mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0027371: Regression: BRepExtrema works too much slower in 691 (from 670)
I Lipschitz constant tuning. Shubert estimation for minimal value is added. II Math_GlobOptMin Refactoring. III Test case is added. class NCollection_CellFilter_Inspector moved into math_GlobOptMin class.
This commit is contained in:
parent
4b5857d330
commit
246c7a7554
@ -210,8 +210,15 @@ void Extrema_GenExtCC::Perform()
|
||||
C1.Intervals(anIntervals1, aContinuity);
|
||||
C2.Intervals(anIntervals2, aContinuity);
|
||||
|
||||
// Lipchitz constant approximation.
|
||||
// Lipchitz constant computation.
|
||||
Standard_Real aLC = 9.0; // Default value.
|
||||
const Standard_Real aMaxDer1 = 1.0 / C1.Resolution(1.0);
|
||||
const Standard_Real aMaxDer2 = 1.0 / C2.Resolution(1.0);
|
||||
const Standard_Real aMaxDer = Max(aMaxDer1, aMaxDer2) * Sqrt(2.0);
|
||||
if (aLC > aMaxDer)
|
||||
aLC = aMaxDer;
|
||||
|
||||
// Change constant value according to the concrete curve types.
|
||||
Standard_Boolean isConstLockedFlag = Standard_False;
|
||||
if (C1.GetType() == GeomAbs_Line)
|
||||
{
|
||||
|
@ -25,6 +25,27 @@
|
||||
#include <Standard_Real.hxx>
|
||||
#include <Precision.hxx>
|
||||
|
||||
//=======================================================================
|
||||
//function : DistanceToBorder
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
static Standard_Real DistanceToBorder(const math_Vector & theX,
|
||||
const math_Vector & theMin,
|
||||
const math_Vector & theMax)
|
||||
{
|
||||
Standard_Real aDist = RealLast();
|
||||
|
||||
for (Standard_Integer anIdx = theMin.Lower(); anIdx <= theMin.Upper(); ++anIdx)
|
||||
{
|
||||
const Standard_Real aDist1 = Abs (theX(anIdx) - theMin(anIdx));
|
||||
const Standard_Real aDist2 = Abs (theX(anIdx) - theMax(anIdx));
|
||||
|
||||
aDist = Min (aDist, Min (aDist1, aDist2));
|
||||
}
|
||||
|
||||
return aDist;
|
||||
}
|
||||
|
||||
|
||||
//=======================================================================
|
||||
//function : math_GlobOptMin
|
||||
@ -46,7 +67,6 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
myTmp(1, myN),
|
||||
myV(1, myN),
|
||||
myMaxV(1, myN),
|
||||
myExpandCoeff(1, myN),
|
||||
myCellSize(0, myN - 1),
|
||||
myFilter(theFunc->NbVariables()),
|
||||
myCont(2)
|
||||
@ -75,12 +95,6 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
||||
}
|
||||
|
||||
myExpandCoeff(1) = 1.0;
|
||||
for(i = 2; i <= myN; i++)
|
||||
{
|
||||
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
|
||||
}
|
||||
|
||||
myTol = theDiscretizationTol;
|
||||
mySameTol = theSameTol;
|
||||
|
||||
@ -126,12 +140,6 @@ void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
||||
}
|
||||
|
||||
myExpandCoeff(1) = 1.0;
|
||||
for(i = 2; i <= myN; i++)
|
||||
{
|
||||
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
|
||||
}
|
||||
|
||||
myTol = theDiscretizationTol;
|
||||
mySameTol = theSameTol;
|
||||
|
||||
@ -162,12 +170,6 @@ void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
||||
myMaxV(i) = (myB(i) - myA(i)) / 3.0;
|
||||
}
|
||||
|
||||
myExpandCoeff(1) = 1.0;
|
||||
for(i = 2; i <= myN; i++)
|
||||
{
|
||||
myExpandCoeff(i) = (myB(i) - myA(i)) / (myB(i - 1) - myA(i - 1));
|
||||
}
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
@ -193,14 +195,6 @@ void math_GlobOptMin::GetTol(Standard_Real& theDiscretizationTol,
|
||||
theSameTol = mySameTol;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ~math_GlobOptMin
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
math_GlobOptMin::~math_GlobOptMin()
|
||||
{
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Perform
|
||||
//purpose : Compute Global extremum point
|
||||
@ -208,18 +202,20 @@ math_GlobOptMin::~math_GlobOptMin()
|
||||
// In this algo indexes started from 1, not from 0.
