mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-10 18:51:21 +03:00
Eliminated warnings about "declaration of some local variable hides previous local declaration"
982 lines
27 KiB
C++
982 lines
27 KiB
C++
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <ChFi2d_AnaFilletAlgo.hxx>
|
|
|
|
#include <gp_Ax3.hxx>
|
|
#include <gp_Circ.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
#include <gp_Circ2d.hxx>
|
|
|
|
#include <Standard_TypeMismatch.hxx>
|
|
|
|
#include <BRepBuilderAPI_MakeEdge.hxx>
|
|
#include <BRepBuilderAPI_MakeWire.hxx>
|
|
#include <BRepBuilderAPI_MakeFace.hxx>
|
|
|
|
#include <GeomAPI_ExtremaCurveCurve.hxx>
|
|
#include <IntAna2d_AnaIntersection.hxx>
|
|
#include <ShapeAnalysis_Wire.hxx>
|
|
#include <Geom_Circle.hxx>
|
|
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
|
|
#include <TopoDS.hxx>
|
|
#include <TopoDS_Iterator.hxx>
|
|
|
|
#include <ProjLib.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <ElSLib.hxx>
|
|
|
|
// Compute the flag: CW || CCW
|
|
static Standard_Boolean isCW(const BRepAdaptor_Curve& AC)
|
|
{
|
|
const Standard_Real f = AC.FirstParameter();
|
|
const Standard_Real l = AC.LastParameter();
|
|
Handle(Geom_Circle) circle = Handle(Geom_Circle)::DownCast(AC.Curve().Curve());
|
|
gp_Pnt start = AC.Value(f);
|
|
gp_Pnt end = AC.Value(l);
|
|
gp_Pnt center = AC.Circle().Location();
|
|
gp_Ax3 plane = AC.Circle().Position();
|
|
|
|
// Get point on circle at half angle
|
|
gp_Pnt m;
|
|
circle->D0(0.5 * (f + l), m);
|
|
|
|
// Compare angles between vectors to middle point and to the end point.
|
|
gp_Vec startv(center, start), endv(center, end), middlev(center, m);
|
|
double middlea = startv.AngleWithRef(middlev, plane.Direction());
|
|
while(middlea < 0.0)
|
|
middlea += 2.0 * M_PI;
|
|
double enda = startv.AngleWithRef(endv, plane.Direction());
|
|
while(enda < 0.0)
|
|
enda += 2.0 * M_PI;
|
|
|
|
Standard_Boolean is_cw = middlea > enda ? Standard_True : Standard_False;
|
|
return is_cw;
|
|
}
|
|
|
|
// Equality of points computed through square distance between the points.
|
|
static Standard_Boolean IsEqual(const gp_Pnt& p1, const gp_Pnt& p2)
|
|
{
|
|
return p1.SquareDistance(p2) < Precision::SquareConfusion();
|
|
}
|
|
static Standard_Boolean IsEqual(const gp_Pnt2d& p1, const gp_Pnt2d& p2)
|
|
{
|
|
return p1.SquareDistance(p2) < Precision::SquareConfusion();
|
|
}
|
|
|
|
// An empty constructor.
|
|
// Use the method Init() to initialize the class.
|
|
ChFi2d_AnaFilletAlgo::ChFi2d_AnaFilletAlgo()
|
|
: segment1(Standard_False),
|
|
x11(0.0),
|
|
y11(0.0),
|
|
x12(0.0),
|
|
y12(0.0),
|
|
xc1(0.0),
|
|
yc1(0.0),
|
|
radius1(0.0),
|
|
cw1(Standard_False),
|
|
segment2(Standard_False),
|
|
x21(0.0),
|
|
y21(0.0),
|
|
x22(0.0),
|
|
y22(0.0),
|
|
xc2(0.0),
|
|
yc2(0.0),
|
|
radius2(0.0),
|
|
cw2(Standard_False)
|
|
{
|
|
}
|
|
|
|
// An constructor.
|
|
// It expects two edges having a common point of type:
|
|
// - segment
|
|
// - arc of circle.
|
|
ChFi2d_AnaFilletAlgo::ChFi2d_AnaFilletAlgo(const TopoDS_Wire& theWire,
|
|
const gp_Pln& thePlane)
|
|
: plane(thePlane),
|
|
segment1(Standard_False),
|
|
x11(0.0),
|
|
y11(0.0),
|
|
x12(0.0),
|
|
y12(0.0),
|
|
xc1(0.0),
|
|
yc1(0.0),
|
|
radius1(0.0),
|
|
cw1(Standard_False),
|
|
segment2(Standard_False),
|
|
x21(0.0),
|
|
y21(0.0),
|
|
x22(0.0),
|
|
y22(0.0),
|
|
xc2(0.0),
|
|
yc2(0.0),
|
|
radius2(0.0),
|
|
cw2(Standard_False)
|
|
{
|
|
Init(theWire, thePlane);
|
|
}
|
|
|
|
// A constructor.
