mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0027131: [Regression to 6.7] DistShapeShape performance loss
Lipchitz constant approximation and fixes in global optimization algorithm added to improve performance. Test case added. Possibility to freeze Lipchitz constant is added to improve performance.
This commit is contained in:
parent
290f0085d4
commit
1907fb9a74
@ -201,13 +201,36 @@ void Extrema_GenExtCC::Perform()
|
||||
C1.Intervals(anIntervals1, GeomAbs_C2);
|
||||
C2.Intervals(anIntervals2, GeomAbs_C2);
|
||||
|
||||
// Lipchitz constant approximation.
|
||||
Standard_Real aLC = 9.0; // Default value.
|
||||
Standard_Boolean isConstLockedFlag = Standard_False;
|
||||
if (C1.GetType() == GeomAbs_Line)
|
||||
{
|
||||
Standard_Real aMaxDer = 1.0 / C2.Resolution(1.0);
|
||||
if (aLC > aMaxDer)
|
||||
{
|
||||
isConstLockedFlag = Standard_True;
|
||||
aLC = aMaxDer;
|
||||
}
|
||||
}
|
||||
if (C2.GetType() == GeomAbs_Line)
|
||||
{
|
||||
Standard_Real aMaxDer = 1.0 / C1.Resolution(1.0);
|
||||
if (aLC > aMaxDer)
|
||||
{
|
||||
isConstLockedFlag = Standard_True;
|
||||
aLC = aMaxDer;
|
||||
}
|
||||
}
|
||||
|
||||
Extrema_GlobOptFuncCCC2 aFunc (C1, C2);
|
||||
math_GlobOptMin aFinder(&aFunc, myLowBorder, myUppBorder);
|
||||
math_GlobOptMin aFinder(&aFunc, myLowBorder, myUppBorder, aLC);
|
||||
aFinder.SetLipConstState(isConstLockedFlag);
|
||||
Standard_Real aDiscTol = 1.0e-2;
|
||||
Standard_Real aValueTol = 1.0e-2;
|
||||
Standard_Real aSameTol = myCurveMinTol / (aDiscTol);
|
||||
aFinder.SetTol(aDiscTol, aSameTol);
|
||||
aFinder.SetFunctionalMinimalValue(0.0); // Best disntance cannot be lower than 0.0
|
||||
aFinder.SetFunctionalMinimalValue(0.0); // Best distance cannot be lower than 0.0.
|
||||
|
||||
// Size computed to have cell index inside of int32 value.
|
||||
const Standard_Real aCellSize = Max(anIntervals1.Upper() - anIntervals1.Lower(),
|
||||
@ -287,7 +310,7 @@ void Extrema_GenExtCC::Perform()
|
||||
// Check for infinity solutions case, for this:
|
||||
// Sort points lexicographically and check midpoint between each two neighboring points.
|
||||
// If all midpoints functional value is acceptable
|
||||
// then set myParallel flag to true and return one soulution.
|
||||
// then set myParallel flag to true and return one solution.
|
||||
std::sort(aPnts.begin(), aPnts.end(), comp);
|
||||
Standard_Boolean isParallel = Standard_False;
|
||||
Standard_Real aVal = 0.0;
|
||||
|
@ -41,6 +41,7 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
myB(1, myN),
|
||||
myGlobA(1, myN),
|
||||
myGlobB(1, myN),
|
||||
myIsConstLocked(Standard_False),
|
||||
myX(1, myN),
|
||||
myTmp(1, myN),
|
||||
myV(1, myN),
|
||||
@ -53,6 +54,7 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
|
||||
myFunc = theFunc;
|
||||
myC = theC;
|
||||
myInitC = theC;
|
||||
myIsFindSingleSolution = Standard_False;
|
||||
myFunctionalMinimalValue = -Precision::Infinite();
|
||||
myZ = -1;
|
||||
@ -85,13 +87,14 @@ math_GlobOptMin::math_GlobOptMin(math_MultipleVarFunction* theFunc,
|
||||
Standard_Integer aSolNb = Standard_Integer(Pow(3.0, Standard_Real(myN)));
|
||||
myMinCellFilterSol = Max(2 * aSolNb, aMaxSquareSearchSol);
|
||||
initCellSize();
|
||||
ComputeInitSol();
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetGlobalParams
|
||||
//purpose : Set params without memory allocation.
|
||||
//purpose : Set parameters without memory allocation.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
const math_Vector& theA,
|
||||
@ -104,6 +107,7 @@ void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
|
||||
myFunc = theFunc;
|
||||
myC = theC;
|
||||
myInitC = theC;
|
||||
myZ = -1;
|
||||
mySolCount = 0;
|
||||
|
||||
@ -131,13 +135,14 @@ void math_GlobOptMin::SetGlobalParams(math_MultipleVarFunction* theFunc,
|
||||
mySameTol = theSameTol;
|
||||
|
||||
initCellSize();
|
||||
ComputeInitSol();
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetLocalParams
|
||||
//purpose : Set params without memory allocation.
|
||||
//purpose : Set parameters without memory allocation.