|
||||
void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
|
||||
{
|
||||
Standard_Integer i;
|
||||
myDone = Standard_False;
|
||||
|
||||
// Compute parameters range
|
||||
Standard_Real minLength = RealLast();
|
||||
Standard_Real maxLength = RealFirst();
|
||||
for(i = 1; i <= myN; i++)
|
||||
for(Standard_Integer i = 1; i <= myN; i++)
|
||||
{
|
||||
Standard_Real currentLength = myB(i) - myA(i);
|
||||
if (currentLength < minLength)
|
||||
minLength = currentLength;
|
||||
if (currentLength > maxLength)
|
||||
maxLength = currentLength;
|
||||
|
||||
myV(i) = 0.0;
|
||||
}
|
||||
|
||||
if (minLength < Precision::PConfusion())
|
||||
@ -397,18 +393,16 @@ void math_GlobOptMin::computeInitialValues()
|
||||
void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
{
|
||||
Standard_Integer i;
|
||||
Standard_Real d; // Functional in moved point.
|
||||
Standard_Real d = RealLast(), aPrevVal; // Functional in original and moved points.
|
||||
Standard_Real val = RealLast(); // Local extrema computed in moved point.
|
||||
Standard_Real aStepBestValue = RealLast();
|
||||
math_Vector aStepBestPoint(1, myN);
|
||||
Standard_Boolean isInside = Standard_False;
|
||||
Standard_Real r;
|
||||
Standard_Boolean isReached = Standard_False;
|
||||
Standard_Boolean isInside = Standard_False,
|
||||
isReached = Standard_False;
|
||||
|
||||
Standard_Real r1, r2, r;
|
||||
|
||||
for(myX(j) = myA(j) + myE1;
|
||||
(myX(j) < myB(j) + myE1) && (!isReached);
|
||||
myX(j) += myV(j))
|
||||
for(myX(j) = myA(j) + myE1; !isReached; myX(j) += myV(j))
|
||||
{
|
||||
if (myX(j) > myB(j))
|
||||
{
|
||||
@ -422,11 +416,30 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
if (j == 1)
|
||||
{
|
||||
isInside = Standard_False;
|
||||
aPrevVal = d;
|
||||
myFunc->Value(myX, d);
|
||||
r = (d + myZ * myC * myLastStep - myF) * myZ;
|
||||
r1 = (d + myZ * myC * myLastStep - myF) * myZ; // Evtushenko estimation.
|
||||
r2 = ((d + aPrevVal - myC * myLastStep) * 0.5 - myF) * myZ; // Shubert / Piyavsky estimation.
|
||||
r = Min(r1, r2);
|
||||
if(r > myE3)
|
||||
{
|
||||
isInside = computeLocalExtremum(myX, val, myTmp);
|
||||
Standard_Real aSaveParam = myX(1);
|
||||
|
||||
// Piyavsky midpoint estimation.
|
||||
Standard_Real aParam = (2 * myX(1) - myV(1) ) * 0.5 + (aPrevVal - d) * 0.5 / myC;
|
||||
if (Precision::IsInfinite(aPrevVal))
|
||||
aParam = myX(1) - myV(1) * 0.5; // Protection from upper dimension step.
|
||||
|
||||
myX(1) = aParam;
|
||||
Standard_Real aVal = 0;
|
||||
myFunc->Value(myX, aVal);
|
||||
myX(1) = aSaveParam;
|
||||
|
||||
if ( (aVal < d && aVal < aPrevVal) ||
|
||||
DistanceToBorder(myX, myA, myB) < myE1 ) // Condition optimization case near the border.
|
||||
{
|
||||
isInside = computeLocalExtremum(myX, val, myTmp);
|
||||
}
|
||||
}
|
||||
aStepBestValue = (isInside && (val < d))? val : d;
|
||||
aStepBestPoint = (isInside && (val < d))? myTmp : myX;
|
||||
@ -478,10 +491,9 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
for(i = 1; i < j; i++)
|
||||
myV(i) = 0.0;
|
||||
}
|
||||
// Compute step in (j + 1) dimension according to scale.
|
||||
if (j < myN)
|
||||
{
|
||||
Standard_Real aUpperDimStep = myV(j) * myExpandCoeff(j + 1);
|
||||
Standard_Real aUpperDimStep = Max(myV(j), myE2);
|
||||
if (myV(j + 1) > aUpperDimStep)
|
||||
{
|
||||
if (aUpperDimStep > myMaxV(j + 1)) // Case of too big step.