|
|
// It expects two edges having a common point of type:
|
|
// - segment
|
|
// - arc of circle.
|
|
ChFi2d_AnaFilletAlgo::ChFi2d_AnaFilletAlgo(const TopoDS_Edge& theEdge1,
|
|
const TopoDS_Edge& theEdge2,
|
|
const gp_Pln& thePlane)
|
|
: plane(thePlane),
|
|
segment1(Standard_False),
|
|
x11(0.0),
|
|
y11(0.0),
|
|
x12(0.0),
|
|
y12(0.0),
|
|
xc1(0.0),
|
|
yc1(0.0),
|
|
radius1(0.0),
|
|
cw1(Standard_False),
|
|
segment2(Standard_False),
|
|
x21(0.0),
|
|
y21(0.0),
|
|
x22(0.0),
|
|
y22(0.0),
|
|
xc2(0.0),
|
|
yc2(0.0),
|
|
radius2(0.0),
|
|
cw2(Standard_False)
|
|
{
|
|
// Make a wire consisting of two edges.
|
|
Init(theEdge1, theEdge2, thePlane);
|
|
}
|
|
|
|
// Initializes the class by a wire consisting of two edges.
|
|
void ChFi2d_AnaFilletAlgo::Init(const TopoDS_Wire& theWire, const gp_Pln& thePlane)
|
|
{
|
|
plane = thePlane;
|
|
TopoDS_Iterator itr(theWire);
|
|
for (; itr.More(); itr.Next())
|
|
{
|
|
if (e1.IsNull())
|
|
e1 = TopoDS::Edge(itr.Value());
|
|
else if (e2.IsNull())
|
|
e2 = TopoDS::Edge(itr.Value());
|
|
}
|
|
if (e1.IsNull() || e2.IsNull())
|
|
Standard_TypeMismatch::Raise("The algorithm expects a wire consisting of two linear or circular edges.");
|
|
|
|
// Left neighbour.
|
|
BRepAdaptor_Curve AC1(e1);
|
|
if (AC1.GetType() != GeomAbs_Line && AC1.GetType() != GeomAbs_Circle)
|
|
Standard_TypeMismatch::Raise("A segment or an arc of circle is expected.");
|
|
|
|
TopoDS_Vertex v1, v2;
|
|
TopExp::Vertices(e1, v1, v2, Standard_True);
|
|
if (v1.IsNull() || v2.IsNull())
|
|
Standard_Failure::Raise("An infinite edge.");
|
|
|
|
gp_Pnt P1 = BRep_Tool::Pnt(v1);
|
|
gp_Pnt P2 = BRep_Tool::Pnt(v2);
|
|
gp_Pnt2d p1 = ProjLib::Project(thePlane, P1);
|
|
gp_Pnt2d p2 = ProjLib::Project(thePlane, P2);
|
|
p1.Coord(x11, y11);
|
|
p2.Coord(x12, y12);
|
|
|
|
segment1 = true;
|
|
if (AC1.GetType() == GeomAbs_Circle)
|
|
{
|
|
segment1 = false;
|
|
gp_Circ c = AC1.Circle();
|
|
|
|
gp_Pnt2d loc = ProjLib::Project(thePlane, c.Location());
|
|
loc.Coord(xc1, yc1);
|
|
|
|
radius1 = c.Radius();
|
|
cw1 = isCW(AC1);
|
|
}
|
|
|
|
// Right neighbour.
|
|
BRepAdaptor_Curve AC2(e2);
|
|
if (AC2.GetType() != GeomAbs_Line && AC2.GetType() != GeomAbs_Circle)
|
|
Standard_TypeMismatch::Raise("A segment or an arc of circle is expected.");
|
|
|
|
TopExp::Vertices(e2, v1, v2, Standard_True);
|
|
if (v1.IsNull() || v2.IsNull())
|
|
Standard_Failure::Raise("An infinite edge.");
|
|
|
|
P1 = BRep_Tool::Pnt(v1);
|
|
P2 = BRep_Tool::Pnt(v2);
|
|
p1 = ProjLib::Project(thePlane, P1);
|
|
p2 = ProjLib::Project(thePlane, P2);
|
|
p1.Coord(x21, y21);
|
|
p2.Coord(x22, y22);
|
|
|
|
segment2 = true;
|
|
if (AC2.GetType() == GeomAbs_Circle)
|
|
{
|
|
segment2 = false;
|
|
gp_Circ c = AC2.Circle();
|
|
|
|
gp_Pnt2d loc = ProjLib::Project(thePlane, c.Location());
|
|
loc.Coord(xc2, yc2);
|
|
|
|
radius2 = c.Radius();
|
|
cw2 = isCW(AC2);
|
|
}
|
|
}
|
|
|
|
// Initializes the class by two edges.