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
||||
const math_Vector& theLocalB)
|
||||
@ -145,8 +150,6 @@ void math_GlobOptMin::SetLocalParams(const math_Vector& theLocalA,
|
||||
Standard_Integer i;
|
||||
|
||||
myZ = -1;
|
||||
mySolCount = 0;
|
||||
|
||||
for(i = 1; i <= myN; i++)
|
||||
{
|
||||
myA(i) = theLocalA(i);
|
||||
@ -227,8 +230,11 @@ void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
|
||||
return;
|
||||
}
|
||||
|
||||
// Compute initial values for myF, myY, myC.
|
||||
computeInitialValues();
|
||||
if (!myIsConstLocked)
|
||||
{
|
||||
// Compute initial value for myC.
|
||||
computeInitialValues();
|
||||
}
|
||||
|
||||
myE1 = minLength * myTol;
|
||||
myE2 = maxLength * myTol;
|
||||
@ -236,8 +242,7 @@ void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
|
||||
myIsFindSingleSolution = isFindSingleSolution;
|
||||
if (isFindSingleSolution)
|
||||
{
|
||||
// Run local optimization
|
||||
// if current value better than optimal.
|
||||
// Run local optimization if current value better than optimal.
|
||||
myE3 = 0.0;
|
||||
}
|
||||
else
|
||||
@ -248,13 +253,14 @@ void math_GlobOptMin::Perform(const Standard_Boolean isFindSingleSolution)
|
||||
myE3 = - maxLength * myTol * myC / 4.0;
|
||||
}
|
||||
|
||||
// Search single solution and current solution in its neighbourhood.
|
||||
// Search single solution and current solution in its neighborhood.
|
||||
if (CheckFunctionalStopCriteria())
|
||||
{
|
||||
myDone = Standard_True;
|
||||
return;
|
||||
}
|
||||
|
||||
myLastStep = 0.0;
|
||||
isFirstCellFilterInvoke = Standard_True;
|
||||
computeGlobalExtremum(myN);
|
||||
|
||||
@ -338,35 +344,8 @@ void math_GlobOptMin::computeInitialValues()
|
||||
math_Vector aBestPnt(1, myN);
|
||||
math_Vector aParamStep(1, myN);
|
||||
Standard_Real aCurrVal = RealLast();
|
||||
Standard_Real aBestVal = RealLast();
|
||||
|
||||
// Check functional value in midpoint, low and upp point border and
|
||||
// in each point try to perform local optimization.
|
||||
aBestPnt = (myA + myB) * 0.5;
|
||||
myFunc->Value(aBestPnt, aBestVal);
|
||||
|
||||
for(i = 1; i <= 3; i++)
|
||||
{
|
||||
aCurrPnt = myA + (myB - myA) * (i - 1) / 2.0;
|
||||
|
||||
if(computeLocalExtremum(aCurrPnt, aCurrVal, aCurrPnt))
|
||||
{
|
||||
// Local Extremum finds better solution than current point.
|
||||
if (aCurrVal < aBestVal)
|
||||
{
|
||||
aBestVal = aCurrVal;
|
||||
aBestPnt = aCurrPnt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myF = aBestVal;
|
||||
myY.Clear();
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(aBestPnt(i));
|
||||
mySolCount++;
|
||||
|
||||
// Lipschitz const approximation
|
||||
// Lipchitz const approximation.
|
||||
Standard_Real aLipConst = 0.0, aPrevValDiag, aPrevValProj;
|
||||
Standard_Integer aPntNb = 13;
|
||||
myFunc->Value(myA, aPrevValDiag);
|
||||
@ -389,16 +368,23 @@ void math_GlobOptMin::computeInitialValues()
|
||||
aPrevValProj = aCurrVal;
|
||||
}
|
||||
|
||||
myC = myInitC;
|
||||
aLipConst *= Sqrt(myN) / aStep;
|
||||
|
||||
if (aLipConst < myC * 0.1)
|
||||
{
|
||||
myC = Max(aLipConst * 0.1, 0.01);
|
||||
}
|
||||
else if (aLipConst > myC * 10)
|
||||
else if (aLipConst > myC * 5)
|
||||
myC = Min(myC * 5, 50.0);
|
||||
|
||||
// Clear all solutions except one.