|
||||
@ -573,51 +585,6 @@ Standard_Boolean math_GlobOptMin::isStored(const math_Vector& thePnt)
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : NbExtrema
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Integer math_GlobOptMin::NbExtrema()
|
||||
{
|
||||
return mySolCount;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetF
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Real math_GlobOptMin::GetF()
|
||||
{
|
||||
return myF;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetFunctionalMinimalValue
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetFunctionalMinimalValue(const Standard_Real theMinimalValue)
|
||||
{
|
||||
myFunctionalMinimalValue = theMinimalValue;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : GetFunctionalMinimalValue
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Real math_GlobOptMin::GetFunctionalMinimalValue()
|
||||
{
|
||||
return myFunctionalMinimalValue;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : IsDone
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::isDone()
|
||||
{
|
||||
return myDone;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : Points
|
||||
//purpose :
|
||||
@ -693,15 +660,4 @@ void math_GlobOptMin::ComputeInitSol()
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(aBestPnt(i));
|
||||
mySolCount = 1;
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetLipConstState
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetLipConstState(const Standard_Boolean theFlag)
|
||||
{
|
||||
myIsConstLocked = theFlag;
|
||||
}
|
@ -23,87 +23,42 @@
|
||||
#include <NCollection_Sequence.hxx>
|
||||
#include <Standard_Type.hxx>
|
||||
|
||||
class NCollection_CellFilter_Inspector
|
||||
{
|
||||
public:
|
||||
|
||||
//! Points and target type
|
||||
typedef math_Vector Point;
|
||||
typedef math_Vector Target;
|
||||
|
||||
NCollection_CellFilter_Inspector(const Standard_Integer theDim,
|
||||
const Standard_Real theTol)
|
||||
: myCurrent(1, theDim)
|
||||
{
|
||||
myTol = theTol * theTol;
|
||||
myIsFind = Standard_False;
|
||||
Dimension = theDim;
|
||||
}
|
||||
|
||||
//! Access to co-ordinate
|
||||
static Standard_Real Coord (int i, const Point &thePnt)
|
||||
{
|
||||
return thePnt(i + 1);
|
||||
}
|
||||
|
||||
//! Auxiliary method to shift point by each coordinate on given value;
|
||||
//! useful for preparing a points range for Inspect with tolerance
|
||||
void Shift (const Point& thePnt,
|
||||
const NCollection_Array1<Standard_Real> &theTol,
|
||||
Point& theLowPnt,
|
||||
Point& theUppPnt) const
|
||||
{
|
||||
for(Standard_Integer anIdx = 1; anIdx <= Dimension; anIdx++)
|
||||
{
|
||||
theLowPnt(anIdx) = thePnt(anIdx) - theTol(anIdx - 1);
|
||||
theUppPnt(anIdx) = thePnt(anIdx) + theTol(anIdx - 1);
|
||||
}
|
||||
}
|
||||
|
||||
void ClearFind()
|
||||
{
|
||||
myIsFind = Standard_False;
|
||||
}
|
||||
|
||||
Standard_Boolean isFind()
|
||||
{
|
||||
return myIsFind;
|
||||
}
|
||||
|
||||
//! Set current point to search for coincidence
|
||||
void SetCurrent (const math_Vector& theCurPnt)
|
||||
{
|
||||
myCurrent = theCurPnt;
|
||||
}
|
||||
|
||||
//! Implementation of inspection method
|
||||
NCollection_CellFilter_Action Inspect (const Target& theObject)
|
||||
{
|
||||
Standard_Real aSqDist = (myCurrent - theObject).Norm2();
|
||||
|
||||
if(aSqDist < myTol)
|
||||
{
|
||||
myIsFind = Standard_True;
|
||||
}
|
||||
|
||||
return CellFilter_Keep;
|
||||
}
|
||||
|
||||
private:
|
||||
Standard_Real myTol;
|
||||
math_Vector myCurrent;
|
||||
Standard_Boolean myIsFind;
|
||||
Standard_Integer Dimension;
|
||||
};
|
||||
|
||||
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
|
||||
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
|
||||
//! This class represents Evtushenko's algorithm of global optimization based on non-uniform mesh.
|
||||
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh).
|
||||
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
|
||||
|
||||
//!