|
|
void ChFi2d_AnaFilletAlgo::Init(const TopoDS_Edge& theEdge1, const TopoDS_Edge& theEdge2,
|
|
const gp_Pln& thePlane)
|
|
{
|
|
// Make a wire consisting of two edges.
|
|
|
|
// Get common point.
|
|
TopoDS_Vertex v11, v12, v21, v22;
|
|
TopExp::Vertices(theEdge1, v11, v12, Standard_True);
|
|
TopExp::Vertices(theEdge2, v21, v22, Standard_True);
|
|
if (v11.IsNull() || v12.IsNull() || v21.IsNull() || v22.IsNull())
|
|
Standard_Failure::Raise("An infinite edge.");
|
|
|
|
gp_Pnt p11 = BRep_Tool::Pnt(v11);
|
|
gp_Pnt p12 = BRep_Tool::Pnt(v12);
|
|
gp_Pnt p21 = BRep_Tool::Pnt(v21);
|
|
gp_Pnt p22 = BRep_Tool::Pnt(v22);
|
|
|
|
gp_Pnt pcommon;
|
|
if (IsEqual(p11, p21) || IsEqual(p11, p22))
|
|
{
|
|
pcommon = p11;
|
|
}
|
|
else if (IsEqual(p12, p21) || IsEqual(p12, p22))
|
|
{
|
|
pcommon = p12;
|
|
}
|
|
else
|
|
Standard_Failure::Raise("The edges have no common point.");
|
|
|
|
// Reverse the edges in case of need (to construct a wire).
|
|
Standard_Boolean is1stReversed(Standard_False), is2ndReversed(Standard_False);
|
|
if (IsEqual(pcommon, p11))
|
|
is1stReversed = Standard_True;
|
|
else if (IsEqual(pcommon, p22))
|
|
is2ndReversed = Standard_True;
|
|
|
|
// Make a wire.
|
|
BRepBuilderAPI_MakeWire mkWire;
|
|
if (is1stReversed)
|
|
mkWire.Add(TopoDS::Edge(theEdge1.Reversed()));
|
|
else
|
|
mkWire.Add(theEdge1);
|
|
if (is2ndReversed)
|
|
mkWire.Add(TopoDS::Edge(theEdge2.Reversed()));
|
|
else
|
|
mkWire.Add(theEdge2);
|
|
if (!mkWire.IsDone())
|
|
Standard_Failure::Raise("Can't make a wire.");
|
|
|
|
const TopoDS_Wire& W = mkWire.Wire();
|
|
Init(W, thePlane);
|
|
}
|
|
|
|
// Calculates a fillet.
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::Perform(const Standard_Real radius)
|
|
{
|
|
Standard_Boolean bRet(false);
|
|
if (e1.IsNull() || e2.IsNull() ||
|
|
radius < Precision::Confusion())
|
|
{
|
|
return bRet;
|
|
}
|
|
|
|
// Fillet definition.
|
|
Standard_Real xc = 0.0, yc = 0.0;
|
|
Standard_Real start = 0.0, end = 0.0; // parameters on neighbours
|
|
Standard_Real xstart = DBL_MAX, ystart = DBL_MAX; // point on left neighbour
|
|
Standard_Real xend = DBL_MAX, yend = DBL_MAX; // point on right neighbour
|
|
Standard_Boolean cw = Standard_False;
|
|
|
|
// Analytical algorithm works for non-intersecting arcs only.
|
|
// Check arcs on self-intersection.
|
|
Standard_Boolean isCut(Standard_False);
|
|
if (!segment1 || !segment2)
|
|
{
|
|
BRepBuilderAPI_MakeWire mkWire(e1, e2);
|
|
if (mkWire.IsDone())
|
|
{
|
|
const TopoDS_Wire& W = mkWire.Wire();
|
|
BRepBuilderAPI_MakeFace mkFace(plane);
|
|
if (mkFace.IsDone())
|
|
{
|
|
const TopoDS_Face& F = mkFace.Face();
|
|
ShapeAnalysis_Wire analyzer(W, F, Precision::Confusion());
|
|
if (analyzer.CheckSelfIntersection() == Standard_True)
|
|
{
|
|
// Cut the edges at the point of intersection.
|
|
isCut = Standard_True;
|
|
if (!Cut(plane, e1, e2))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}// a case of segment - segment
|
|
|
|
// Choose the case.
