aPrevVal) ||
DistanceToBorder(myX, myA, myB) < myE1 ) // Condition optimization case near the border.
{
isInside = computeLocalExtremum(myX, val, myTmp);
}
}
aStepBestValue = (isInside && (val < d))? val : d;
aStepBestPoint = (isInside && (val < d))? myTmp : myX;
@ -478,10 +491,9 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
for(i = 1; i < j; i++)
myV(i) = 0.0;
}
// Compute step in (j + 1) dimension according to scale.
if (j < myN)
{
Standard_Real aUpperDimStep = myV(j) * myExpandCoeff(j + 1);
Standard_Real aUpperDimStep = Max(myV(j), myE2);
if (myV(j + 1) > aUpperDimStep)
{
if (aUpperDimStep > myMaxV(j + 1)) // Case of too big step.
@ -573,51 +585,6 @@ Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt)
return Standard_False;
}
//=======================================================================
//function : NbExtrema
//purpose :
//=======================================================================
Standard_Integer math_GlobOptMin::NbExtrema()
{
return mySolCount;
}
//=======================================================================
//function : GetF
//purpose :
//=======================================================================
Standard_Real math_GlobOptMin::GetF()
{
return myF;
}
//=======================================================================
//function : SetFunctionalMinimalValue
//purpose :
//=======================================================================
void math_GlobOptMin::SetFunctionalMinimalValue(const Standard_Real theMinimalValue)
{
myFunctionalMinimalValue = theMinimalValue;
}
//=======================================================================
//function : GetFunctionalMinimalValue
//purpose :
//=======================================================================
Standard_Real math_GlobOptMin::GetFunctionalMinimalValue()
{
return myFunctionalMinimalValue;
}
//=======================================================================
//function : IsDone
//purpose :
//=======================================================================
Standard_Boolean math_GlobOptMin::isDone()
{
return myDone;
}
//=======================================================================
//function : Points
//purpose :
@ -693,15 +660,4 @@ void math_GlobOptMin::ComputeInitSol()
for(i = 1; i <= myN; i++)
myY.Append(aBestPnt(i));
mySolCount = 1;
myDone = Standard_False;
}
//=======================================================================
//function : SetLipConstState
//purpose :
//=======================================================================
void math_GlobOptMin::SetLipConstState(const Standard_Boolean theFlag)
{
myIsConstLocked = theFlag;
}

