mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
0032606: Visualization - add a shader for sky V3d_View::BackgroundSkydome()
Introduced V3d_View::SkydomeAspect() property for generating skydome cubemap environment. Skydome features: day/night cycle, 2 types of clouds, atmosphere, water surface, stars, fog.
This commit is contained in:
parent
2ac4e1beee
commit
16a263dc17
99
src/Aspect/Aspect_SkydomeBackground.cxx
Normal file
99
src/Aspect/Aspect_SkydomeBackground.cxx
Normal file
@ -0,0 +1,99 @@
|
||||
// Created on: 2021-10-14
|
||||
// Created by: Artem CHESNOKOV
|
||||
// Copyright (c) 2021 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#include <Aspect_SkydomeBackground.hxx>
|
||||
|
||||
#include <Standard_RangeError.hxx>
|
||||
|
||||
// =======================================================================
|
||||
// function : Constructor
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
Aspect_SkydomeBackground::Aspect_SkydomeBackground()
|
||||
: mySunDirection (0.0f, 1.0f, 0.0f),
|
||||
myCloudiness (0.2f),
|
||||
myTime (0.0f),
|
||||
myFogginess (0.0f),
|
||||
mySize (512)
|
||||
{
|
||||
//
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : Constructor
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
Aspect_SkydomeBackground::Aspect_SkydomeBackground (const gp_Dir& theSunDirection, Standard_ShortReal theCloudiness,
|
||||
Standard_ShortReal theTime, Standard_ShortReal theFogginess, Standard_Integer theSize)
|
||||
: mySunDirection (theSunDirection), myCloudiness (theCloudiness), myTime (theTime), myFogginess (theFogginess), mySize (theSize)
|
||||
{
|
||||
Standard_RangeError_Raise_if (theFogginess < 0, "Aspect_SkydomeBackground::Aspect_SkydomeBackground() theFoggines must be >= 0");
|
||||
Standard_RangeError_Raise_if (theCloudiness < 0, "Aspect_SkydomeBackground::Aspect_SkydomeBackground() theCloudiness must be >= 0");
|
||||
Standard_RangeError_Raise_if (theSize <= 0, "Aspect_SkydomeBackground::Aspect_SkydomeBackground() theSize must be > 0");
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : ~Aspect_SkydomeBackground
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
Aspect_SkydomeBackground::~Aspect_SkydomeBackground()
|
||||
{
|
||||
//
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : SetCloudiness
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void Aspect_SkydomeBackground::SetCloudiness (Standard_ShortReal theCloudiness)
|
||||
{
|
||||
Standard_RangeError_Raise_if (theCloudiness < 0, "Aspect_SkydomeBackground::SetCloudiness() theCloudiness must be >= 0");
|
||||
myCloudiness = theCloudiness;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : SetFogginess
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void Aspect_SkydomeBackground::SetFogginess (Standard_ShortReal theFogginess)
|
||||
{
|
||||
Standard_RangeError_Raise_if (theFogginess < 0, "Aspect_SkydomeBackground::SetFogginess() theFoggines must be >= 0");
|
||||
myFogginess = theFogginess;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : SetSize
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void Aspect_SkydomeBackground::SetSize (Standard_Integer theSize)
|
||||
{
|
||||
Standard_RangeError_Raise_if (theSize <= 0, "Aspect_SkydomeBackground::SetSize() theSize must be > 0");
|
||||
mySize = theSize;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : DumpJson
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void Aspect_SkydomeBackground::DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth) const
|
||||
{
|
||||
OCCT_DUMP_CLASS_BEGIN (theOStream, Aspect_GradientBackground)
|
||||
|
||||
OCCT_DUMP_FIELD_VALUES_DUMPED (theOStream, theDepth, &mySunDirection)
|
||||
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myTime)
|
||||
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myFogginess)
|
||||
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, myCloudiness)
|
||||
OCCT_DUMP_FIELD_VALUE_NUMERICAL (theOStream, mySize)
|
||||
}
|
104
src/Aspect/Aspect_SkydomeBackground.hxx
Normal file
104
src/Aspect/Aspect_SkydomeBackground.hxx
Normal file
@ -0,0 +1,104 @@
|
||||
// Created on: 2021-10-14
|
||||
// Created by: Artem CHESNOKOV
|
||||
// Copyright (c) 2021 OPEN CASCADE SAS
|
||||
//
|
||||
// This file is part of Open CASCADE Technology software library.
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or modify it under
|
||||
// the terms of the GNU Lesser General Public License version 2.1 as published
|
||||
// by the Free Software Foundation, with special exception defined in the file
|
||||
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
||||
// distribution for complete text of the license and disclaimer of any warranty.
|
||||
//
|
||||
// Alternatively, this file may be used under the terms of Open CASCADE
|
||||
// commercial license or contractual agreement.
|
||||
|
||||
#ifndef _Aspect_SkydomeBackground_Header
|
||||
#define _Aspect_SkydomeBackground_Header
|
||||
|
||||
#include <gp_Dir.hxx>
|
||||
#include <Graphic3d_Vec3.hxx>
|
||||
#include <Standard.hxx>
|
||||
#include <Standard_DefineAlloc.hxx>
|
||||
#include <Standard_Handle.hxx>
|
||||
|
||||
//! This class allows the definition of a window skydome background.
|
||||
class Aspect_SkydomeBackground
|
||||
{
|
||||
public:
|
||||
|
||||
DEFINE_STANDARD_ALLOC
|
||||
|
||||
//! Creates a window skydome background.
|
||||
//! By default skydome is initialized with sun at its zenith (0.0, 1.0, 0.0),
|
||||
//! average clody (0.2), zero time parameter, zero fogginess, 512x512 texture size.
|
||||
Standard_EXPORT Aspect_SkydomeBackground();
|
||||
|
||||
//! Creates a window skydome background with given parameters.
|
||||
//! @param[in] theSunDirection direction to the sun (moon). Sun direction with negative Y component
|
||||
//! represents moon with (-X, -Y, -Z) direction.
|
||||
//! @param[in] theCloudiness cloud intensity, 0.0 means no clouds at all and 1.0 - high clody.
|
||||
//! @param[in] theTime time parameter of simulation. Might be tweaked to slightly change appearance.
|
||||
//! @param[in] theFogginess fog intensity, 0.0 means no fog and 1.0 - high fogginess
|
||||
//! @param[in] theSize size of cubemap side in pixels.
|
||||
Standard_EXPORT Aspect_SkydomeBackground (const gp_Dir& theSunDirection,
|
||||
Standard_ShortReal theCloudiness,
|
||||
Standard_ShortReal theTime,
|
||||
Standard_ShortReal theFogginess,
|
||||
Standard_Integer theSize);
|
||||
|
||||
//! Destructor.
|
||||
Standard_EXPORT ~Aspect_SkydomeBackground();
|
||||
|
||||
//! Get sun direction. By default this value is (0, 1, 0)
|
||||
//! Sun direction with negative Y component represents moon with (-X, -Y, -Z) direction.
|
||||
const gp_Dir& SunDirection() const { return mySunDirection; }
|
||||
|
||||
//! Get cloud intensity. By default this value is 0.2
|
||||
//! 0.0 means no clouds at all and 1.0 - high clody.
|
||||
Standard_ShortReal Cloudiness() const { return myCloudiness; }
|
||||
|
||||
//! Get time of cloud simulation. By default this value is 0.0
|
||||
//! This value might be tweaked to slightly change appearance of clouds.
|
||||
Standard_ShortReal TimeParameter() const { return myTime; }
|
||||
|
||||
//! Get fog intensity. By default this value is 0.0
|
||||
//! 0.0 means no fog and 1.0 - high fogginess
|
||||
Standard_ShortReal Fogginess() const { return myFogginess; }
|
||||
|
||||
//! Get size of cubemap. By default this value is 512
|
||||
Standard_Integer Size() const { return mySize; }
|
||||
|
||||
//! Set sun direction. By default this value is (0, 1, 0)
|
||||
//! Sun direction with negative Y component represents moon with (-X, -Y, -Z) direction.
|
||||
void SetSunDirection (const gp_Dir& theSunDirection) { mySunDirection = theSunDirection; }
|
||||
|
||||
//! Set cloud intensity. By default this value is 0.2
|
||||
//! 0.0 means no clouds at all and 1.0 - high clody.
|
||||
Standard_EXPORT void SetCloudiness (Standard_ShortReal theCloudiness);
|
||||
|
||||
//! Set time of cloud simulation. By default this value is 0.0
|
||||
//! This value might be tweaked to slightly change appearance of clouds.
|
||||
void SetTimeParameter (Standard_ShortReal theTime) { myTime = theTime; }
|
||||
|
||||
//! Set fog intensity. By default this value is 0.0
|
||||
//! 0.0 means no fog and 1.0 - high fogginess
|
||||
Standard_EXPORT void SetFogginess (Standard_ShortReal theFogginess);
|
||||
|
||||
//! Set size of cubemap. By default this value is 512
|
||||
Standard_EXPORT void SetSize (Standard_Integer theSize);
|
||||
|
||||
//! Dumps the content of me into the stream
|
||||
Standard_EXPORT void DumpJson (Standard_OStream& theOStream, Standard_Integer theDepth = -1) const;
|
||||
|
||||
private:
|
||||
|
||||
gp_Dir mySunDirection; //!< Sun (moon) light direction.