|
|
BRepAdaptor_Curve AC1(e1), AC2(e2);
|
|
if (segment1 && segment2)
|
|
{
|
|
bRet = SegmentFilletSegment(radius, xc, yc, cw, start, end);
|
|
}
|
|
else if (segment1 && !segment2)
|
|
{
|
|
bRet = SegmentFilletArc(radius, xc, yc, cw, start, end, xend, yend);
|
|
}
|
|
else if (!segment1 && segment2)
|
|
{
|
|
bRet = ArcFilletSegment(radius, xc, yc, cw, start, end, xstart, ystart);
|
|
}
|
|
else if (!segment1 && !segment2)
|
|
{
|
|
bRet = ArcFilletArc(radius, xc, yc, cw, start, end);
|
|
}
|
|
|
|
if (!bRet)
|
|
return Standard_False;
|
|
|
|
// Invert the fillet for left-handed plane.
|
|
if (plane.Position().Direct() == Standard_False)
|
|
cw = !cw;
|
|
|
|
// Construct a fillet.
|
|
// Make circle.
|
|
gp_Pnt center = ElSLib::Value(xc, yc, plane);
|
|
const gp_Dir& normal = plane.Position().Direction();
|
|
gp_Circ circ(gp_Ax2(center, cw ? -normal : normal), radius);
|
|
|
|
// Fillet may only shrink a neighbour edge, it can't prolongate it.
|
|
const Standard_Real delta1 = AC1.LastParameter() - AC1.FirstParameter();
|
|
const Standard_Real delta2 = AC2.LastParameter() - AC2.FirstParameter();
|
|
if (!isCut && (start > delta1 || end > delta2))
|
|
{
|
|
// Check a case when a neighbour edge almost disappears:
|
|
// try to reduce the fillet radius for a little (1.e-5 mm).
|
|
const Standard_Real little = 100.0 * Precision::Confusion();
|
|
const Standard_Real d1 = fabs(start - delta1);
|
|
const Standard_Real d2 = fabs(end - delta2);
|
|
if (d1 < little || d2 < little)
|
|
{
|
|
if (segment1 && segment2)
|
|
{
|
|
bRet = SegmentFilletSegment(radius - little, xc, yc, cw, start, end);
|
|
}
|
|
else if (segment1 && !segment2)
|
|
{
|
|
bRet = SegmentFilletArc(radius - little, xc, yc, cw, start, end, xend, yend);
|
|
}
|
|
else if (!segment1 && segment2)
|
|
{
|
|
bRet = ArcFilletSegment(radius - little, xc, yc, cw, start, end, xstart, ystart);
|
|
}
|
|
else if (!segment1 && !segment2)
|
|
{
|
|
bRet = ArcFilletArc(radius - little, xc, yc, cw, start, end);
|
|
}
|
|
if (bRet)
|
|
{
|
|
// Invert the fillet for left-handed planes.
|
|
if (plane.Position().Direct() == Standard_False)
|
|
cw = !cw;
|
|
|
|
// Make the circle again.
|
|
center = ElSLib::Value(xc, yc, plane);
|
|
circ.SetLocation(center);
|
|
circ.SetRadius(radius - little);
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return Standard_False;
|
|
}
|
|
}
|
|
if (bRet)
|
|
{
|
|
// start: (xstart, ystart) - pstart.
|
|
gp_Pnt pstart;
|
|
if (xstart != DBL_MAX)
|
|
{
|
|
pstart = ElSLib::Value(xstart, ystart, plane);
|
|
}
|
|
else
|
|
{
|
|
if (e1.Orientation() == TopAbs_FORWARD)
|
|
pstart = AC1.Value(AC1.LastParameter() - start);
|
|
else
|
|
pstart = AC1.Value(AC1.FirstParameter() + start);
|
|
}
|
|
// end: (xend, yend) -> pend.
|
|
gp_Pnt pend;
|
|
if (xend != DBL_MAX)
|
|
{
|
|
pend = ElSLib::Value(xend, yend, plane);
|
|
}
|
|
else
|
|
{
|
|
if (e2.Orientation() == TopAbs_FORWARD)
|
|
pend = AC2.Value(AC2.FirstParameter() + end);
|
|
else
|
|
pend = AC2.Value(AC2.LastParameter() - end);
|
|
}
|
|
|
|
// Make arc.
|
|
BRepBuilderAPI_MakeEdge mkEdge(circ, pstart, pend);
|
|
bRet = mkEdge.IsDone();
|
|
if (bRet)
|
|
{
|
|
fillet = mkEdge.Edge();
|
|
|
|
// Limit the neighbours.
|
|
// Left neighbour.