|
||||
//! This method performs search on non-uniform mesh. The search space is a box in R^n space.
|
||||
//! The default behavior is to find all minimums in that box. Computation of maximums is not supported.
|
||||
//!
|
||||
//! The search box can be split into smaller boxes by discontinuity criteria.
|
||||
//! This functionality is covered by SetGlobalParams and SetLocalParams API.
|
||||
//!
|
||||
//! It is possible to set continuity of the local boxes.
|
||||
//! Such option can forcibly change local extrema search.
|
||||
//! In other words if theFunc can be casted to the function with Hessian but, continuity is set to 1
|
||||
//! Gradient based local optimization method will be used, not Hessian based method.
|
||||
//! This functionality is covered by SetContinuity and GetContinuity API.
|
||||
//!
|
||||
//! It is possible to freeze Lipschitz const to avoid internal modifications on it.
|
||||
//! This functionality is covered by SetLipConstState and GetLipConstState API.
|
||||
//!
|
||||
//! It is possible to perform single solution search.
|
||||
//! This functionality is covered by first parameter in Perform method.
|
||||
//!
|
||||
//! It is possible to set / get minimal value of the functional.
|
||||
//! It works well together with single solution search.
|
||||
//! This functionality is covered by SetFunctionalMinimalValue and GetFunctionalMinimalValue API.
|
||||
class math_GlobOptMin
|
||||
{
|
||||
public:
|
||||
|
||||
//! Constructor. Perform method is not called from it.
|
||||
//! @param theFunc - objective functional.
|
||||
//! @param theLowerBorder - lower corner of the search box.
|
||||
//! @param theUpperBorder - upper corner of the search box.
|
||||
//! @param theC - Lipschitz constant.
|
||||
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
||||
//! @param theSameTol - functional value space indifference tolerance.
|
||||
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theLowerBorder,
|
||||
const math_Vector& theUpperBorder,
|
||||
@ -111,6 +66,12 @@ public:
|
||||
const Standard_Real theDiscretizationTol = 1.0e-2,
|
||||
const Standard_Real theSameTol = 1.0e-7);
|
||||
|
||||
//! @param theFunc - objective functional.
|
||||
//! @param theLowerBorder - lower corner of the search box.
|
||||
//! @param theUpperBorder - upper corner of the search box.
|
||||
//! @param theC - Lipschitz constant.
|
||||
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
||||
//! @param theSameTol - functional value space indifference tolerance.
|
||||
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theLowerBorder,
|
||||
const math_Vector& theUpperBorder,
|
||||
@ -118,48 +79,130 @@ public:
|
||||
const Standard_Real theDiscretizationTol = 1.0e-2,
|
||||
const Standard_Real theSameTol = 1.0e-7);
|
||||
|
||||
//! Method to reduce bounding box. Perform will use this box.
|
||||
//! @param theLocalA - lower corner of the local box.
|
||||
//! @param theLocalB - upper corner of the local box.
|
||||
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
|
||||
const math_Vector& theLocalB);
|
||||
|
||||
//! Method to set tolerances.
|
||||
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
||||
//! @param theSameTol - functional value space indifference tolerance.
|
||||
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
|
||||
const Standard_Real theSameTol);
|
||||
|
||||
//! Method to get tolerances.
|
||||
//! @param theDiscretizationTol - parameter space discretization tolerance.
|
||||
//! @param theSameTol - functional value space indifference tolerance.
|
||||
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
|
||||
Standard_Real& theSameTol);
|
||||
|
||||
Standard_EXPORT ~math_GlobOptMin();
|
||||
|
||||
//! @param isFindSingleSolution - defines whether to find single solution or all solutions.
|
||||
Standard_EXPORT void Perform(const Standard_Boolean isFindSingleSolution = Standard_False);
|
||||
|
||||
//! Get best functional value.
|
||||
Standard_EXPORT Standard_Real GetF();
|
||||
|
||||
//! Return count of global extremas.
|
||||
Standard_EXPORT Standard_Integer NbExtrema();
|
||||
|
||||
//! Return solution theIndex, 1 <= theIndex <= NbExtrema.
|
||||
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
|
||||
|
||||
Standard_EXPORT Standard_Boolean isDone();
|
||||
|
||||
//! Set functional minimal value.
|
||||
Standard_EXPORT void SetFunctionalMinimalValue(const Standard_Real theMinimalValue);
|
||||
|
||||
//! Lock/Unlock Lipchitz constant for internal modifications.