View File

@ -23,87 +23,42 @@
#include <NCollection_Sequence.hxx>
#include <Standard_Type.hxx>
class NCollection_CellFilter_Inspector
{
public:
//! Points and target type
typedef math_Vector Point;
typedef math_Vector Target;
NCollection_CellFilter_Inspector(const Standard_Integer theDim,
const Standard_Real theTol)
: myCurrent(1, theDim)
{
myTol = theTol * theTol;
myIsFind = Standard_False;
Dimension = theDim;
}
//! Access to co-ordinate
static Standard_Real Coord (int i, const Point &thePnt)
{
return thePnt(i + 1);
}
//! Auxiliary method to shift point by each coordinate on given value;
//! useful for preparing a points range for Inspect with tolerance
void Shift (const Point& thePnt,
const NCollection_Array1<Standard_Real> &theTol,
Point& theLowPnt,
Point& theUppPnt) const
{
for(Standard_Integer anIdx = 1; anIdx <= Dimension; anIdx++)
{
theLowPnt(anIdx) = thePnt(anIdx) - theTol(anIdx - 1);
theUppPnt(anIdx) = thePnt(anIdx) + theTol(anIdx - 1);
}
}
void ClearFind()
{
myIsFind = Standard_False;
}
Standard_Boolean isFind()
{
return myIsFind;
}
//! Set current point to search for coincidence
void SetCurrent (const math_Vector& theCurPnt)
{
myCurrent = theCurPnt;
}
//! Implementation of inspection method
NCollection_CellFilter_Action Inspect (const Target& theObject)
{
Standard_Real aSqDist = (myCurrent - theObject).Norm2();
if(aSqDist < myTol)
{
myIsFind = Standard_True;
}
return CellFilter_Keep;
}
private:
Standard_Real myTol;
math_Vector myCurrent;
Standard_Boolean myIsFind;
Standard_Integer Dimension;
};
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
//! This class represents Evtushenko's algorithm of global optimization based on non-uniform mesh.
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
//!
//! This method performs search on non-uniform mesh. The search space is a box in R^n space.
//! The default behavior is to find all minimums in that box. Computation of maximums is not supported.
//!
//! The search box can be split into smaller boxes by discontinuity criteria.
//! This functionality is covered by SetGlobalParams and SetLocalParams API.
//!
//! It is possible to set continuity of the local boxes.
//! Such option can forcibly change local extrema search.
//! In other words if theFunc can be casted to the function with Hessian but, continuity is set to 1
//! Gradient based local optimization method will be used, not Hessian based method.
//! This functionality is covered by SetContinuity and GetContinuity API.
//!
//! It is possible to freeze Lipschitz const to avoid internal modifications on it.
//! This functionality is covered by SetLipConstState and GetLipConstState API.
//!
//! It is possible to perform single solution search.
//! This functionality is covered by first parameter in Perform method.
//!
//! It is possible to set / get minimal value of the functional.
//! It works well together with single solution search.
//! This functionality is covered by SetFunctionalMinimalValue and GetFunctionalMinimalValue API.
class math_GlobOptMin
{
public:
//! Constructor. Perform method is not called from it.
//! @param theFunc - objective functional.
//! @param theLowerBorder - lower corner of the search box.
//! @param theUpperBorder - upper corner of the search box.
//! @param theC - Lipschitz constant.
//! @param theDiscretizationTol - parameter space discretization tolerance.
//! @param theSameTol - functional value space indifference tolerance.
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
const math_Vector& theLowerBorder,
const math_Vector& theUpperBorder,
@ -111,6 +66,12 @@ public:
const Standard_Real theDiscretizationTol = 1.0e-2,
const Standard_Real theSameTol = 1.0e-7);
//! @param theFunc - objective functional.
//! @param theLowerBorder - lower corner of the search box.
//! @param theUpperBorder - upper corner of the search box.
//! @param theC - Lipschitz constant.
//! @param theDiscretizationTol - parameter space discretization tolerance.
//! @param theSameTol - functional value space indifference tolerance.
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
const math_Vector& theLowerBorder,
const math_Vector& theUpperBorder,
@ -118,48 +79,130 @@ public:
const Standard_Real theDiscretizationTol = 1.0e-2,
const Standard_Real theSameTol = 1.0e-7);
//! Method to reduce bounding box. Perform will use this box.
//! @param theLocalA - lower corner of the local box.
//! @param theLocalB - upper corner of the local box.
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
const math_Vector& theLocalB);
//! Method to set tolerances.
//! @param theDiscretizationTol - parameter space discretization tolerance.
//! @param theSameTol - functional value space indifference tolerance.
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
const Standard_Real theSameTol);
//! Method to get tolerances.
//! @param theDiscretizationTol - parameter space discretization tolerance.
//! @param theSameTol - functional value space indifference tolerance.
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
Standard_Real& theSameTol);
Standard_EXPORT ~math_GlobOptMin();
//! @param isFindSingleSolution - defines whether to find single solution or all solutions.
Standard_EXPORT void Perform(const Standard_Boolean isFindSingleSolution = Standard_False);
//! Get best functional value.
Standard_EXPORT Standard_Real GetF();
//! Return count of global extremas.
Standard_EXPORT Standard_Integer NbExtrema();
//! Return solution theIndex, 1 <= theIndex <= NbExtrema.
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
Standard_EXPORT Standard_Boolean isDone();
//! Set functional minimal value.
Standard_EXPORT void SetFunctionalMinimalValue(const Standard_Real theMinimalValue);
//! Lock/Unlock Lipchitz constant for internal modifications.
Standard_EXPORT void SetLipConstState(const Standard_Boolean theFlag);
//! Get functional minimal value.
Standard_EXPORT Standard_Real GetFunctionalMinimalValue();
//! Get continuity of local borders splits.
//! Set / Get continuity of local borders splits (0 ~ C0, 1 ~ C1, 2 ~ C2).
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
inline Standard_Integer GetContinuity() const {return myCont; }
//! Set continuity of local borders splits.
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
//! Set / Get functional minimal value.
inline void SetFunctionalMinimalValue(const Standard_Real theMinimalValue)
{ myFunctionalMinimalValue = theMinimalValue; }
inline Standard_Real GetFunctionalMinimalValue() const {return myFunctionalMinimalValue;}
//! Set / Get Lipchitz constant modification state.
//! True means that the constant is locked and unlocked otherwise.
inline void SetLipConstState(const Standard_Boolean theFlag) {myIsConstLocked = theFlag; }
inline Standard_Boolean GetLipConstState() const { return myIsConstLocked; }
//! Return computation state of the algorithm.
inline Standard_Boolean isDone() const {return myDone; }
//! Get best functional value.
inline Standard_Real GetF() const {return myF;}
//! Return count of global extremas.
inline Standard_Integer NbExtrema() const {return mySolCount;}
private:
//! Class for duplicate fast search. For internal usage only.
class NCollection_CellFilter_Inspector
{
public:
//! Points and target type
typedef math_Vector Point;
typedef math_Vector Target;
NCollection_CellFilter_Inspector(const Standard_Integer theDim,
const Standard_Real theTol)
: myCurrent(1, theDim)
{
myTol = theTol * theTol;
myIsFind = Standard_False;
Dimension = theDim;
}
//! Access to coordinate.
static Standard_Real Coord (int i, const Point &thePnt)
{
return thePnt(i + 1);
}
//! Auxiliary method to shift point by each coordinate on given value;
//! useful for preparing a points range for Inspect with tolerance.
void Shift (const Point& thePnt,
const NCollection_Array1<Standard_Real> &theTol,
Point& theLowPnt,
Point& theUppPnt) const
{
for(Standard_Integer anIdx = 1; anIdx <= Dimension; anIdx++)
{
theLowPnt(anIdx) = thePnt(anIdx) - theTol(anIdx - 1);
theUppPnt(anIdx) = thePnt(anIdx) + theTol(anIdx - 1);
}
}
void ClearFind()
{
myIsFind = Standard_False;
}
Standard_Boolean isFind()
{
return myIsFind;
}
//! Set current point to search for coincidence
void SetCurrent (const math_Vector& theCurPnt)
{
myCurrent = theCurPnt;
}
//! Implementation of inspection method
NCollection_CellFilter_Action Inspect (const Target& theObject)
{
Standard_Real aSqDist = (myCurrent - theObject).Norm2();
if(aSqDist < myTol)
{
myIsFind = Standard_True;
}
return CellFilter_Keep;
}
private:
Standard_Real myTol;
math_Vector myCurrent;
Standard_Boolean myIsFind;
Standard_Integer Dimension;
};
// Compute cell size.
void initCellSize();
@ -173,14 +216,14 @@ private:
void computeGlobalExtremum(Standard_Integer theIndex);
//! Check possibility to stop computations.
//! Find single solution + in neighbourhood of best possible solution.
//! Find single solution + in neighborhood of best possible solution.
Standard_Boolean CheckFunctionalStopCriteria();
//! Computes starting value / approximation:
//! myF - initial best value.
//! myY - initial best point.
//! myC - approximation of Lipschitz constant.
//! to imporve convergence speed.
//! to improve convergence speed.
void computeInitialValues();
//! Check that myA <= thePnt <= myB
@ -213,7 +256,7 @@ private:
// Algorithm data.
Standard_Real myZ;
Standard_Real myE1; // Border coeff.
Standard_Real myE1; // Border coefficient.
Standard_Real myE2; // Minimum step size.
Standard_Real myE3; // Local extrema starting parameter.
@ -222,7 +265,6 @@ private:
math_Vector myV; // Steps array.
math_Vector myMaxV; // Max Steps array.
Standard_Real myLastStep; // Last step.
math_Vector myExpandCoeff; // Define expand coefficient between neighboring indiced dimensions.
NCollection_Array1<Standard_Real> myCellSize;
Standard_Integer myMinCellFilterSol;