|
|
gp_Pnt p1, p2;
|
|
shrinke1.Nullify();
|
|
if (e1.Orientation() == TopAbs_FORWARD)
|
|
{
|
|
p1 = AC1.Value(AC1.FirstParameter());
|
|
p2 = pstart;
|
|
}
|
|
else
|
|
{
|
|
p1 = pstart;
|
|
p2 = AC1.Value(AC1.LastParameter());
|
|
}
|
|
if (segment1)
|
|
{
|
|
BRepBuilderAPI_MakeEdge mkSegment1;
|
|
mkSegment1.Init(AC1.Curve().Curve(), p1, p2);
|
|
if (mkSegment1.IsDone())
|
|
shrinke1 = mkSegment1.Edge();
|
|
}
|
|
else
|
|
{
|
|
BRepBuilderAPI_MakeEdge mkCirc1;
|
|
mkCirc1.Init(AC1.Curve().Curve(), p1, p2);
|
|
if (mkCirc1.IsDone())
|
|
shrinke1 = mkCirc1.Edge();
|
|
}
|
|
|
|
// Right neighbour.
|
|
shrinke2.Nullify();
|
|
if (e1.Orientation() == TopAbs_FORWARD)
|
|
{
|
|
p1 = pend;
|
|
p2 = AC2.Value(AC2.LastParameter());
|
|
}
|
|
else
|
|
{
|
|
p1 = AC2.Value(AC2.FirstParameter());
|
|
p2 = pend;
|
|
}
|
|
if (segment2)
|
|
{
|
|
BRepBuilderAPI_MakeEdge mkSegment2;
|
|
mkSegment2.Init(AC2.Curve().Curve(), p1, p2);
|
|
if (mkSegment2.IsDone())
|
|
shrinke2 = mkSegment2.Edge();
|
|
}
|
|
else
|
|
{
|
|
BRepBuilderAPI_MakeEdge mkCirc2;
|
|
mkCirc2.Init(AC2.Curve().Curve(), p1, p2);
|
|
if (mkCirc2.IsDone())
|
|
shrinke2 = mkCirc2.Edge();
|
|
}
|
|
|
|
bRet = !shrinke1.IsNull() && !shrinke2.IsNull();
|
|
}// fillet edge is done
|
|
}// shrinking is good
|
|
|
|
return bRet;
|
|
}
|
|
|
|
// Retrieves a result (fillet and shrinked neighbours).
|
|
const TopoDS_Edge& ChFi2d_AnaFilletAlgo::Result(TopoDS_Edge& theE1, TopoDS_Edge& theE2)
|
|
{
|
|
theE1 = shrinke1;
|
|
theE2 = shrinke2;
|
|
return fillet;
|
|
}
|
|
|
|
// WW5 method to compute fillet.
|
|
// It returns a constructed fillet definition:
|
|
// center point (xc, yc)
|
|
// point on the 1st segment (xstart, ystart)
|
|
// point on the 2nd segment (xend, yend)
|
|
// is the arc of fillet clockwise (cw = true) or counterclockwise (cw = false).
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::SegmentFilletSegment(const Standard_Real radius,
|
|
Standard_Real& xc, Standard_Real& yc,
|
|
Standard_Boolean& cw,
|
|
Standard_Real& start, Standard_Real& end)
|
|
{
|
|
// Make normalized vectors at p12.
|
|
gp_Pnt2d p11(x11, y11);
|
|
gp_Pnt2d p12(x12, y12);
|
|
gp_Pnt2d p22(x22, y22);
|
|
|
|
// Check length of segments.
|
|
if (IsEqual(p12, p11) || IsEqual(p12, p22))
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
// Make vectors.
|
|
gp_Vec2d v1(p12, p11);
|
|
gp_Vec2d v2(p12, p22);
|
|
v1.Normalize();
|
|
v2.Normalize();
|
|
|
|
// Make bisectrissa.
|
|
gp_Vec2d bisec = 0.5 * (v1 + v2);
|
|
|
|
// Check bisectrissa.
|
|
if (bisec.SquareMagnitude() < Precision::SquareConfusion())
|
|
return Standard_False;
|
|
|
|
// Normalize the bisectrissa.
|
|
bisec.Normalize();
|
|
|
|
// Angle at bisectrissa.
|
|
Standard_Real beta = v1.Angle(bisec);
|
|
|
|
// Length along the bisectrissa till the center of fillet.
|
|
Standard_Real L = radius / sin(fabs(beta));
|
|
|
|
// Center point of fillet.
|
|
gp_Pnt2d pc = p12.Translated(L * bisec);
|
|
pc.Coord(xc, yc);
|
|
|
|
// Shrinking length along segments.
|
|
start = sqrt(L * L - radius * radius);
|
|
end = start;
|
|
|
|
// Orientation of fillet.
|
|
cw = beta > 0.0;
|
|
return Standard_True;
|
|
}
|
|
|
|
// A function constructs a fillet between a segment and an arc.