|
||||
Standard_EXPORT void SetLipConstState(const Standard_Boolean theFlag);
|
||||
|
||||
//! Get functional minimal value.
|
||||
Standard_EXPORT Standard_Real GetFunctionalMinimalValue();
|
||||
|
||||
//! Get continuity of local borders splits.
|
||||
//! Set / Get continuity of local borders splits (0 ~ C0, 1 ~ C1, 2 ~ C2).
|
||||
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
|
||||
inline Standard_Integer GetContinuity() const {return myCont; }
|
||||
|
||||
//! Set continuity of local borders splits.
|
||||
inline void SetContinuity(const Standard_Integer theCont) { myCont = theCont; }
|
||||
//! Set / Get functional minimal value.
|
||||
inline void SetFunctionalMinimalValue(const Standard_Real theMinimalValue)
|
||||
{ myFunctionalMinimalValue = theMinimalValue; }
|
||||
inline Standard_Real GetFunctionalMinimalValue() const {return myFunctionalMinimalValue;}
|
||||
|
||||
//! Set / Get Lipchitz constant modification state.
|
||||
//! True means that the constant is locked and unlocked otherwise.
|
||||
inline void SetLipConstState(const Standard_Boolean theFlag) {myIsConstLocked = theFlag; }
|
||||
inline Standard_Boolean GetLipConstState() const { return myIsConstLocked; }
|
||||
|
||||
//! Return computation state of the algorithm.
|
||||
inline Standard_Boolean isDone() const {return myDone; }
|
||||
|
||||
//! Get best functional value.
|
||||
inline Standard_Real GetF() const {return myF;}
|
||||
|
||||
//! Return count of global extremas.
|
||||
inline Standard_Integer NbExtrema() const {return mySolCount;}
|
||||
|
||||
private:
|
||||
|
||||
//! Class for duplicate fast search. For internal usage only.
|
||||
class NCollection_CellFilter_Inspector
|
||||
{
|
||||
public:
|
||||
|
||||
//! Points and target type
|
||||
typedef math_Vector Point;
|
||||
typedef math_Vector Target;
|
||||
|
||||
NCollection_CellFilter_Inspector(const Standard_Integer theDim,
|
||||
const Standard_Real theTol)
|
||||
: myCurrent(1, theDim)
|
||||
{
|
||||
myTol = theTol * theTol;
|
||||
myIsFind = Standard_False;
|
||||
Dimension = theDim;
|
||||
}
|
||||
|
||||
//! Access to coordinate.
|
||||
static Standard_Real Coord (int i, const Point &thePnt)
|
||||
{
|
||||
return thePnt(i + 1);
|
||||
}
|
||||
|
||||
//! Auxiliary method to shift point by each coordinate on given value;
|
||||
//! useful for preparing a points range for Inspect with tolerance.
|
||||
void Shift (const Point& thePnt,
|
||||
const NCollection_Array1<Standard_Real> &theTol,
|
||||
Point& theLowPnt,
|
||||
Point& theUppPnt) const
|
||||
{
|
||||
for(Standard_Integer anIdx = 1; anIdx <= Dimension; anIdx++)
|
||||
{
|
||||
theLowPnt(anIdx) = thePnt(anIdx) - theTol(anIdx - 1);
|
||||
theUppPnt(anIdx) = thePnt(anIdx) + theTol(anIdx - 1);
|
||||
}
|
||||
}
|
||||
|
||||
void ClearFind()
|
||||
{
|
||||
myIsFind = Standard_False;
|
||||
}
|
||||
|
||||
Standard_Boolean isFind()
|
||||
{
|
||||
return myIsFind;
|
||||
}
|
||||
|
||||
//! Set current point to search for coincidence
|
||||
void SetCurrent (const math_Vector& theCurPnt)
|
||||
{
|
||||
myCurrent = theCurPnt;
|
||||
}
|
||||
|
||||
//! Implementation of inspection method
|
||||
NCollection_CellFilter_Action Inspect (const Target& theObject)
|
||||
{
|
||||
Standard_Real aSqDist = (myCurrent - theObject).Norm2();
|
||||
|
||||
if(aSqDist < myTol)
|
||||
{
|
||||
myIsFind = Standard_True;
|
||||
}
|
||||
|
||||
return CellFilter_Keep;
|
||||
}
|
||||
|
||||
private:
|
||||
Standard_Real myTol;
|
||||
math_Vector myCurrent;
|
||||
Standard_Boolean myIsFind;
|
||||
Standard_Integer Dimension;
|
||||
};
|
||||
|
||||
|
||||
// Compute cell size.