|
||||
Standard_ShortReal myCloudiness; //!< Cloud intensity.
|
||||
Standard_ShortReal myTime; //!< Simulation time parameter.
|
||||
Standard_ShortReal myFogginess; //!< Fog intensity
|
||||
Standard_Integer mySize; //!< Size of cubemap in pixels
|
||||
|
||||
};
|
||||
|
||||
#endif // _Aspect_SkydomeBackground_Header
|
@ -40,6 +40,8 @@ Aspect_RectangularGrid.hxx
|
||||
Aspect_RenderingContext.hxx
|
||||
Aspect_SequenceOfColor.hxx
|
||||
Aspect_ScrollDelta.hxx
|
||||
Aspect_SkydomeBackground.cxx
|
||||
Aspect_SkydomeBackground.hxx
|
||||
Aspect_Touch.hxx
|
||||
Aspect_TouchMap.hxx
|
||||
Aspect_TrackedDevicePose.hxx
|
||||
|
@ -14,6 +14,7 @@
|
||||
#include <Graphic3d_CView.hxx>
|
||||
|
||||
#include <Aspect_OpenVRSession.hxx>
|
||||
#include <Graphic3d_CubeMapPacked.hxx>
|
||||
#include <Graphic3d_Layer.hxx>
|
||||
#include <Graphic3d_MapIteratorOfMapOfStructure.hxx>
|
||||
#include <Graphic3d_StructureManager.hxx>
|
||||
@ -27,6 +28,7 @@ IMPLEMENT_STANDARD_RTTIEXT(Graphic3d_CView,Graphic3d_DataStructureManager)
|
||||
Graphic3d_CView::Graphic3d_CView (const Handle(Graphic3d_StructureManager)& theMgr)
|
||||
: myBgColor (Quantity_NOC_BLACK),
|
||||
myBackgroundType (Graphic3d_TOB_NONE),
|
||||
myToUpdateSkydome (Standard_False),
|
||||
myStructureManager (theMgr),
|
||||
myCamera (new Graphic3d_Camera()),
|
||||
myHiddenObjects (new Graphic3d_NMapOfTransient()),
|
||||
@ -53,6 +55,25 @@ Graphic3d_CView::~Graphic3d_CView()
|
||||
}
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : SetBackgroundSkydome
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void Graphic3d_CView::SetBackgroundSkydome (const Aspect_SkydomeBackground& theAspect,
|
||||
Standard_Boolean theToUpdatePBREnv)
|
||||
{
|
||||
myToUpdateSkydome = true;
|
||||
mySkydomeAspect = theAspect;
|
||||
myCubeMapBackground = new Graphic3d_CubeMapPacked ("");
|
||||
SetBackgroundType (Graphic3d_TOB_CUBEMAP);
|
||||
if (theToUpdatePBREnv
|
||||
&& !myCubeMapIBL.IsNull())
|
||||
{
|
||||
SetImageBasedLighting (false);
|
||||
SetImageBasedLighting (true);
|
||||
}
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : Activate
|
||||
// purpose :
|
||||
|
@ -16,6 +16,7 @@
|
||||
|
||||
#include <Aspect_Handle.hxx>
|
||||
#include <Aspect_RenderingContext.hxx>
|
||||
#include <Aspect_SkydomeBackground.hxx>
|
||||
#include <Aspect_Window.hxx>
|
||||
#include <Graphic3d_BufferType.hxx>
|
||||
#include <Graphic3d_Camera.hxx>
|
||||
@ -396,6 +397,13 @@ public:
|
||||
//! Sets background type.
|
||||
void SetBackgroundType (Graphic3d_TypeOfBackground theType) { myBackgroundType = theType; }
|
||||
|
||||
//! Returns skydome aspect;
|
||||
const Aspect_SkydomeBackground& BackgroundSkydome() const { return mySkydomeAspect; }
|
||||
|
||||
//! Sets skydome aspect
|
||||
Standard_EXPORT void SetBackgroundSkydome (const Aspect_SkydomeBackground& theAspect,
|
||||
Standard_Boolean theToUpdatePBREnv = Standard_True);
|
||||
|
||||
//! Enables or disables IBL (Image Based Lighting) from background cubemap.
|
||||
//! Has no effect if PBR is not used.
|
||||
//! @param[in] theToEnableIBL enable or disable IBL from background cubemap
|
||||
@ -574,6 +582,8 @@ protected:
|
||||
Handle(Graphic3d_CubeMap) myCubeMapIBL; //!< Cubemap used for environment lighting
|
||||
Handle(Graphic3d_TextureEnv) myTextureEnvData;
|
||||
Graphic3d_TypeOfBackground myBackgroundType; //!< Current type of background
|
||||
Aspect_SkydomeBackground mySkydomeAspect;
|
||||
Standard_Boolean myToUpdateSkydome;
|
||||
|
||||
Handle(Graphic3d_StructureManager) myStructureManager;
|
||||
Handle(Graphic3d_Camera) myCamera;
|
||||
|
@ -32,6 +32,7 @@
|
||||
#include "../Shaders/Shaders_PhongPointLight_glsl.pxx"
|
||||
#include "../Shaders/Shaders_PhongSpotLight_glsl.pxx"
|
||||
#include "../Shaders/Shaders_PointLightAttenuation_glsl.pxx"
|
||||
#include "../Shaders/Shaders_SkydomBackground_fs.pxx"
|
||||
#include "../Shaders/Shaders_TangentSpaceNormal_glsl.pxx"
|
||||
|
||||
IMPLEMENT_STANDARD_RTTIEXT(Graphic3d_ShaderManager, Standard_Transient)
|
||||
@ -2094,6 +2095,43 @@ Handle(Graphic3d_ShaderProgram) Graphic3d_ShaderManager::getBgCubeMapProgram() c
|
||||
return aProgSrc;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : getBgSkydomeProgram
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
Handle(Graphic3d_ShaderProgram) Graphic3d_ShaderManager::getBgSkydomeProgram() const
|
||||
{
|
||||
Handle(Graphic3d_ShaderProgram) aProgSrc = new Graphic3d_ShaderProgram();
|
||||
|
||||
Graphic3d_ShaderObject::ShaderVariableList aUniforms, aStageInOuts;
|
||||
aStageInOuts.Append (Graphic3d_ShaderObject::ShaderVariable ("vec2 TexCoord", Graphic3d_TOS_VERTEX | Graphic3d_TOS_FRAGMENT));
|
||||
|
||||
TCollection_AsciiString aSrcVert = TCollection_AsciiString()
|
||||
+ EOL"void main()"
|
||||
EOL"{"
|
||||
EOL" gl_Position = vec4 (occVertex.xy, 0.0, 1.0);"
|
||||
EOL" TexCoord = 0.5 * gl_Position.xy + vec2 (0.5);"
|
||||
EOL"}";
|
||||
|
||||
TCollection_AsciiString aSrcFrag = Shaders_SkydomBackground_fs;
|
||||
|
||||
if (myGapi == Aspect_GraphicsLibrary_OpenGL)
|
||||
{
|
||||
aProgSrc->SetHeader ("#version 130");
|
||||
}
|
||||
else if (myGapi == Aspect_GraphicsLibrary_OpenGLES)
|
||||
{
|
||||
if (IsGapiGreaterEqual (3, 0))
|
||||
{
|
||||
aProgSrc->SetHeader ("#version 300 es");
|
||||
}
|
||||
}
|
||||
aProgSrc->AttachShader (Graphic3d_ShaderObject::CreateFromSource (aSrcVert, Graphic3d_TOS_VERTEX, aUniforms, aStageInOuts));
|
||||
aProgSrc->AttachShader (Graphic3d_ShaderObject::CreateFromSource (aSrcFrag, Graphic3d_TOS_FRAGMENT, aUniforms, aStageInOuts));
|
||||
|
||||
return aProgSrc;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : getColoredQuadProgram
|
||||
// purpose :
|
||||
|
@ -142,6 +142,9 @@ protected:
|
||||
//! Generates shader program to render environment cubemap as background.
|
||||
Standard_EXPORT Handle(Graphic3d_ShaderProgram) getBgCubeMapProgram() const;
|
||||
|
||||
//! Generates shader program to render skydome background.
|
||||
Standard_EXPORT Handle(Graphic3d_ShaderProgram) getBgSkydomeProgram() const;
|
||||
|
||||
//! Generates shader program to render correctly colored quad.
|
||||
Standard_EXPORT Handle(Graphic3d_ShaderProgram) getColoredQuadProgram() const;
|
||||
|
||||
|
@ -1374,6 +1374,19 @@ const Handle(Graphic3d_ShaderProgram)& OpenGl_ShaderManager::GetBgCubeMapProgram
|
||||
return myBgCubeMapProgram;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : GetBgSkydomeProgram
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
const Handle(Graphic3d_ShaderProgram)& OpenGl_ShaderManager::GetBgSkydomeProgram ()
|
||||
{
|
||||
if (myBgSkydomeProgram.IsNull())
|
||||
{
|
||||
myBgSkydomeProgram = getBgSkydomeProgram();
|
||||
}
|
||||
return myBgSkydomeProgram;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : GetColoredQuadProgram
|
||||
// purpose :
|
||||
|
@ -229,6 +229,9 @@ public:
|
||||
//! Generates shader program to render environment cubemap as background.