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::SegmentFilletArc(const Standard_Real radius,
|
|
Standard_Real& xc, Standard_Real& yc,
|
|
Standard_Boolean& cw,
|
|
Standard_Real& start, Standard_Real& end,
|
|
Standard_Real& xend, Standard_Real& yend)
|
|
{
|
|
// Make a line parallel to the segment at the side of center point of fillet.
|
|
// This side may be defined through making a bisectrissa for vectors at p12 (or p21).
|
|
|
|
// Make 2D points.
|
|
gp_Pnt2d p12(x12, y12);
|
|
gp_Pnt2d p11(x11, y11);
|
|
gp_Pnt2d pc2(xc2, yc2);
|
|
|
|
// Check length of segment.
|
|
if (p11.SquareDistance(p12) < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
// Make 2D vectors.
|
|
gp_Vec2d v1(p12, p11);
|
|
gp_Vec2d v2(p12, pc2);
|
|
|
|
// Rotate the arc vector to become tangential at p21.
|
|
if (cw2)
|
|
v2.Rotate(+M_PI_2);
|
|
else
|
|
v2.Rotate(-M_PI_2);
|
|
|
|
// If vectors coincide (segment and arc are tangent),
|
|
// the algorithm doesn't work...
|
|
Standard_Real angle = v1.Angle(v2);
|
|
if (fabs(angle) < Precision::Angular())
|
|
return Standard_False;
|
|
|
|
// Make a bissectrisa of vectors at p12.
|
|
v2.Normalize();
|
|
v1.Normalize();
|
|
gp_Vec2d bisec = 0.5 * (v1 + v2);
|
|
|
|
// If segment and arc look in opposite direction,
|
|
// no fillet is possible.
|
|
if (bisec.SquareMagnitude() < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
// Define an appropriate point to choose center of fillet.
|
|
bisec.Normalize();
|
|
gp_Pnt2d nearp = p12.Translated(radius * bisec);
|
|
gp_Lin2d nearl(p12, bisec);
|
|
|
|
// Make a line parallel to segment and
|
|
// passing near the "near" point.
|
|
gp_Vec2d d1(v1);
|
|
gp_Lin2d line(p11, -d1);
|
|
d1.Rotate(M_PI_2);
|
|
line.Translate(radius * d1);
|
|
if (line.Distance(nearp) > radius)
|
|
line.Translate(-2.0 * radius * d1);
|
|
|
|
// Make a circle of radius of the arc +/- fillet radius.
|
|
gp_Ax2d axes(pc2, gp::DX2d());
|
|
gp_Circ2d circ(axes, radius2 + radius);
|
|
if (radius2 > radius && circ.Distance(nearp) > radius)
|
|
circ.SetRadius(radius2 - radius);
|
|
|
|
// Calculate intersection of the line and the circle.
|
|
IntAna2d_AnaIntersection intersector(line, circ);
|
|
if (!intersector.IsDone() || !intersector.NbPoints())
|
|
return Standard_False;
|
|
|
|
// Find center point of fillet.
|
|
Standard_Integer i;
|
|
Standard_Real minDist = DBL_MAX;
|
|
for (i = 1; i <= intersector.NbPoints(); ++i)
|
|
{
|
|
const IntAna2d_IntPoint& intp = intersector.Point(i);
|
|
const gp_Pnt2d& p = intp.Value();
|
|
|
|
Standard_Real d = nearl.Distance(p);
|
|
if (d < minDist)
|
|
{
|
|
minDist = d;
|
|
p.Coord(xc, yc);
|
|
}
|
|
}
|
|
|
|
// Shrink of segment.
|
|
gp_Pnt2d pc(xc, yc);
|
|
Standard_Real L2 = pc.SquareDistance(p12);
|
|
const Standard_Real Rf2 = radius * radius;
|
|
start = sqrt(L2 - Rf2);
|
|
|
|
// Shrink of arc.
|
|
gp_Vec2d pcc(pc2, pc);
|
|
end = fabs(gp_Vec2d(pc2, p12).Angle(pcc));
|
|
|
|
// Duplicate the information on shrink the arc:
|
|
// calculate a point on the arc coinciding with the end of fillet.
|
|
line.SetLocation(pc2);
|
|
line.SetDirection(pcc);
|
|
circ.SetLocation(pc2);
|
|
circ.SetRadius(radius2);
|
|
intersector.Perform(line, circ);
|
|
if (!intersector.IsDone() || !intersector.NbPoints())
|
|
return Standard_False;
|
|
|
|
xend = DBL_MAX;
|
|
yend = DBL_MAX;
|
|
for (i = 1; i <= intersector.NbPoints(); ++i)
|
|
{
|
|
const IntAna2d_IntPoint& intp = intersector.Point(i);
|
|
const gp_Pnt2d& p = intp.Value();
|
|
|
|
const Standard_Real d2 = p.SquareDistance(pc);
|
|
if (fabs(d2 - Rf2) < Precision::Confusion())
|
|
{
|
|
p.Coord(xend, yend);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Orientation of the fillet.
|
|
angle = v1.Angle(v2);
|
|
cw = angle > 0.0;
|
|
return Standard_True;
|
|
}
|
|
|
|
// A function constructs a fillet between an arc and a segment.
