1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-05 18:16:23 +03:00

0024696: Lower performance of the new Edge/Edge intersection algorithm

Performance improvements in IntTools_EdgeEdge algorithm:
1. Added check for common box between edges: if common box between edges is thin,
   find exact solutions at once, without looking for rough ranges first;
2. Improved methods IntTools_EdgeEdge::FindBestSolution() and
   IntTools_EdgeEdge::CheckCoincidence(...) by using method SplitRangeOnSegments
   with resolution of the curve as a criteria for size of the ranges.

Test cases for issue CR24696
This commit is contained in:
emv 2014-03-20 13:36:43 +04:00 committed by bugmaster
parent fa84b8ffc4
commit 0d19eb340e
3 changed files with 205 additions and 93 deletions

View File

@ -132,14 +132,22 @@ is
is protected;
---Purpose:
-- Looking for the rough intersection ranges
FindSolutions(me:out;
theRanges1 : out SequenceOfRanges from IntTools;
theRanges2 : out SequenceOfRanges from IntTools)
is protected;
---Purpose:
-- Looking for solutions
FindSolutions(me:out;
theR1, theR2 : Range from IntTools;
theBC : Box from Bnd;
theRanges1 : out SequenceOfRanges from IntTools;
theRanges2 : out SequenceOfRanges from IntTools)
is protected;
---Purpose:
-- Looking fot the exact intersection ranges
-- Looking for the exact intersection ranges
MergeSolutions(me:out;
theRanges1, theRanges2 : SequenceOfRanges from IntTools)