|
||||
Standard_EXPORT const Handle(Graphic3d_ShaderProgram)& GetBgCubeMapProgram();
|
||||
|
||||
//! Generates shader program to render skydome background.
|
||||
Standard_EXPORT const Handle(Graphic3d_ShaderProgram)& GetBgSkydomeProgram();
|
||||
|
||||
//! Generates shader program to render correctly colored quad.
|
||||
Standard_EXPORT const Handle(Graphic3d_ShaderProgram)& GetColoredQuadProgram();
|
||||
|
||||
@ -772,6 +775,7 @@ protected:
|
||||
|
||||
Handle(OpenGl_ShaderProgram) myPBREnvBakingProgram[3]; //!< programs for IBL maps generation used in PBR pipeline (0 for Diffuse; 1 for Specular; 2 for fallback)
|
||||
Handle(Graphic3d_ShaderProgram) myBgCubeMapProgram; //!< program for background cubemap rendering
|
||||
Handle(Graphic3d_ShaderProgram) myBgSkydomeProgram; //!< program for background cubemap rendering
|
||||
Handle(Graphic3d_ShaderProgram) myColoredQuadProgram; //!< program for correct quad rendering
|
||||
|
||||
Handle(OpenGl_ShaderProgram) myStereoPrograms[Graphic3d_StereoMode_NB]; //!< standard stereo programs
|
||||
|
@ -998,13 +998,17 @@ void OpenGl_View::drawBackground (const Handle(OpenGl_Workspace)& theWorkspace,
|
||||
|
||||
if (myBackgroundType == Graphic3d_TOB_CUBEMAP)
|
||||
{
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uZCoeff", myCubeMapBackground->ZIsInverted() ? -1 : 1);
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uYCoeff", myCubeMapBackground->IsTopDown() ? 1 : -1);
|
||||
const OpenGl_Aspects* anOldAspectFace = theWorkspace->SetAspects (myCubeMapParams);
|
||||
updateSkydomeBg (aCtx);
|
||||
if (!myCubeMapParams->Aspect()->ShaderProgram().IsNull())
|
||||
{
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uZCoeff", myCubeMapBackground->ZIsInverted() ? -1 : 1);
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uYCoeff", myCubeMapBackground->IsTopDown() ? 1 : -1);
|
||||
const OpenGl_Aspects* anOldAspectFace = theWorkspace->SetAspects (myCubeMapParams);
|
||||
|
||||
myBackgrounds[Graphic3d_TOB_CUBEMAP]->Render (theWorkspace, theProjection);
|
||||
myBackgrounds[Graphic3d_TOB_CUBEMAP]->Render (theWorkspace, theProjection);
|
||||
|
||||
theWorkspace->SetAspects (anOldAspectFace);
|
||||
theWorkspace->SetAspects (anOldAspectFace);
|
||||
}
|
||||
}
|
||||
else if (myBackgroundType == Graphic3d_TOB_GRADIENT
|
||||
|| myBackgroundType == Graphic3d_TOB_TEXTURE)
|
||||
@ -3080,6 +3084,97 @@ Standard_Boolean OpenGl_View::checkOitCompatibility (const Handle(OpenGl_Context
|
||||
return Standard_False;
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : updateSkydomeBg
|
||||
// purpose :
|
||||
// =======================================================================
|
||||
void OpenGl_View::updateSkydomeBg (const Handle(OpenGl_Context)& theCtx)
|
||||
{
|
||||
if (!myToUpdateSkydome)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
myToUpdateSkydome = false;
|
||||
|
||||
// Set custom shader
|
||||
Handle(OpenGl_ShaderProgram) aProg;
|
||||
Handle(Graphic3d_ShaderProgram) aProxy = theCtx->ShaderManager()->GetBgSkydomeProgram();
|
||||
TCollection_AsciiString anUnused;
|
||||
theCtx->ShaderManager()->Create (aProxy, anUnused, aProg);
|
||||
Handle(OpenGl_ShaderProgram) aPrevProgram = theCtx->ActiveProgram();
|
||||
theCtx->BindProgram (aProg);
|
||||
|
||||
// Setup uniforms
|
||||
aProg->SetUniform (theCtx, "uSunDir", OpenGl_Vec3((float )mySkydomeAspect.SunDirection().X(),
|
||||
(float )mySkydomeAspect.SunDirection().Y(),
|
||||
(float )mySkydomeAspect.SunDirection().Z()));
|
||||
aProg->SetUniform (theCtx, "uCloudy", mySkydomeAspect.Cloudiness());
|
||||
aProg->SetUniform (theCtx, "uTime", mySkydomeAspect.TimeParameter());
|
||||
aProg->SetUniform (theCtx, "uFog", mySkydomeAspect.Fogginess());
|
||||
|
||||
// Create and prepare framebuffer
|
||||
GLint aPrevFBO = 0;
|
||||
theCtx->core11fwd->glGetIntegerv (GL_FRAMEBUFFER_BINDING, &aPrevFBO);
|
||||
GLuint anFBO = 0;
|
||||
theCtx->arbFBO->glGenFramebuffers (1, &anFBO);
|
||||
theCtx->arbFBO->glBindFramebuffer (GL_FRAMEBUFFER, anFBO);
|
||||
|
||||
const Standard_Integer anOldViewport[4] = {theCtx->Viewport()[0], theCtx->Viewport()[1], theCtx->Viewport()[2], theCtx->Viewport()[3]};
|
||||
const Standard_Integer aViewport[4] = {0, 0, mySkydomeAspect.Size(), mySkydomeAspect.Size()};
|
||||
theCtx->ResizeViewport (aViewport);
|
||||
|
||||
// Fullscreen triangle
|
||||
Handle(OpenGl_VertexBuffer) aVBO = new OpenGl_VertexBuffer();
|
||||
const float aTriangle[] = {-1.0, -1.0, 3.0, -1.0, -1.0, 3.0};
|
||||
aVBO->Init (theCtx, 2, 3, aTriangle);
|
||||
aVBO->BindAttribute (theCtx, Graphic3d_TypeOfAttribute::Graphic3d_TOA_POS);
|
||||
aVBO->Bind (theCtx);
|
||||
|
||||
if (mySkydomeTexture.IsNull())
|
||||
{
|
||||
mySkydomeTexture = new OpenGl_Texture();
|
||||
mySkydomeTexture->Sampler()->Parameters()->SetFilter (Graphic3d_TOTF_BILINEAR);
|
||||
}
|
||||
if (mySkydomeTexture->SizeX() != mySkydomeAspect.Size())
|
||||
{
|
||||
mySkydomeTexture->Release (theCtx.get());
|
||||
mySkydomeTexture->InitCubeMap (theCtx, NULL, mySkydomeAspect.Size(),
|
||||
Image_Format_RGB, false, false);
|
||||
}
|
||||
|
||||
// init aspects if needed
|
||||
if (myCubeMapParams->TextureSet (theCtx).IsNull())
|
||||
{
|
||||
myCubeMapParams->Aspect()->SetInteriorStyle (Aspect_IS_SOLID);
|
||||
myCubeMapParams->Aspect()->SetFaceCulling (Graphic3d_TypeOfBackfacingModel_DoubleSided);
|
||||
myCubeMapParams->Aspect()->SetShadingModel (Graphic3d_TypeOfShadingModel_Unlit);
|
||||
myCubeMapParams->Aspect()->SetShaderProgram (theCtx->ShaderManager()->GetBgCubeMapProgram());
|
||||
Handle(Graphic3d_TextureSet) aTextureSet = new Graphic3d_TextureSet (1);
|
||||
myCubeMapParams->Aspect()->SetTextureSet (aTextureSet);
|
||||
myCubeMapParams->Aspect()->SetTextureMapOn (true);
|
||||
myCubeMapParams->SynchronizeAspects();
|
||||
}
|
||||
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uZCoeff", 1);
|
||||
myCubeMapParams->Aspect()->ShaderProgram()->PushVariableInt ("uYCoeff", 1);
|
||||
|
||||
for (Standard_Integer aSideIter = 0; aSideIter < 6; aSideIter++)
|
||||
{
|
||||
aProg->SetUniform (theCtx, "uSide", aSideIter);
|
||||
theCtx->arbFBO->glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + aSideIter,
|
||||
mySkydomeTexture->TextureId(), 0);
|
||||
theCtx->core15->glDrawArrays (GL_TRIANGLES, 0, 3);
|
||||
}
|
||||
theCtx->arbFBO->glDeleteFramebuffers (1, &anFBO);
|
||||
aVBO->Release (theCtx.get());
|
||||
|
||||
myCubeMapParams->TextureSet (theCtx)->ChangeFirst() = mySkydomeTexture;
|
||||
theCtx->BindProgram (aPrevProgram);
|
||||
theCtx->ResizeViewport (anOldViewport);
|
||||
theCtx->arbFBO->glBindFramebuffer (GL_FRAMEBUFFER, aPrevFBO);
|
||||
}
|
||||
|
||||
// =======================================================================
|
||||
// function : checkPBRAvailability
|
||||
// purpose :
|
||||
@ -3096,6 +3191,12 @@ Standard_Boolean OpenGl_View::checkPBRAvailability() const
|
||||
// =======================================================================
|
||||
void OpenGl_View::updatePBREnvironment (const Handle(OpenGl_Context)& theCtx)
|
||||
{
|
||||
if (myBackgroundType == Graphic3d_TOB_CUBEMAP
|
||||
&& myToUpdateSkydome)
|
||||
{
|
||||
updateSkydomeBg (theCtx);
|
||||
}
|
||||
|
||||
if (myPBREnvState != OpenGl_PBREnvState_CREATED
|
||||
|| !myPBREnvRequest)
|
||||
{
|
||||
|
@ -379,7 +379,7 @@ protected: //! @name Rendering of GL graphics (with prepared drawing buffer).