View File

@ -11,7 +11,7 @@ ellipse c2 4 0 2 1
set info [2dextrema c1 c2]
set tol_abs 1.e-5
set tol_abs 7.e-5
set tol_rel 0.01
#-1
@ -36,7 +36,7 @@ checkreal "Parameter2" ${Parameter2} ${expected_Parameter2} ${tol_abs} ${tol_rel
set expected_OriginX 2.
checkreal "OriginX" ${OriginX} ${expected_OriginX} ${tol_abs} ${tol_rel}
set expected_OriginY 7.e-05
set expected_OriginY 0.0
checkreal "OriginY" ${OriginY} ${expected_OriginY} ${tol_abs} ${tol_rel}
set expected_AxisX 1.

View File

@ -0,0 +1,33 @@
puts "========"
puts "OCC27371"
puts "========"
puts ""
##############################################
# Regression: BRepExtrema works too much slower in 691 (from 670)
##############################################
restore [locate_data_file bug27371.brep] aShape
explode aShape
cpulimit 20
# Check computation time
chrono h reset; chrono h start
for { set i 1 } { $i <= 100 } { incr i } {
distmini d aShape_1 aShape_2
distmini d aShape_2 aShape_1
}
chrono h stop; chrono h show
regexp {CPU user time: (\d*)} [dchrono h show] dummy sec
if {$sec > 1} {
puts "Error: too long computation time $sec seconds"
} else {
puts "Computation time is OK"
}
# Check result of distance distance
set absTol 1.0e-10
set relTol 0.001
set aDist_Exp 0.2
set aDist [dval d_val]
checkreal "Distance value check" $aDist $aDist_Exp $absTol $relTol