View File

@ -48,11 +48,11 @@ static
const Standard_Real theTol,
Bnd_Box& theBox);
static
void SplitRangeOnSegments(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real theResolution,
const Standard_Integer theNbSeg,
IntTools_SequenceOfRanges& theSegments);
Standard_Boolean SplitRangeOnSegments(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real theResolution,
const Standard_Integer theNbSeg,
IntTools_SequenceOfRanges& theSegments);
static
void SplitRangeOnTwo(const Standard_Real aT1,
const Standard_Real aT2,
@ -206,46 +206,82 @@ void IntTools_EdgeEdge::Perform()
}
//
//3.2. Find solutions
IntTools_SequenceOfRanges aRanges1, aRanges2, aSegments1;
Standard_Integer i, aNb;
IntTools_SequenceOfRanges aRanges1, aRanges2;
//
//3.2.1 Find rough ranges
FindRoughRanges(myRange1, myRange2, aSegments1);
aNb = aSegments1.Length();
//3.2.2. Find exact solutions and ranges
for (i = 1; i <= aNb; ++i) {
const IntTools_Range& aR1 = aSegments1(i);
FindSolutions(aR1, myRange2, aRanges1, aRanges2);
}
FindSolutions(aRanges1, aRanges2);
//
//4. Merge solutions and save common parts
MergeSolutions(aRanges1, aRanges2);
}
//=======================================================================
//function : FindSolutions
//purpose :
//=======================================================================
void IntTools_EdgeEdge::FindSolutions(IntTools_SequenceOfRanges& theRanges1,
IntTools_SequenceOfRanges& theRanges2)
{
// According to the common box of the edges decide which method to use
Standard_Real aT11, aT12, aT21, aT22;
Bnd_Box aB1, aB2, aBC;
//
myRange1.Range(aT11, aT12);
myRange2.Range(aT21, aT22);
//
BndBuildBox(myCurve1, aT11, aT12, myTol1, aB1);
BndBuildBox(myCurve2, aT21, aT22, myTol2, aB2);
//
if (!BndCommon(aB1, aB2, aBC)) {
// No intersections at all
return;
}
//
if (aBC.IsThin(10*myTol)) {
// As soon as the common box of the edges is thin,
// find exact solution at once
FindSolutions(myRange1, myRange2, aBC, theRanges1, theRanges2);
}
else {
// First find the rough ranges containing solutions,
// than find exact ranges
IntTools_SequenceOfRanges aSegments1;
Standard_Integer i, aNb;
//
// Find rough ranges
FindRoughRanges(myRange1, myRange2, aSegments1);
aNb = aSegments1.Length();
// Find exact ranges
for (i = 1; i <= aNb; ++i) {
const IntTools_Range& aR1 = aSegments1(i);
aR1.Range(aT11, aT12);
BndBuildBox(myCurve1, aT11, aT12, myTol1, aB1);
if (BndCommon(aB1, aB2, aBC)) {
FindSolutions(aR1, myRange2, aBC, theRanges1, theRanges2);
}
}
}
}
//=======================================================================
//function : FindSolutions
//purpose :
//=======================================================================
void IntTools_EdgeEdge::FindSolutions(const IntTools_Range& theR1,
const IntTools_Range& theR2,
const Bnd_Box& theBC,
IntTools_SequenceOfRanges& theRanges1,
IntTools_SequenceOfRanges& theRanges2)
{
Standard_Boolean bOut, bStop, bThin;
Standard_Real aT11, aT12, aT21, aT22;
Standard_Real aTB11, aTB12, aTB21, aTB22;
Standard_Real aTol, aSmallStep1, aSmallStep2;
Standard_Integer iCom;
Bnd_Box aB1, aB2;
//
theR1.Range(aT11, aT12);
theR2.Range(aT21, aT22);
BndBuildBox(myCurve1, aT11, aT12, myTol1, aB1);
BndBuildBox(myCurve2, aT21, aT22, myTol2, aB2);
if (!BndCommon(aB1, aB2, aB1)) {
return;
}
//
Standard_Boolean bOut, bStop, bThin;
Standard_Real aTB11, aTB12, aTB21, aTB22, aTol,
aSmallStep1, aSmallStep2;
Standard_Integer iCom;
aB1 = theBC;
//
bOut = Standard_False;
bThin = Standard_False;
@ -262,41 +298,39 @@ void IntTools_EdgeEdge::FindSolutions(const IntTools_Range& theR1,
bThin = (aTB22 - aTB21) < myRes2;
if (bThin) {
bOut = !FindParameters(myCurve1, aT11, aT12, myRes1, aB1, aTB11, aTB12);
if (bOut) {
break;
}
} else {
BndBuildBox(myCurve2, aTB21, aTB22, myTol2, aB2);