|
||||
if (myY.Size() != myN)
|
||||
{
|
||||
myC = Min(myC * 2, 30.0);
|
||||
for(i = 1; i <= myN; i++)
|
||||
aBestPnt(i) = myY(i);
|
||||
myY.Clear();
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(aBestPnt(i));
|
||||
}
|
||||
mySolCount = 1;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
@ -411,12 +397,12 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
Standard_Real d; // Functional in moved point.
|
||||
Standard_Real val = RealLast(); // Local extrema computed in moved point.
|
||||
Standard_Real aStepBestValue = RealLast();
|
||||
Standard_Real aRealStep = 0.0;
|
||||
math_Vector aStepBestPoint(1, myN);
|
||||
Standard_Boolean isInside = Standard_False;
|
||||
Standard_Real r;
|
||||
Standard_Boolean isReached = Standard_False;
|
||||
|
||||
|
||||
for(myX(j) = myA(j) + myE1;
|
||||
(myX(j) < myB(j) + myE1) && (!isReached);
|
||||
myX(j) += myV(j))
|
||||
@ -434,7 +420,7 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
{
|
||||
isInside = Standard_False;
|
||||
myFunc->Value(myX, d);
|
||||
r = (d + myZ * myC * aRealStep - myF) * myZ;
|
||||
r = (d + myZ * myC * myLastStep - myF) * myZ;
|
||||
if(r > myE3)
|
||||
{
|
||||
isInside = computeLocalExtremum(myX, val, myTmp);
|
||||
@ -477,8 +463,8 @@ void math_GlobOptMin::computeGlobalExtremum(Standard_Integer j)
|
||||
if (CheckFunctionalStopCriteria())
|
||||
return; // Best possible value is obtained.
|
||||
|
||||
aRealStep = myE2 + Abs(myF - d) / myC;
|
||||
myV(1) = Min(aRealStep, myMaxV(1));
|
||||
myV(1) = Min(myE2 + Abs(myF - d) / myC, myMaxV(1));
|
||||
myLastStep = myV(1);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -660,10 +646,59 @@ void math_GlobOptMin::initCellSize()
|
||||
//=======================================================================
|
||||
Standard_Boolean math_GlobOptMin::CheckFunctionalStopCriteria()
|
||||
{
|
||||
// Search single solution and current solution in its neighbourhood.
|
||||
// Search single solution and current solution in its neighborhood.
|
||||
if (myIsFindSingleSolution &&
|
||||
Abs (myF - myFunctionalMinimalValue) < mySameTol * 0.01)
|
||||
return Standard_True;
|
||||
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : ComputeInitSol
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::ComputeInitSol()
|
||||
{
|
||||
Standard_Real aCurrVal, aBestVal;
|
||||
math_Vector aCurrPnt(1, myN);
|
||||
math_Vector aBestPnt(1, myN);
|
||||
math_Vector aParamStep(1, myN);
|
||||
// Check functional value in midpoint, lower and upper border points and
|
||||
// in each point try to perform local optimization.
|
||||
aBestPnt = (myGlobA + myGlobB) * 0.5;
|
||||
myFunc->Value(aBestPnt, aBestVal);
|
||||
|
||||
Standard_Integer i;
|
||||
for(i = 1; i <= 3; i++)
|
||||
{
|
||||
aCurrPnt = myA + (myB - myA) * (i - 1) / 2.0;
|
||||
|
||||
if(computeLocalExtremum(aCurrPnt, aCurrVal, aCurrPnt))
|
||||
{
|
||||
// Local search tries to find better solution than current point.
|
||||
if (aCurrVal < aBestVal)
|
||||
{
|
||||
aBestVal = aCurrVal;
|
||||
aBestPnt = aCurrPnt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myF = aBestVal;
|
||||
myY.Clear();
|
||||
for(i = 1; i <= myN; i++)
|
||||
myY.Append(aBestPnt(i));
|
||||
mySolCount = 1;
|
||||
|
||||
myDone = Standard_False;
|
||||
}
|
||||
|
||||
//=======================================================================
|
||||
//function : SetLipConstState
|
||||
//purpose :
|
||||
//=======================================================================
|
||||
void math_GlobOptMin::SetLipConstState(const Standard_Boolean theFlag)
|
||||
{
|
||||
myIsConstLocked = theFlag;
|
||||
}
|
@ -146,6 +146,9 @@ public:
|
||||
//! Set functional minimal value.