|
||||
OpenGl_FrameBuffer* theOitAccumFbo,
|
||||
const Standard_Boolean theToDrawImmediate);
|
||||
|
||||
//! Draw background (gradient / image)
|
||||
//! Draw background (gradient / image / cubemap)
|
||||
Standard_EXPORT virtual void drawBackground (const Handle(OpenGl_Workspace)& theWorkspace,
|
||||
Graphic3d_Camera::Projection theProjection);
|
||||
|
||||
@ -507,6 +507,12 @@ protected: //! @name Background parameters
|
||||
OpenGl_Aspects* myColoredQuadParams; //!< Stores parameters for gradient (corner mode) background
|
||||
OpenGl_BackgroundArray* myBackgrounds[Graphic3d_TypeOfBackground_NB]; //!< Array of primitive arrays of different background types
|
||||
Handle(OpenGl_TextureSet) myTextureEnv;
|
||||
Handle(OpenGl_Texture) mySkydomeTexture;
|
||||
|
||||
protected: //! @name methods related to skydome background
|
||||
|
||||
//! Generates skydome cubemap.
|
||||
Standard_EXPORT void updateSkydomeBg (const Handle(OpenGl_Context)& theCtx);
|
||||
|
||||
protected: //! @name methods related to PBR
|
||||
|
||||
|
@ -24,6 +24,7 @@ srcinc:::PathtraceBase.fs
|
||||
srcinc:::RaytraceBase.vs
|
||||
srcinc:::RaytraceSmooth.fs
|
||||
srcinc:::TangentSpaceNormal.glsl
|
||||
srcinc:::SkydomBackground.fs
|
||||
Shaders_Declarations_glsl.pxx
|
||||
Shaders_DeclarationsImpl_glsl.pxx
|
||||
Shaders_DirectionalLightShadow_glsl.pxx
|
||||
@ -48,3 +49,4 @@ Shaders_PathtraceBase_fs.pxx
|
||||
Shaders_RaytraceBase_vs.pxx
|
||||
Shaders_RaytraceSmooth_fs.pxx
|
||||
Shaders_TangentSpaceNormal_glsl.pxx
|
||||
Shaders_SkydomBackground_fs.pxx
|
||||
|
303
src/Shaders/Shaders_SkydomBackground_fs.pxx
Normal file
303
src/Shaders/Shaders_SkydomBackground_fs.pxx
Normal file
@ -0,0 +1,303 @@
|
||||
// This file has been automatically generated from resource file src/Shaders/SkydomBackground.fs
|
||||
|
||||
static const char Shaders_SkydomBackground_fs[] =
|
||||
"// Constants\n"
|
||||
"const float M_PI = 3.1415926535;\n"
|
||||
"const float THE_EARTH_RADIUS = 6360e3;\n"
|
||||
"const vec3 THE_EARTH_CENTER = vec3 (0.0, -THE_EARTH_RADIUS, 0.0);\n"
|
||||
"const float THE_ATMO_RADIUS = 6380e3; // atmosphere radius (6420e3?)\n"
|
||||
"const float THE_G = 0.76; // anisotropy of the medium (papers use 0.76)\n"
|
||||
"const float THE_G2 = THE_G * THE_G;\n"
|
||||
"const float THE_HR = 8000.0; // Thickness of the atmosphere\n"
|
||||
"const float THE_HM = 1000.0; // Same as above but for Mie\n"
|
||||
"const vec3 THE_BETA_R = vec3 (5.8e-6, 13.5e-6, 33.1e-6); // Reyleigh scattering normal earth\n"
|
||||
"const vec3 THE_BETA_M = vec3 (21e-6); // Normal Mie scattering\n"
|
||||
"\n"
|
||||
"// Parameters\n"
|
||||
"const float THE_SunAttenuation = 1.0; // sun intensity\n"
|
||||
"const float THE_EyeHeight = 100.0; // viewer height\n"
|
||||
"const float THE_HorizonWidth = 0.002;\n"
|
||||
"const int THE_NbSamples = 8;\n"
|
||||
"const int THE_NbSamplesLight = 8; // integral sampling rate (might highly hit performance)\n"
|
||||
"const float THE_SunPower = 5.0;\n"
|
||||
"const float THE_StarTreshold = 0.98;\n"
|
||||
"\n"
|
||||
"// Uniforms\n"
|
||||
"uniform vec3 uSunDir;\n"
|
||||
"uniform float uTime;\n"
|
||||
"uniform float uCloudy;\n"
|
||||
"uniform float uFog;\n"
|
||||
"\n"
|
||||
"float hash13 (in vec3 p3)\n"
|
||||
"{\n"
|
||||
" p3 = fract (p3 * 0.1031);\n"
|
||||
" p3 += dot (p3, p3.zyx + 31.32);\n"
|
||||
" return fract ((p3.x + p3.y) * p3.z);\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float hash12 (in vec2 p)\n"
|
||||
"{\n"
|
||||
" vec3 p3 = fract (vec3(p.xyx) * .1031);\n"
|
||||
" p3 += dot (p3, p3.yzx + 33.33);\n"
|
||||
" return fract ((p3.x + p3.y) * p3.z);\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float smoothStarField (in vec2 theSamplePos)\n"
|
||||
"{\n"
|
||||
" vec2 aFract = fract (theSamplePos);\n"
|
||||
" vec2 aFloorSample = floor (theSamplePos);\n"
|
||||
" float v1 = hash12 (aFloorSample);\n"
|
||||
" float v2 = hash12 (aFloorSample + vec2( 0.0, 1.0 ));\n"
|
||||
" float v3 = hash12 (aFloorSample + vec2( 1.0, 0.0 ));\n"
|
||||
" float v4 = hash12 (aFloorSample + vec2( 1.0, 1.0 ));\n"
|
||||
"\n"
|
||||
" vec2 u = aFract * aFract * (3.0 - 2.0 * aFract);\n"
|
||||
"\n"
|
||||
" return mix(v1, v2, u.x) +\n"
|
||||
" (v3 - v1) * u.y * (1.0 - u.x) +\n"
|
||||
" (v4 - v2) * u.x * u.y;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float noisyStarField (in vec2 theSamplePos)\n"
|
||||
"{\n"
|
||||
" float aStarVal = smoothStarField (theSamplePos);\n"
|
||||
" if (aStarVal >= THE_StarTreshold)\n"
|
||||
" {\n"
|
||||
" aStarVal = pow ((aStarVal - THE_StarTreshold) / (1.0 - THE_StarTreshold), 6.0);\n"
|
||||
" }\n"
|
||||
" else\n"
|
||||
" {\n"
|
||||
" aStarVal = 0.0;\n"
|
||||
" }\n"
|
||||
" return aStarVal;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float smoothNoise (in vec3 theCoord)\n"
|
||||
"{\n"
|
||||
" vec3 anInt = floor (theCoord);\n"
|
||||
" vec3 anFract = fract (theCoord);\n"
|
||||
" anFract = anFract * anFract * (3.0 - (2.0 * anFract));\n"
|
||||
" return mix(mix(mix(hash13(anInt ),\n"
|
||||
" hash13(anInt + vec3(1.0, 0.0, 0.0)), anFract.x),\n"
|
||||
" mix(hash13(anInt + vec3(0.0, 1.0, 0.0)),\n"
|
||||
" hash13(anInt + vec3(1.0, 1.0, 0.0)), anFract.x), anFract.y),\n"
|
||||
" mix(mix(hash13(anInt + vec3(0.0, 0.0, 1.0)),\n"
|
||||
" hash13(anInt + vec3(1.0, 0.0, 1.0)), anFract.x),\n"
|
||||
" mix(hash13(anInt + vec3(0.0, 1.0, 1.0)),\n"
|
||||
" hash13(anInt + vec3(1.0, 1.0, 1.0)), anFract.x), anFract.y), anFract.z);\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float fnoise (in vec3 theCoord, in float theTime)\n"
|
||||
"{\n"
|
||||
" theCoord *= .25;\n"
|
||||
" float aNoise;\n"
|
||||
"\n"
|
||||
" aNoise = 0.5000 * smoothNoise (theCoord);\n"
|
||||
" theCoord = theCoord * 3.02; theCoord.y -= theTime * 0.2;\n"
|
||||
" aNoise += 0.2500 * smoothNoise (theCoord);\n"
|
||||
" theCoord = theCoord * 3.03; theCoord.y += theTime * 0.06;\n"
|
||||
" aNoise += 0.1250 * smoothNoise (theCoord);\n"
|
||||
" theCoord = theCoord * 3.01;\n"
|
||||
" aNoise += 0.0625 * smoothNoise (theCoord);\n"
|
||||
" theCoord = theCoord * 3.03;\n"
|
||||
" aNoise += 0.03125 * smoothNoise (theCoord);\n"
|
||||
" theCoord = theCoord * 3.02;\n"
|
||||
" aNoise += 0.015625 * smoothNoise (theCoord);\n"
|
||||
" return aNoise;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"float clouds (in vec3 theTs, in float theTime)\n"
|
||||
"{\n"
|
||||
" float aCloud = fnoise (theTs * 2e-4, theTime) + uCloudy * 0.1;\n"
|
||||
" aCloud = smoothstep (0.44, 0.64, aCloud);\n"
|
||||
" aCloud *= 70.0;\n"
|
||||
" return aCloud + uFog;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"void densities (in vec3 thePos, out float theRayleigh, out float theMie, in float theTime)\n"
|