BndCommon(aB1, aB2, aB2);
break;
}
//
BndBuildBox(myCurve2, aTB21, aTB22, myTol2, aB2);
BndCommon(aB1, aB2, aB2);
//
bOut = !FindParameters(myCurve1, aT11, aT12, myRes1, aB2, aTB11, aTB12);
if (bOut) {
break;
}
//
bThin = ((aTB12 - aTB11) < myRes1) ||
(aB2.IsXThin(aTol) && aB2.IsYThin(aTol) && aB2.IsZThin(aTol));
//
if (!bThin) {
aSmallStep1 = (aT12 - aT11) / 250.;
aSmallStep2 = (aT22 - aT21) / 250.;
//
bOut = !FindParameters(myCurve1, aT11, aT12, myRes1, aB2, aTB11, aTB12);
if (bOut) {
break;
if (aSmallStep1 < myRes1) {
aSmallStep1 = myRes1;
}
if (aSmallStep2 < myRes2) {
aSmallStep2 = myRes2;
}
//
bThin = ((aTB12 - aTB11) < myRes1) ||
(aB2.IsXThin(aTol) && aB2.IsYThin(aTol) && aB2.IsZThin(aTol));
//
if (!bThin) {
aSmallStep1 = (aT12 - aT11) / 250.;
aSmallStep2 = (aT22 - aT21) / 250.;
//
if (aSmallStep1 < myRes1) {
aSmallStep1 = myRes1;
}
if (aSmallStep2 < myRes2) {
aSmallStep2 = myRes2;
}
//
if (((aTB11 - aT11) < aSmallStep1) && ((aT12 - aTB12) < aSmallStep1) &&
((aTB21 - aT21) < aSmallStep2) && ((aT22 - aTB22) < aSmallStep2)) {
bStop = Standard_True;
} else {
BndBuildBox(myCurve1, aTB11, aTB12, myTol1, aB1);
bOut = !BndCommon(aB1, aB2, aB1);
if (bOut) {
break;
}
if (((aTB11 - aT11) < aSmallStep1) && ((aT12 - aTB12) < aSmallStep1) &&
((aTB21 - aT21) < aSmallStep2) && ((aT22 - aTB22) < aSmallStep2)) {
bStop = Standard_True;
} else {
BndBuildBox(myCurve1, aTB11, aTB12, myTol1, aB1);
bOut = !BndCommon(aB1, aB2, aB1);
if (bOut) {
break;
}
}
}
@ -354,11 +388,17 @@ void IntTools_EdgeEdge::FindSolutions(const IntTools_Range& theR1,
IntTools_SequenceOfRanges aSegments1;
//
IntTools_Range aR2(aT21, aT22);
BndBuildBox(myCurve2, aT21, aT22, myTol2, aB2);
//
SplitRangeOnSegments(aT11, aT12, myRes1, 3, aSegments1);
aNb1 = aSegments1.Length();
for (i = 1; i <= aNb1; ++i) {
const IntTools_Range& aR1 = aSegments1(i);
FindSolutions(aR1, aR2, theRanges1, theRanges2);
aR1.Range(aT11, aT12);
BndBuildBox(myCurve1, aT11, aT12, myTol1, aB1);
if (BndCommon(aB1, aB2, aB1)) {
FindSolutions(aR1, aR2, aB1, theRanges1, theRanges2);
}
}
}
@ -523,7 +563,7 @@ void IntTools_EdgeEdge::AddSolution(const Standard_Real aT11,
aCPart.SetEdge2(myEdge1);
aCPart.SetRange1(aT21, aT22);
aCPart.AppendRange2(aT11, aT12);
}
}
//
if (theType == TopAbs_VERTEX) {
Standard_Real aT1, aT2;
@ -552,33 +592,40 @@ void IntTools_EdgeEdge::FindBestSolution(const Standard_Real aT11,
Standard_Real& aT1,
Standard_Real& aT2)
{
Standard_Real aD, aDMin, aDt, aT1x, aT2x, aT1p, aT2p, aMinStep, aTMax;
Standard_Integer i, aNbP, iErr;
Standard_Integer i, aNbS, iErr;
Standard_Real aDMin, aD, aCrit, aMinStep, aTMax;
Standard_Real aT1x, aT2x, aT1p, aT2p;
GeomAPI_ProjectPointOnCurve aProj;
gp_Pnt aP;
IntTools_SequenceOfRanges aSeg1;
//
aNbP = 10;
aT1 = IntTools_Tools::IntermediatePoint(aT11, aT12);
aT2 = IntTools_Tools::IntermediatePoint(aT21, aT22);
//
aDMin = 100.;
aD = 100.;
aDt = (aT12 - aT11) / aNbP;
aCrit = 1.e-16;
aMinStep = 5.e-13;
aTMax = Max(fabs(aT11), fabs(aT12));
if (aTMax > 999.) {
aMinStep = 5.e-16 * aTMax;
}
//
aNbS = 10;
SplitRangeOnSegments(aT11, aT12, 3*myRes1, aNbS, aSeg1);
aNbS = aSeg1.Length();
//
aProj.Init(myGeom2, aT21, aT22);
for (i = 0; i < aNbP; ++i) {
aT1x = aT11 + i*aDt;
aT2x = aT1x + aDt;
iErr = FindDistPC(aT1x, aT2x, myGeom1, 0., aMinStep, aProj, aD, aT1p, aT2p, Standard_False);
for (i = 1; i <= aNbS; ++i) {
const IntTools_Range& aR1 = aSeg1(i);
aR1.Range(aT1x, aT2x);
//
iErr = FindDistPC(aT1x, aT2x, myGeom1, aCrit, aMinStep,
aProj, aD, aT1p, aT2p, Standard_False);
if (iErr != 1 && aD < aDMin) {
aT1 = aT1p;
aT2 = aT2p;
aDMin = aD;
if (aDMin == 0.) {
if (aDMin < aCrit) {
break;
}
}
@ -912,12 +959,13 @@ Standard_Integer IntTools_EdgeEdge::CheckCoincidence(const Standard_Real aT11,
const Standard_Real aT21,