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::ArcFilletSegment(const Standard_Real radius,
|
|
Standard_Real& xc, Standard_Real& yc,
|
|
Standard_Boolean& cw,
|
|
Standard_Real& start, Standard_Real& end,
|
|
Standard_Real& xstart, Standard_Real& ystart)
|
|
{
|
|
// Make a line parallel to the segment at the side of center point of fillet.
|
|
// This side may be defined through making a bisectrissa for vectors at p12 (or p21).
|
|
|
|
// Make 2D points.
|
|
gp_Pnt2d p12(x12, y12);
|
|
gp_Pnt2d p22(x22, y22);
|
|
gp_Pnt2d pc1(xc1, yc1);
|
|
|
|
// Check length of segment.
|
|
if (p12.SquareDistance(p22) < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
// Make 2D vectors.
|
|
gp_Vec2d v1(p12, pc1);
|
|
gp_Vec2d v2(p12, p22);
|
|
|
|
// Rotate the arc vector to become tangential at p21.
|
|
if (cw1)
|
|
v1.Rotate(-M_PI_2);
|
|
else
|
|
v1.Rotate(+M_PI_2);
|
|
|
|
// If vectors coincide (segment and arc are tangent),
|
|
// the algorithm doesn't work...
|
|
Standard_Real angle = v1.Angle(v2);
|
|
if (fabs(angle) < Precision::Angular())
|
|
return Standard_False;
|
|
|
|
// Make a bisectrissa of vectors at p12.
|
|
v1.Normalize();
|
|
v2.Normalize();
|
|
gp_Vec2d bisec = 0.5 * (v1 + v2);
|
|
|
|
// If segment and arc look in opposite direction,
|
|
// no fillet is possible.
|
|
if (bisec.SquareMagnitude() < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
// Define an appropriate point to choose center of fillet.
|
|
bisec.Normalize();
|
|
gp_Pnt2d nearPoint = p12.Translated(radius * bisec);
|
|
gp_Lin2d nearLine(p12, bisec);
|
|
|
|
// Make a line parallel to segment and
|
|
// passing near the "near" point.
|
|
gp_Vec2d aD2Vec(v2);
|
|
gp_Lin2d line(p22, -aD2Vec);
|
|
aD2Vec.Rotate(M_PI_2);
|
|
line.Translate(radius * aD2Vec);
|
|
if (line.Distance(nearPoint) > radius)
|
|
line.Translate(-2.0 * radius * aD2Vec);
|
|
|
|
// Make a circle of radius of the arc +/- fillet radius.
|
|
gp_Ax2d axes(pc1, gp::DX2d());
|
|
gp_Circ2d circ(axes, radius1 + radius);
|
|
if (radius1 > radius && circ.Distance(nearPoint) > radius)
|
|
circ.SetRadius(radius1 - radius);
|
|
|
|
// Calculate intersection of the line and the big circle.
|
|
IntAna2d_AnaIntersection intersector(line, circ);
|
|
if (!intersector.IsDone() || !intersector.NbPoints())
|
|
return Standard_False;
|
|
|
|
// Find center point of fillet.
|
|
Standard_Integer i;
|
|
Standard_Real minDist = DBL_MAX;
|
|
for (i = 1; i <= intersector.NbPoints(); ++i)
|
|
{
|
|
const IntAna2d_IntPoint& intp = intersector.Point(i);
|
|
const gp_Pnt2d& p = intp.Value();
|
|
|
|
Standard_Real d = nearLine.Distance(p);
|
|
if (d < minDist)
|
|
{
|
|
minDist = d;
|
|
p.Coord(xc, yc);
|
|
}
|
|
}
|
|
|
|
// Shrink of segment.
|
|
gp_Pnt2d pc(xc, yc);
|
|
Standard_Real L2 = pc.SquareDistance(p12);
|
|
const Standard_Real Rf2 = radius * radius;
|
|
end = sqrt(L2 - Rf2);
|
|
|
|
// Shrink of arc.
|
|
gp_Vec2d pcc(pc1, pc);
|
|
start = fabs(gp_Vec2d(pc1, p12).Angle(pcc));
|
|
|
|
// Duplicate the information on shrink the arc:
|
|
// calculate a point on the arc coinciding with the start of fillet.