||||
"{\n"
|
||||
" float aHeight = length (thePos - THE_EARTH_CENTER) - THE_EARTH_RADIUS;\n"
|
||||
" theRayleigh = exp (-aHeight / THE_HR);\n"
|
||||
"\n"
|
||||
" float aCloud = 0.0;\n"
|
||||
" if (aHeight > 5000.0 && aHeight < 8000.0)\n"
|
||||
" {\n"
|
||||
" aCloud = clouds (thePos + vec3 (0.0, 0.,-theTime*3e3), theTime);\n"
|
||||
" aCloud *= sin (M_PI*(aHeight - 5e3) / 5e3) * uCloudy;\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" float aCloud2 = 0.0;\n"
|
||||
" if (aHeight > 12e3 && aHeight < 15.5e3)\n"
|
||||
" {\n"
|
||||
" aCloud2 = fnoise (thePos * 3e-4, theTime) * clouds (thePos * 32.0, theTime);\n"
|
||||
" aCloud2 *= sin (M_PI * (aHeight - 12e3) / 12e3) * 0.05;\n"
|
||||
" aCloud2 = clamp (aCloud2, 0.0, 1.0);\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" theMie = exp (-aHeight / THE_HM) + aCloud + uFog;\n"
|
||||
" theMie += aCloud2;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"// ray with sphere intersection problem is reduced to solving the equation\n"
|
||||
"// (P - C)^2 = r^2 <--- sphere equation\n"
|
||||
"// where P is P(t) = A + t*B <--- point on ray\n"
|
||||
"// t^2*dot(B, B) + t*2*dot(B, A-C) + dot(A-C, A-C) - r^2 = 0\n"
|
||||
"// [ A ] [ B ] [ C ]\n"
|
||||
"// We just need to solve the above quadratic equation\n"
|
||||
"float raySphereIntersect (in vec3 theOrig, in vec3 theDir, in float theRadius)\n"
|
||||
"{\n"
|
||||
" theOrig = theOrig - THE_EARTH_CENTER;\n"
|
||||
" // A coefficient will be always 1 (theDir is normalized)\n"
|
||||
" float B = dot (theOrig, theDir);\n"
|
||||
" float C = dot (theOrig, theOrig) - theRadius * theRadius;\n"
|
||||
" // optimized version of classic (-b +- sqrt(b^2 - 4ac)) / 2a\n"
|
||||
" float aDet2 = B * B - C;\n"
|
||||
" if (aDet2 < 0.0) { return -1.0; }\n"
|
||||
" float aDet = sqrt (aDet2);\n"
|
||||
" float aT1 = -B - aDet;\n"
|
||||
" float aT2 = -B + aDet;\n"
|
||||
" return aT1 >= 0.0 ? aT1 : aT2;\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"void scatter (in vec3 theEye, in vec3 theRay, in vec3 theSun,\n"
|
||||
" out vec3 theCol, out float theScat, in float theTime)\n"
|
||||
"{\n"
|
||||
" float aRayLen = raySphereIntersect (theEye, theRay, THE_ATMO_RADIUS);\n"
|
||||
" float aMu = dot (theRay, theSun);\n"
|
||||
" float aMu2 = 1.0 + aMu*aMu;\n"
|
||||
" // The Raleigh phase function looks like this:\n"
|
||||
" float aPhaseR = 3.0/(16.0 * M_PI) * aMu2;\n"
|
||||
" // And the Mie phase function equation is:\n"
|
||||
" float aPhaseM = (3.0 / (8.0 * M_PI) * (1.0 - THE_G2) * aMu2)\n"
|
||||
" / ((2.0 + THE_G2) * pow (1.0 + THE_G2 - 2.0 * THE_G * aMu, 1.5));\n"
|
||||
"\n"
|
||||
" float anOpticalDepthR = 0.0;\n"
|
||||
" float anOpticalDepthM = 0.0;\n"
|
||||
" vec3 aSumR = vec3 (0.0);\n"
|
||||
" vec3 aSumM = vec3 (0.0); // Mie and Rayleigh contribution\n"
|
||||
"\n"
|
||||
" float dl = aRayLen / float (THE_NbSamples);\n"
|
||||
" for (int i = 0; i < THE_NbSamples; ++i)\n"
|
||||
" {\n"
|
||||
" float l = float(i) * dl;\n"
|
||||
" vec3 aSamplePos = theEye + theRay * l;\n"
|
||||
"\n"
|
||||
" float dR, dM;\n"
|
||||
" densities (aSamplePos, dR, dM, theTime);\n"
|
||||
" dR *= dl;\n"
|
||||
" dM *= dl;\n"
|
||||
" anOpticalDepthR += dR;\n"
|
||||
" anOpticalDepthM += dM;\n"
|
||||
"\n"
|
||||
" float aSegmentLengthLight = raySphereIntersect (aSamplePos, theSun, THE_ATMO_RADIUS);\n"
|
||||
" if (aSegmentLengthLight > 0.0)\n"
|
||||
" {\n"
|
||||
" float dls = aSegmentLengthLight / float (THE_NbSamplesLight);\n"
|
||||
" float anOpticalDepthRs = 0.0;\n"
|
||||
" float anOpticalDepthMs = 0.0;\n"
|
||||
" for (int j = 0; j < THE_NbSamplesLight; ++j)\n"
|
||||
" {\n"
|
||||
" float ls = float (j) * dls;\n"
|
||||
" vec3 aSamplePosS = aSamplePos + theSun * ls;\n"
|
||||
" float dRs, dMs;\n"
|
||||
" densities (aSamplePosS, dRs, dMs, theTime);\n"
|
||||
" anOpticalDepthRs += dRs * dls;\n"
|
||||
" anOpticalDepthMs += dMs * dls;\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" vec3 anAttenuation = exp (-(THE_BETA_R * (anOpticalDepthR + anOpticalDepthRs)\n"
|
||||
" + THE_BETA_M * (anOpticalDepthM + anOpticalDepthMs)));\n"
|
||||
" aSumR += anAttenuation * dR;\n"
|
||||
" aSumM += anAttenuation * dM;\n"
|
||||
" }\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" theCol = THE_SunPower * (aSumR * THE_BETA_R * aPhaseR + aSumM * THE_BETA_M * aPhaseM);\n"
|
||||
" theScat = 1.0 - clamp (anOpticalDepthM*1e-5, 0.0, 1.0);\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"// This is where all the magic happens. We first raymarch along the primary ray\n"
|
||||
"// (from the camera origin to the point where the ray exits the atmosphere).\n"
|
||||
"// For each sample along the primary ray,\n"
|
||||
"// we then \"cast\" a light ray and raymarch along that ray as well.\n"
|
||||
"// We basically shoot a ray in the direction of the sun.\n"
|
||||
"vec4 computeIncidentLight (in vec3 theRayDirection, in vec2 theUv, in float theTime)\n"
|
||||
"{\n"
|
||||
" float aSunAttenuation = THE_SunAttenuation;\n"
|
||||
" vec3 aSunDir = uSunDir;\n"
|
||||
" // conversion to moon\n"
|
||||
" float aStarAttenuation = 0.0;\n"
|
||||
" if (aSunDir.y < 0.0)\n"
|
||||
" {\n"
|
||||
" aSunDir *= -1.0;\n"
|
||||
" aSunAttenuation = aSunAttenuation * 0.1;\n"
|
||||
" aStarAttenuation = sqrt (aSunDir.y);\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" vec3 anEyePosition = vec3(0.0, THE_EyeHeight, 0.0);\n"
|
||||
"\n"
|
||||
" // draw a water surface horizontally symmetrically to the sky\n"
|
||||
" if (theRayDirection.y <= -THE_HorizonWidth / 2.0)\n"
|
||||
" {\n"
|
||||
" theRayDirection.y = -THE_HorizonWidth - theRayDirection.y;\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" float aScattering = 0.0;\n"
|
||||
" vec3 aColor = vec3 (0.0);\n"
|
||||
"\n"
|
||||
" scatter (anEyePosition, theRayDirection, aSunDir, aColor, aScattering, theTime);\n"
|
||||
" aColor *= aSunAttenuation;\n"
|
||||
" float aStarIntensity = noisyStarField (theUv * 2048.0);\n"
|
||||
" vec3 aStarColor = vec3 (aScattering * aStarIntensity * aStarAttenuation);\n"
|
||||
" aColor += aStarColor;\n"
|
||||
"\n"
|
||||
" return vec4 (1.18 * pow (aColor, vec3(0.7)), 1.0);\n"
|
||||
"}\n"
|
||||
"\n"
|
||||
"uniform int uSide;\n"
|
||||
"\n"
|
||||
"void main()\n"
|
||||
"{\n"
|
||||
" vec2 anUv = vec2 (2.0 * TexCoord.x - 1.0,\n"
|
||||
" 2.0 * TexCoord.y - 1.0);\n"
|
||||
" vec3 aPlanes[6];\n"
|
||||
" aPlanes[0] = vec3 (+1.0, 0.0, 0.0);\n"
|
||||
" aPlanes[1] = vec3 (-1.0, 0.0, 0.0);\n"
|
||||
" aPlanes[2] = vec3 ( 0.0,+1.0, 0.0);\n"
|
||||
" aPlanes[3] = vec3 ( 0.0,-1.0, 0.0);\n"
|
||||
" aPlanes[4] = vec3 ( 0.0, 0.0,+1.0);\n"
|
||||
" aPlanes[5] = vec3 ( 0.0, 0.0,-1.0);\n"
|
||||
" vec3 aRayDirection;\n"
|
||||
" if (uSide == 0)\n"
|
||||