|
||||
void initCellSize();
|
||||
|
||||
@ -173,14 +216,14 @@ private:
|
||||
void computeGlobalExtremum(Standard_Integer theIndex);
|
||||
|
||||
//! Check possibility to stop computations.
|
||||
//! Find single solution + in neighbourhood of best possible solution.
|
||||
//! Find single solution + in neighborhood of best possible solution.
|
||||
Standard_Boolean CheckFunctionalStopCriteria();
|
||||
|
||||
//! Computes starting value / approximation:
|
||||
//! myF - initial best value.
|
||||
//! myY - initial best point.
|
||||
//! myC - approximation of Lipschitz constant.
|
||||
//! to imporve convergence speed.
|
||||
//! to improve convergence speed.
|
||||
void computeInitialValues();
|
||||
|
||||
//! Check that myA <= thePnt <= myB
|
||||
@ -213,7 +256,7 @@ private:
|
||||
|
||||
// Algorithm data.
|
||||
Standard_Real myZ;
|
||||
Standard_Real myE1; // Border coeff.
|
||||
Standard_Real myE1; // Border coefficient.
|
||||
Standard_Real myE2; // Minimum step size.
|
||||
Standard_Real myE3; // Local extrema starting parameter.
|
||||
|
||||
@ -222,7 +265,6 @@ private:
|
||||
math_Vector myV; // Steps array.
|
||||
math_Vector myMaxV; // Max Steps array.
|
||||
Standard_Real myLastStep; // Last step.
|
||||
math_Vector myExpandCoeff; // Define expand coefficient between neighboring indiced dimensions.
|
||||
|
||||
NCollection_Array1<Standard_Real> myCellSize;
|
||||
Standard_Integer myMinCellFilterSol;
|
||||
|
@ -11,7 +11,7 @@ ellipse c2 4 0 2 1
|
||||
|
||||
set info [2dextrema c1 c2]
|
||||
|
||||
set tol_abs 1.e-5
|
||||
set tol_abs 7.e-5
|
||||
set tol_rel 0.01
|
||||
|
||||
#-1
|
||||
@ -36,7 +36,7 @@ checkreal "Parameter2" ${Parameter2} ${expected_Parameter2} ${tol_abs} ${tol_rel
|
||||
set expected_OriginX 2.
|
||||
checkreal "OriginX" ${OriginX} ${expected_OriginX} ${tol_abs} ${tol_rel}
|
||||
|
||||
set expected_OriginY 7.e-05
|
||||
set expected_OriginY 0.0
|
||||
checkreal "OriginY" ${OriginY} ${expected_OriginY} ${tol_abs} ${tol_rel}
|
||||
|
||||
set expected_AxisX 1.
|
||||
|
33
tests/bugs/fclasses/bug27371
Normal file
33
tests/bugs/fclasses/bug27371
Normal file
@ -0,0 +1,33 @@
|
||||
puts "========"
|
||||
puts "OCC27371"
|
||||
puts "========"
|
||||
puts ""
|
||||
##############################################
|
||||
# Regression: BRepExtrema works too much slower in 691 (from 670)
|
||||
##############################################
|
||||
restore [locate_data_file bug27371.brep] aShape
|
||||
explode aShape
|
||||
|
||||
cpulimit 20
|
||||
|
||||
# Check computation time
|
||||
chrono h reset; chrono h start
|
||||
for { set i 1 } { $i <= 100 } { incr i } {
|
||||
distmini d aShape_1 aShape_2
|
||||
distmini d aShape_2 aShape_1
|
||||
}
|
||||
chrono h stop; chrono h show
|
||||
|
||||
regexp {CPU user time: (\d*)} [dchrono h show] dummy sec
|
||||
if {$sec > 1} {
|
||||
puts "Error: too long computation time $sec seconds"
|
||||
} else {
|
||||
puts "Computation time is OK"
|
||||
}
|
||||
|
||||
# Check result of distance distance
|
||||
set absTol 1.0e-10
|
||||
set relTol 0.001
|
||||
set aDist_Exp 0.2
|
||||
set aDist [dval d_val]
|
||||
checkreal "Distance value check" $aDist $aDist_Exp $absTol $relTol
|
Loading…
x
Reference in New Issue
Block a user