|
||||
Standard_EXPORT void SetFunctionalMinimalValue(const Standard_Real theMinimalValue);
|
||||
|
||||
//! Lock/Unlock Lipchitz constant for internal modifications.
|
||||
Standard_EXPORT void SetLipConstState(const Standard_Boolean theFlag);
|
||||
|
||||
//! Get functional minimal value.
|
||||
Standard_EXPORT Standard_Real GetFunctionalMinimalValue();
|
||||
|
||||
@ -154,6 +157,9 @@ private:
|
||||
// Compute cell size.
|
||||
void initCellSize();
|
||||
|
||||
// Compute initial solution
|
||||
void ComputeInitSol();
|
||||
|
||||
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
|
||||
|
||||
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
|
||||
@ -188,9 +194,11 @@ private:
|
||||
Standard_Real mySameTol; // points with ||p1 - p2|| < mySameTol is equal,
|
||||
// function values |val1 - val2| * 0.01 < mySameTol is equal,
|
||||
// default value is 1.0e-7.
|
||||
Standard_Real myC; //Lipschitz constant, default 9
|
||||
Standard_Real myC; //Lipchitz constant, default 9
|
||||
Standard_Real myInitC; // Lipchitz constant initial value.
|
||||
Standard_Boolean myIsFindSingleSolution; // Default value is false.
|
||||
Standard_Real myFunctionalMinimalValue; // Default value is -Precision::Infinite
|
||||
Standard_Boolean myIsConstLocked; // Is constant locked for modifications.
|
||||
|
||||
// Output.
|
||||
Standard_Boolean myDone;
|
||||
@ -207,6 +215,7 @@ private:
|
||||
math_Vector myTmp; // Current modified solution.
|
||||
math_Vector myV; // Steps array.
|
||||
math_Vector myMaxV; // Max Steps array.
|
||||
Standard_Real myLastStep; // Last step.
|
||||
math_Vector myExpandCoeff; // Define expand coefficient between neighboring indiced dimensions.
|
||||
|
||||
NCollection_Array1<Standard_Real> myCellSize;
|
||||
|
32
tests/bugs/fclasses/bug27131
Normal file
32
tests/bugs/fclasses/bug27131
Normal file
@ -0,0 +1,32 @@
|
||||
puts "========"
|
||||
puts "OCC27131"
|
||||
puts "========"
|
||||
puts ""
|
||||
##############################################
|
||||
# DistShapeShape works slow on attached shapes
|
||||
##############################################
|
||||
restore [locate_data_file bug27131.brep] aShape
|
||||
explode aShape
|
||||
|
||||
cpulimit 20
|
||||
|
||||
# Check computation time
|
||||
chrono h reset; chrono h start
|
||||
for { set i 1 } { $i <= 100 } { incr i } {
|
||||
distmini d aShape_1 aShape_2
|
||||
}
|
||||
chrono h stop; chrono h show
|
||||
|
||||
regexp {CPU user time: (\d*)} [dchrono h show] dummy sec
|
||||
if {$sec > 1} {
|
||||
puts "Error: too long computation time $sec seconds"
|
||||
} else {
|
||||
puts "Computation time is OK"
|
||||
}
|
||||
|
||||
# Check result of distance distance
|
||||
set absTol 1.0e-10
|
||||
set relTol 0.001
|
||||
set aDist_Exp 0.0029087110153708622
|
||||
set aDist [dval d_val]
|
||||
checkreal "Distance value check" $aDist $aDist_Exp $absTol $relTol
|
@ -13,7 +13,7 @@ set info [2dextrema b9 b10]
|
||||
set status 0
|
||||
for { set i 1 } { $i <= 1 } { incr i 1 } {
|
||||
regexp "dist $i: +(\[-0-9.+eE\]+)" $info full pp
|
||||
if { abs($pp - 3.6712618987696386) > 1.0e-7 } {
|
||||
if { abs($pp - 3.6710534171261284) > 1.0e-7 } {
|
||||
puts "Error : Extrema is wrong on dist $i"
|
||||
set status 1
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user