" {\n"
|
||||
" // Positive X side\n"
|
||||
" aRayDirection = aPlanes[0] + vec3 (0.0, +anUv.y, -anUv.x);\n"
|
||||
" }\n"
|
||||
" else if (uSide == 1)\n"
|
||||
" {\n"
|
||||
" // Negative X side\n"
|
||||
" aRayDirection = aPlanes[1] + vec3 (0.0, +anUv.y, +anUv.x);\n"
|
||||
" }\n"
|
||||
" else if (uSide == 2)\n"
|
||||
" {\n"
|
||||
" // Positive Y side\n"
|
||||
" aRayDirection = aPlanes[2] + vec3 (+anUv.x, 0.0, +anUv.y);\n"
|
||||
" }\n"
|
||||
" else if (uSide == 3)\n"
|
||||
" {\n"
|
||||
" // Negative Y side\n"
|
||||
" aRayDirection = aPlanes[3] + vec3 (+anUv.x, 0.0, -anUv.y);\n"
|
||||
" }\n"
|
||||
" else if (uSide == 4)\n"
|
||||
" {\n"
|
||||
" // Positive Z side\n"
|
||||
" aRayDirection = aPlanes[4] + vec3 (+anUv.x, +anUv.y, 0.0);\n"
|
||||
" }\n"
|
||||
" else if (uSide == 5)\n"
|
||||
" {\n"
|
||||
" // Negative Z side\n"
|
||||
" aRayDirection = aPlanes[5] + vec3 (-anUv.x, +anUv.y, 0.0);\n"
|
||||
" }\n"
|
||||
"\n"
|
||||
" occFragColor = computeIncidentLight (normalize (aRayDirection), anUv, uTime);\n"
|
||||
"}\n";
|
300
src/Shaders/SkydomBackground.fs
Normal file
300
src/Shaders/SkydomBackground.fs
Normal file
@ -0,0 +1,300 @@
|
||||
// Constants
|
||||
const float M_PI = 3.1415926535;
|
||||
const float THE_EARTH_RADIUS = 6360e3;
|
||||
const vec3 THE_EARTH_CENTER = vec3 (0.0, -THE_EARTH_RADIUS, 0.0);
|
||||
const float THE_ATMO_RADIUS = 6380e3; // atmosphere radius (6420e3?)
|
||||
const float THE_G = 0.76; // anisotropy of the medium (papers use 0.76)
|
||||
const float THE_G2 = THE_G * THE_G;
|
||||
const float THE_HR = 8000.0; // Thickness of the atmosphere
|
||||
const float THE_HM = 1000.0; // Same as above but for Mie
|
||||
const vec3 THE_BETA_R = vec3 (5.8e-6, 13.5e-6, 33.1e-6); // Reyleigh scattering normal earth
|
||||
const vec3 THE_BETA_M = vec3 (21e-6); // Normal Mie scattering
|
||||
|
||||
// Parameters
|
||||
const float THE_SunAttenuation = 1.0; // sun intensity
|
||||
const float THE_EyeHeight = 100.0; // viewer height
|
||||
const float THE_HorizonWidth = 0.002;
|
||||
const int THE_NbSamples = 8;
|
||||
const int THE_NbSamplesLight = 8; // integral sampling rate (might highly hit performance)
|
||||
const float THE_SunPower = 5.0;
|
||||
const float THE_StarTreshold = 0.98;
|
||||
|
||||
// Uniforms
|
||||
uniform vec3 uSunDir;
|
||||
uniform float uTime;
|
||||
uniform float uCloudy;
|
||||
uniform float uFog;
|
||||
|
||||
float hash13 (in vec3 p3)
|
||||
{
|
||||
p3 = fract (p3 * 0.1031);
|
||||
p3 += dot (p3, p3.zyx + 31.32);
|
||||
return fract ((p3.x + p3.y) * p3.z);
|
||||
}
|
||||
|
||||
float hash12 (in vec2 p)
|
||||
{
|
||||
vec3 p3 = fract (vec3(p.xyx) * .1031);
|
||||
p3 += dot (p3, p3.yzx + 33.33);
|
||||
return fract ((p3.x + p3.y) * p3.z);
|
||||
}
|
||||
|
||||
float smoothStarField (in vec2 theSamplePos)
|
||||
{
|
||||
vec2 aFract = fract (theSamplePos);
|
||||
vec2 aFloorSample = floor (theSamplePos);
|
||||
float v1 = hash12 (aFloorSample);
|
||||
float v2 = hash12 (aFloorSample + vec2( 0.0, 1.0 ));
|
||||
float v3 = hash12 (aFloorSample + vec2( 1.0, 0.0 ));
|
||||
float v4 = hash12 (aFloorSample + vec2( 1.0, 1.0 ));
|
||||
|
||||
vec2 u = aFract * aFract * (3.0 - 2.0 * aFract);
|
||||
|
||||
return mix(v1, v2, u.x) +
|
||||
(v3 - v1) * u.y * (1.0 - u.x) +
|
||||
(v4 - v2) * u.x * u.y;
|
||||
}
|
||||
|
||||
float noisyStarField (in vec2 theSamplePos)
|
||||
{
|
||||
float aStarVal = smoothStarField (theSamplePos);
|
||||
if (aStarVal >= THE_StarTreshold)
|
||||
{
|
||||
aStarVal = pow ((aStarVal - THE_StarTreshold) / (1.0 - THE_StarTreshold), 6.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
aStarVal = 0.0;
|
||||
}
|
||||
return aStarVal;
|
||||
}
|
||||
|
||||
float smoothNoise (in vec3 theCoord)
|
||||
{
|
||||
vec3 anInt = floor (theCoord);
|
||||
vec3 anFract = fract (theCoord);
|
||||
anFract = anFract * anFract * (3.0 - (2.0 * anFract));
|
||||
return mix(mix(mix(hash13(anInt ),
|
||||
hash13(anInt + vec3(1.0, 0.0, 0.0)), anFract.x),
|
||||
mix(hash13(anInt + vec3(0.0, 1.0, 0.0)),
|
||||
hash13(anInt + vec3(1.0, 1.0, 0.0)), anFract.x), anFract.y),
|
||||
mix(mix(hash13(anInt + vec3(0.0, 0.0, 1.0)),
|
||||
hash13(anInt + vec3(1.0, 0.0, 1.0)), anFract.x),
|
||||
mix(hash13(anInt + vec3(0.0, 1.0, 1.0)),
|
||||
hash13(anInt + vec3(1.0, 1.0, 1.0)), anFract.x), anFract.y), anFract.z);
|
||||
}
|
||||
|
||||
float fnoise (in vec3 theCoord, in float theTime)
|
||||
{
|
||||
theCoord *= .25;
|
||||
float aNoise;
|
||||
|
||||
aNoise = 0.5000 * smoothNoise (theCoord);
|
||||
theCoord = theCoord * 3.02; theCoord.y -= theTime * 0.2;
|
||||
aNoise += 0.2500 * smoothNoise (theCoord);
|
||||
theCoord = theCoord * 3.03; theCoord.y += theTime * 0.06;
|
||||
aNoise += 0.1250 * smoothNoise (theCoord);
|
||||
theCoord = theCoord * 3.01;
|
||||
aNoise += 0.0625 * smoothNoise (theCoord);
|
||||
theCoord = theCoord * 3.03;
|
||||
aNoise += 0.03125 * smoothNoise (theCoord);
|
||||
theCoord = theCoord * 3.02;
|
||||
aNoise += 0.015625 * smoothNoise (theCoord);
|
||||
return aNoise;
|
||||
}
|
||||
|
||||
float clouds (in vec3 theTs, in float theTime)
|
||||
{
|
||||
float aCloud = fnoise (theTs * 2e-4, theTime) + uCloudy * 0.1;
|
||||
aCloud = smoothstep (0.44, 0.64, aCloud);
|
||||
aCloud *= 70.0;
|
||||
return aCloud + uFog;
|
||||
}
|
||||
|
||||
void densities (in vec3 thePos, out float theRayleigh, out float theMie, in float theTime)
|
||||
{
|
||||
float aHeight = length (thePos - THE_EARTH_CENTER) - THE_EARTH_RADIUS;
|
||||
theRayleigh = exp (-aHeight / THE_HR);
|
||||
|
||||
float aCloud = 0.0;
|
||||
if (aHeight > 5000.0 && aHeight < 8000.0)
|
||||
{
|
||||
aCloud = clouds (thePos + vec3 (0.0, 0.,-theTime*3e3), theTime);
|
||||
aCloud *= sin (M_PI*(aHeight - 5e3) / 5e3) * uCloudy;
|
||||
}
|
||||
|
||||
float aCloud2 = 0.0;
|
||||
if (aHeight > 12e3 && aHeight < 15.5e3)
|
||||
{
|
||||
aCloud2 = fnoise (thePos * 3e-4, theTime) * clouds (thePos * 32.0, theTime);
|
||||
aCloud2 *= sin (M_PI * (aHeight - 12e3) / 12e3) * 0.05;
|
||||
aCloud2 = clamp (aCloud2, 0.0, 1.0);
|
||||
}
|
||||
|
||||
theMie = exp (-aHeight / THE_HM) + aCloud + uFog;
|
||||
theMie += aCloud2;
|
||||
}
|
||||
|
||||
// ray with sphere intersection problem is reduced to solving the equation
|
||||
// (P - C)^2 = r^2 <--- sphere equation
|
||||
// where P is P(t) = A + t*B <--- point on ray
|
||||
// t^2*dot(B, B) + t*2*dot(B, A-C) + dot(A-C, A-C) - r^2 = 0
|
||||
// [ A ] [ B ] [ C ]
|
||||
// We just need to solve the above quadratic equation
|
||||
float raySphereIntersect (in vec3 theOrig, in vec3 theDir, in float theRadius)
|
||||
{
|
||||
theOrig = theOrig - THE_EARTH_CENTER;
|
||||
// A coefficient will be always 1 (theDir is normalized)
|
||||
float B = dot (theOrig, theDir);