const Standard_Real aT22,
const Standard_Real theCriteria,
const Standard_Real theCurveResolution1)
const Standard_Real theCurveRes1)
{
Standard_Boolean bSmall;
Standard_Integer iErr, aNb, i;
Standard_Real dT1, aT1, aT2, aD, aDmax;
Standard_Real aT1A, aT1B, aT1max, aT2max;
Standard_Real aT1A, aT1B, aT1max, aT2max, aDmax;
GeomAPI_ProjectPointOnCurve aProjPC;
IntTools_SequenceOfRanges aSeg1;
//
iErr = 0;
aDmax = -1.;
@ -925,23 +973,30 @@ Standard_Integer IntTools_EdgeEdge::CheckCoincidence(const Standard_Real aT11,
//
// 1. Express evaluation
aNb = 10; // Number of intervals on the curve #1
dT1 = (aT12 - aT11) / aNb;
bSmall = !SplitRangeOnSegments(aT11, aT12, theCurveRes1, aNb, aSeg1);
aNb = aSeg1.Length();
for (i = 1; i < aNb; ++i) {
aT1 = aT11 + i*dT1;
const IntTools_Range& aR1 = aSeg1(i);
aR1.Range(aT1A, aT1B);
//
iErr = DistPC(aT1, myGeom1, theCriteria, aProjPC, aD, aT2);
iErr = DistPC(aT1B, myGeom1, theCriteria, aProjPC, aDmax, aT2max);
if (iErr) {
return iErr;
}
}
//
// if the ranges in aSeg1 are less than theCurveRes1,
// there is no need to do step 2 (deep evaluation)
if (bSmall) {
return iErr;
}
//
// 2. Deep evaluation
aNb -= 1;
for (i = 1; i < aNb; ++i) {
aT1A = aT11 + i*dT1;
aT1B = aT1A + dT1;
for (i = 2; i < aNb; ++i) {
const IntTools_Range& aR1 = aSeg1(i);
aR1.Range(aT1A, aT1B);
//
iErr = FindDistPC(aT1A, aT1B, myGeom1, theCriteria, theCurveResolution1,
iErr = FindDistPC(aT1A, aT1B, myGeom1, theCriteria, theCurveRes1,
aProjPC, aDmax, aT1max, aT2max);
if (iErr) {
return iErr;
@ -1100,24 +1155,28 @@ Standard_Integer DistPC(const Standard_Real aT1,
//function : SplitRangeOnSegments
//purpose :
//=======================================================================
void SplitRangeOnSegments(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real theResolution,
const Standard_Integer theNbSeg,
IntTools_SequenceOfRanges& theSegments)
Standard_Boolean SplitRangeOnSegments(const Standard_Real aT1,
const Standard_Real aT2,
const Standard_Real theResolution,
const Standard_Integer theNbSeg,
IntTools_SequenceOfRanges& theSegments)
{
if ((aT2 - aT1) < theResolution) {
theSegments.Append(IntTools_Range(aT1, aT2));
return Standard_False;
}
//
Standard_Real aDt, aT1x, aT2x, aSeg;
Standard_Integer aNbSegments, i;
Standard_Boolean bRet;
//
bRet = Standard_True;
aNbSegments = theNbSeg;
aDt = aT2 - aT1;
aDt = (aT2 - aT1) / aNbSegments;
if (aDt < theResolution) {
aNbSegments = 1;
} else if (aDt < Precision::Confusion()) {
aSeg = aDt / theResolution;
if (aSeg < theNbSeg) {
aNbSegments = Standard_Integer(aSeg) + 1;
}
aSeg = (aT2 - aT1) / theResolution;
aNbSegments = Standard_Integer(aSeg) + 1;
bRet = Standard_False;
}
//
aDt /= aNbSegments;
@ -1133,6 +1192,8 @@ void SplitRangeOnSegments(const Standard_Real aT1,
//
aT1x = aT2x;
}
//
return bRet;
}
//=======================================================================

View File

@ -0,0 +1,43 @@
puts "========="
puts "OCC24696"
puts "========="
puts ""
###########################################################
# Lower performance of the new Edge/Edge intersection algorithm
###########################################################
pload QAcommands
dchrono h reset
dchrono h start
restore [locate_data_file bug24696_cx_e1200_nurbs.brep] cx
bclearobjects
bcleartools
set edges [explode cx e]
set nbe [llength $edges]
for {set i 1} {$i <= $nbe} {incr i} {baddobjects cx_$i}
bfillds
bbuild result
dchrono h stop
set q [dchrono h show]
regexp {CPU user time: ([-0-9.+eE]+) seconds} $q full z
puts "$z"
if { [regexp {Windows} [dversion] ] } {
set max_time 20.0
} else {
set max_time 40.0
}
if { $z > ${max_time} } {
puts "Elapsed time is more than ${max_time} seconds - Faulty"
} else {
puts "Elapsed time is less than ${max_time} seconds - OK"
}
set 2dviewer 1