|
||||
float C = dot (theOrig, theOrig) - theRadius * theRadius;
|
||||
// optimized version of classic (-b +- sqrt(b^2 - 4ac)) / 2a
|
||||
float aDet2 = B * B - C;
|
||||
if (aDet2 < 0.0) { return -1.0; }
|
||||
float aDet = sqrt (aDet2);
|
||||
float aT1 = -B - aDet;
|
||||
float aT2 = -B + aDet;
|
||||
return aT1 >= 0.0 ? aT1 : aT2;
|
||||
}
|
||||
|
||||
void scatter (in vec3 theEye, in vec3 theRay, in vec3 theSun,
|
||||
out vec3 theCol, out float theScat, in float theTime)
|
||||
{
|
||||
float aRayLen = raySphereIntersect (theEye, theRay, THE_ATMO_RADIUS);
|
||||
float aMu = dot (theRay, theSun);
|
||||
float aMu2 = 1.0 + aMu*aMu;
|
||||
// The Raleigh phase function looks like this:
|
||||
float aPhaseR = 3.0/(16.0 * M_PI) * aMu2;
|
||||
// And the Mie phase function equation is:
|
||||
float aPhaseM = (3.0 / (8.0 * M_PI) * (1.0 - THE_G2) * aMu2)
|
||||
/ ((2.0 + THE_G2) * pow (1.0 + THE_G2 - 2.0 * THE_G * aMu, 1.5));
|
||||
|
||||
float anOpticalDepthR = 0.0;
|
||||
float anOpticalDepthM = 0.0;
|
||||
vec3 aSumR = vec3 (0.0);
|
||||
vec3 aSumM = vec3 (0.0); // Mie and Rayleigh contribution
|
||||
|
||||
float dl = aRayLen / float (THE_NbSamples);
|
||||
for (int i = 0; i < THE_NbSamples; ++i)
|
||||
{
|
||||
float l = float(i) * dl;
|
||||
vec3 aSamplePos = theEye + theRay * l;
|
||||
|
||||
float dR, dM;
|
||||
densities (aSamplePos, dR, dM, theTime);
|
||||
dR *= dl;
|
||||
dM *= dl;
|
||||
anOpticalDepthR += dR;
|
||||
anOpticalDepthM += dM;
|
||||
|
||||
float aSegmentLengthLight = raySphereIntersect (aSamplePos, theSun, THE_ATMO_RADIUS);
|
||||
if (aSegmentLengthLight > 0.0)
|
||||
{
|
||||
float dls = aSegmentLengthLight / float (THE_NbSamplesLight);
|
||||
float anOpticalDepthRs = 0.0;
|
||||
float anOpticalDepthMs = 0.0;
|
||||
for (int j = 0; j < THE_NbSamplesLight; ++j)
|
||||
{
|
||||
float ls = float (j) * dls;
|
||||
vec3 aSamplePosS = aSamplePos + theSun * ls;
|
||||
float dRs, dMs;
|
||||
densities (aSamplePosS, dRs, dMs, theTime);
|
||||
anOpticalDepthRs += dRs * dls;
|
||||
anOpticalDepthMs += dMs * dls;
|
||||
}
|
||||
|
||||
vec3 anAttenuation = exp (-(THE_BETA_R * (anOpticalDepthR + anOpticalDepthRs)
|
||||
+ THE_BETA_M * (anOpticalDepthM + anOpticalDepthMs)));
|
||||
aSumR += anAttenuation * dR;
|
||||
aSumM += anAttenuation * dM;
|
||||
}
|
||||
}
|
||||
|
||||
theCol = THE_SunPower * (aSumR * THE_BETA_R * aPhaseR + aSumM * THE_BETA_M * aPhaseM);
|
||||
theScat = 1.0 - clamp (anOpticalDepthM*1e-5, 0.0, 1.0);
|
||||
}
|
||||
|
||||
// This is where all the magic happens. We first raymarch along the primary ray
|
||||
// (from the camera origin to the point where the ray exits the atmosphere).
|
||||
// For each sample along the primary ray,
|
||||
// we then "cast" a light ray and raymarch along that ray as well.
|
||||
// We basically shoot a ray in the direction of the sun.
|
||||
vec4 computeIncidentLight (in vec3 theRayDirection, in vec2 theUv, in float theTime)
|
||||
{
|
||||
float aSunAttenuation = THE_SunAttenuation;
|
||||
vec3 aSunDir = uSunDir;
|
||||
// conversion to moon
|
||||
float aStarAttenuation = 0.0;
|
||||
if (aSunDir.y < 0.0)
|
||||
{
|
||||
aSunDir *= -1.0;
|
||||
aSunAttenuation = aSunAttenuation * 0.1;
|
||||
aStarAttenuation = sqrt (aSunDir.y);
|
||||
}
|
||||
|
||||
vec3 anEyePosition = vec3(0.0, THE_EyeHeight, 0.0);
|
||||
|
||||
// draw a water surface horizontally symmetrically to the sky
|
||||
if (theRayDirection.y <= -THE_HorizonWidth / 2.0)
|
||||
{
|
||||
theRayDirection.y = -THE_HorizonWidth - theRayDirection.y;
|
||||
}
|
||||
|
||||
float aScattering = 0.0;
|
||||
vec3 aColor = vec3 (0.0);
|
||||
|
||||
scatter (anEyePosition, theRayDirection, aSunDir, aColor, aScattering, theTime);
|
||||
aColor *= aSunAttenuation;
|
||||
float aStarIntensity = noisyStarField (theUv * 2048.0);
|
||||
vec3 aStarColor = vec3 (aScattering * aStarIntensity * aStarAttenuation);
|
||||
aColor += aStarColor;
|
||||
|
||||
return vec4 (1.18 * pow (aColor, vec3(0.7)), 1.0);
|
||||
}
|
||||
|
||||
uniform int uSide;
|
||||
|
||||
void main()
|
||||
{
|
||||
vec2 anUv = vec2 (2.0 * TexCoord.x - 1.0,
|
||||
2.0 * TexCoord.y - 1.0);
|
||||
vec3 aPlanes[6];
|
||||
aPlanes[0] = vec3 (+1.0, 0.0, 0.0);
|
||||
aPlanes[1] = vec3 (-1.0, 0.0, 0.0);
|
||||
aPlanes[2] = vec3 ( 0.0,+1.0, 0.0);
|
||||
aPlanes[3] = vec3 ( 0.0,-1.0, 0.0);
|
||||
aPlanes[4] = vec3 ( 0.0, 0.0,+1.0);
|
||||
aPlanes[5] = vec3 ( 0.0, 0.0,-1.0);
|
||||
vec3 aRayDirection;
|
||||
if (uSide == 0)
|
||||
{
|
||||
// Positive X side
|
||||
aRayDirection = aPlanes[0] + vec3 (0.0, +anUv.y, -anUv.x);
|
||||
}
|
||||
else if (uSide == 1)
|
||||
{
|
||||
// Negative X side
|
||||
aRayDirection = aPlanes[1] + vec3 (0.0, +anUv.y, +anUv.x);
|
||||
}
|
||||
else if (uSide == 2)
|
||||
{
|
||||
// Positive Y side
|
||||
aRayDirection = aPlanes[2] + vec3 (+anUv.x, 0.0, +anUv.y);
|
||||
}
|
||||
else if (uSide == 3)
|
||||
{
|
||||
// Negative Y side
|
||||
aRayDirection = aPlanes[3] + vec3 (+anUv.x, 0.0, -anUv.y);
|
||||
}
|
||||
else if (uSide == 4)
|
||||
{
|
||||
// Positive Z side
|
||||
aRayDirection = aPlanes[4] + vec3 (+anUv.x, +anUv.y, 0.0);
|
||||
}
|
||||
else if (uSide == 5)
|
||||
{
|
||||
// Negative Z side
|
||||
aRayDirection = aPlanes[5] + vec3 (-anUv.x, +anUv.y, 0.0);
|
||||
}
|
||||
|
||||
occFragColor = computeIncidentLight (normalize (aRayDirection), anUv, uTime);
|
||||
}
|
@ -529,6 +529,16 @@ void V3d_View::SetBackgroundCubeMap (const Handle(Graphic3d_CubeMap)& theCubeMap
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//function : SetBackgroundSkydome
|
||||
//purpose :
|
||||
//=============================================================================
|
||||
void V3d_View::SetBackgroundSkydome (const Aspect_SkydomeBackground& theAspect,
|
||||
Standard_Boolean theToUpdatePBREnv)
|
||||
{
|
||||
myView->SetBackgroundSkydome (theAspect, theToUpdatePBREnv);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//function : IsImageBasedLighting
|
||||
//purpose :
|
||||
|
@ -219,6 +219,15 @@ public:
|
||||
Standard_Boolean theToUpdatePBREnv = Standard_True,
|
||||
Standard_Boolean theToUpdate = Standard_False);
|
||||
|
||||
//! Returns skydome aspect;
|
||||
const Aspect_SkydomeBackground& BackgroundSkydome() const { return myView->BackgroundSkydome(); }
|
||||
|
||||
//! Sets skydome aspect
|
||||
//! @param theAspect cubemap generation parameters
|
||||
//! @param theToUpdatePBREnv defines whether IBL maps will be generated or not
|
||||
Standard_EXPORT void SetBackgroundSkydome (const Aspect_SkydomeBackground& theAspect,
|
||||
Standard_Boolean theToUpdatePBREnv = Standard_True);
|
||||
|
||||
//! Returns TRUE if IBL (Image Based Lighting) from background cubemap is enabled.
|
||||
Standard_EXPORT Standard_Boolean IsImageBasedLighting() const;
|
||||
|
||||
|
@ -2692,6 +2692,9 @@ static int VBackground (Draw_Interpretor& theDI,
|
||||
Aspect_FillMethod anImageMode = Aspect_FM_CENTERED;
|
||||
bool hasImageMode = false;
|
||||
|
||||
bool isSkydomeBg = false;
|
||||
Aspect_SkydomeBackground aSkydomeAspect;
|
||||
|
||||
NCollection_Sequence<TCollection_AsciiString> aCubeMapSeq;
|
||||
Graphic3d_CubeMapOrder aCubeOrder = Graphic3d_CubeMapOrder::Default();
|
||||
bool isCubeZInverted = false;
|
||||
@ -2722,6 +2725,48 @@ static int VBackground (Draw_Interpretor& theDI,
|
||||
{
|
||||
anImagePath = theArgVec[++anArgIter];
|
||||
}
|
||||
else if (anArg == "-skydome"
|
||||
|| anArg == "-sky")
|
||||
{
|
||||
isSkydomeBg = true;
|
||||
}
|
||||
else if (anArgIter + 3 < theNbArgs
|
||||
&& isSkydomeBg
|
||||
&& anArg == "-sundir")
|
||||
{
|
||||
float aX = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
float aY = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
float aZ = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
aSkydomeAspect.SetSunDirection (gp_Dir(aX, aY, aZ));
|
||||
}
|
||||
else if (anArgIter + 1 < theNbArgs
|
||||
&& isSkydomeBg
|
||||
&& anArg == "-cloud")
|
||||
{
|
||||
float aCloudy = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
aSkydomeAspect.SetCloudiness (aCloudy);
|
||||
}
|
||||
else if (anArgIter + 1 < theNbArgs
|
||||
&& isSkydomeBg
|
||||
&& anArg == "-time")
|
||||
{
|
||||
float aTime = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
aSkydomeAspect.SetTimeParameter (aTime);
|
||||
}
|
||||
else if (anArgIter + 1 < theNbArgs
|
||||
&& isSkydomeBg
|
||||
&& anArg == "-fog")
|
||||
{
|
||||
float aFoggy = (float) Draw::Atof (theArgVec[++anArgIter]);
|
||||
aSkydomeAspect.SetFogginess (aFoggy);
|
||||
}
|
||||
else if (anArgIter + 1 < theNbArgs
|
||||
&& isSkydomeBg
|
||||
&& anArg == "-size")
|
||||
{
|
||||
Standard_Integer aSize = Draw::Atoi (theArgVec[++anArgIter]);
|
||||
aSkydomeAspect.SetSize (aSize);
|
||||
}
|
||||
else if (anArgIter + 1 < theNbArgs
|
||||
&& aCubeMapSeq.IsEmpty()
|
||||
&& (anArg == "-cubemap"
|
||||
@ -3003,6 +3048,11 @@ static int VBackground (Draw_Interpretor& theDI,
|
||||
aView->SetBgImageStyle (anImageMode);
|
||||
}
|
||||
|
||||
if (isSkydomeBg)
|
||||
{
|
||||
aView->SetBackgroundSkydome (aSkydomeAspect, toUseIBL != -1);
|
||||
}
|
||||
|
||||
if (!aCubeMapSeq.IsEmpty())
|
||||
{
|
||||
Handle(Graphic3d_CubeMap) aCubeMap;
|
||||
@ -13809,6 +13859,8 @@ vbackground [-color Color [-default]]
|
||||
[-gradientMode {NONE|HORIZONTAL|VERTICAL|DIAG1|DIAG2|CORNER1|CORNER2|CORNER3|ELLIPTICAL}]=VERT]
|
||||
[-imageFile ImageFile [-imageMode {CENTERED|TILED|STRETCH|NONE}]=CENTERED [-srgb {0|1}]=1]
|
||||
[-cubemap CubemapFile1 [CubeMapFiles2-5] [-order TilesIndexes1-6] [-invertedz]=0]
|
||||
[-skydome [-sunDir X Y Z=0 1 0] [-cloud Cloudy=0.2] [-time Time=0.0]
|
||||
[-fog Haze=0.0] [-size SizePx=512]]
|
||||
[-pbrEnv {ibl|noibl|keep}]
|
||||
Changes background or some background settings.
|
||||
-color sets background color
|
||||
@ -13824,6 +13876,13 @@ Changes background or some background settings.
|
||||
-order defines order of tiles in one image cubemap
|
||||
TileIndexi defubes an index in range [0, 5] for i tile of one image packed cubemap
|
||||
(has no effect in case of multi-image cubemaps).
|
||||
Skydome background parameters (generated cubemap):
|
||||
-skydome sets procedurally generated skydome as background
|
||||
-sunDir sets direction to the sun, direction with negative y component represents moon direction (-x, -y, -z)
|
||||
-cloud sets cloud intensity (0.0 - clear sky, 1.0 - very high cloudy)
|
||||
-time might be tweaked to slightly change appearance of clouds
|
||||
-fog sets mist intensity (0.0 - no mist at all, 1.0 - high mist)
|
||||
-size sets size in pixels of cubemap side
|
||||
)" /* [vbackground] */);
|
||||
|
||||
addCmd ("vsetbg", VBackground, /* [vsetbg] */ R"(
|
||||
|
43
tests/opengl/data/background/skydome
Normal file
43
tests/opengl/data/background/skydome
Normal file
@ -0,0 +1,43 @@
|
||||
puts "============"
|
||||
puts "0032606: Visualization - add a shader for sky"
|
||||
puts "============"
|
||||
puts ""
|
||||
|
||||
set THE_DIM 256
|
||||
|
||||
pload MODELING VISUALIZATION
|
||||
psphere s 1
|
||||
|
||||
vinit View1 -width 768 -height 512
|
||||
vcamera -persp -fovy 120
|
||||
|
||||
chrono t restart
|
||||
vbackground -skydome -size $THE_DIM -cloud 0.3 -sunDir 1.0 0.5 0.0 -time 10 -fog 0.3
|
||||
chrono t show
|
||||
vaxo
|
||||
vdump $imagedir/${casename}_day.png
|
||||
|
||||
chrono t restart
|
||||
vbackground -skydome -size $THE_DIM -cloud 0.3 -sunDir 1.0 -0.5 0.0 -time -10 -fog 0.05
|
||||
chrono t show
|
||||
vaxo
|
||||
vdump $imagedir/${casename}_night.png
|
||||
|
||||
chrono t restart
|
||||
vbackground -skydome -size $THE_DIM -cloud 0.15 -sunDir 1.0 0.15 0.0 -time 10
|
||||
chrono t show
|
||||
vaxo
|
||||
vdump $imagedir/${casename}_sunset.png
|
||||
|
||||
chrono t restart
|
||||
vbackground -skydome -size $THE_DIM
|
||||
chrono t show
|
||||
vaxo
|
||||
vdump $imagedir/${casename}_defaults.png
|
||||
|
||||
vdisplay -dispMode 1 s
|
||||
vfit
|
||||
vaspects s -material SILVER
|
||||
vrenderparams -shadingModel pbr
|
||||
vlight headlight -enabled 0
|
||||
vdump $imagedir/${casename}_pbr.png
|
Loading…
x
Reference in New Issue
Block a user