|
|
line.SetLocation(pc1);
|
|
line.SetDirection(pcc);
|
|
circ.SetLocation(pc1);
|
|
circ.SetRadius(radius1);
|
|
intersector.Perform(line, circ);
|
|
if (!intersector.IsDone() || !intersector.NbPoints())
|
|
return Standard_False;
|
|
|
|
xstart = DBL_MAX;
|
|
ystart = DBL_MAX;
|
|
for (i = 1; i <= intersector.NbPoints(); ++i)
|
|
{
|
|
const IntAna2d_IntPoint& intp = intersector.Point(i);
|
|
const gp_Pnt2d& p = intp.Value();
|
|
|
|
const Standard_Real d2 = p.SquareDistance(pc);
|
|
if (fabs(d2 - Rf2) < Precision::SquareConfusion())
|
|
{
|
|
p.Coord(xstart, ystart);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Orientation of the fillet.
|
|
angle = v2.Angle(v1);
|
|
cw = angle < 0.0;
|
|
return Standard_True;
|
|
}
|
|
|
|
// WW5 method to compute fillet: arc - arc.
|
|
// It returns a constructed fillet definition:
|
|
// center point (xc, yc)
|
|
// shrinking parameter of the 1st circle (start)
|
|
// shrinking parameter of the 2nd circle (end)
|
|
// if the arc of fillet clockwise (cw = true) or counterclockwise (cw = false).
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::ArcFilletArc(const Standard_Real radius,
|
|
Standard_Real& xc, Standard_Real& yc,
|
|
Standard_Boolean& cw,
|
|
Standard_Real& start, Standard_Real& end)
|
|
{
|
|
// Make points.
|
|
const gp_Pnt2d pc1(xc1, yc1);
|
|
const gp_Pnt2d pc2(xc2, yc2);
|
|
const gp_Pnt2d p12(x12, y12);
|
|
|
|
// Make vectors at p12.
|
|
gp_Vec2d v1(pc1, p12);
|
|
gp_Vec2d v2(pc2, p12);
|
|
|
|
// Rotate the vectors so that they are tangent to circles at p12.
|
|
if (cw1)
|
|
v1.Rotate(+M_PI_2);
|
|
else
|
|
v1.Rotate(-M_PI_2);
|
|
if (cw2)
|
|
v2.Rotate(-M_PI_2);
|
|
else
|
|
v2.Rotate(+M_PI_2);
|
|
|
|
// Make a "check" point for choosing an offset circle.
|
|
v1.Normalize();
|
|
v2.Normalize();
|
|
gp_Vec2d bisec = 0.5 * (v1 + v2);
|
|
if (bisec.SquareMagnitude() < gp::Resolution())
|
|
return Standard_False;
|
|
|
|
const gp_Pnt2d checkp = p12.Translated(radius * bisec);
|
|
const gp_Lin2d checkl(p12, bisec);
|
|
|
|
// Make two circles of radius r1 +/- r and r2 +/- r
|
|
// with center point equal to pc1 and pc2.
|
|
// Arc 1.
|
|
gp_Ax2d axes(pc1, gp::DX2d());
|
|
gp_Circ2d c1(axes, radius1 + radius);
|
|
if (radius1 > radius && c1.Distance(checkp) > radius)
|
|
c1.SetRadius(radius1 - radius);
|
|
// Arc 2.
|
|
axes.SetLocation(pc2);
|
|
gp_Circ2d c2(axes, radius2 + radius);
|
|
if (radius2 > radius && c2.Distance(checkp) > radius)
|
|
c2.SetRadius(radius2 - radius);
|
|
|
|
// Calculate an intersection point of these two circles
|
|
// and choose the one closer to the "check" point.
|
|
IntAna2d_AnaIntersection intersector(c1, c2);
|
|
if (!intersector.IsDone() || !intersector.NbPoints())
|
|
return Standard_False;
|
|
|
|
// Find center point of fillet.
|
|
gp_Pnt2d pc;
|
|
Standard_Real minDist = DBL_MAX;
|
|
for (int i = 1; i <= intersector.NbPoints(); ++i)
|
|
{
|
|
const IntAna2d_IntPoint& intp = intersector.Point(i);
|
|
const gp_Pnt2d& p = intp.Value();
|
|
|
|
Standard_Real d = checkp.SquareDistance(p);
|
|
if (d < minDist)
|
|
{
|
|
minDist = d;
|
|
pc = p;
|
|
}
|
|
}
|
|
pc.Coord(xc, yc);
|
|
|
|
// Orientation of fillet.
|
|
Standard_Real angle = v1.Angle(v2);
|
|
if (fabs(angle) < Precision::Angular())
|
|
{
|
|
angle = gp_Vec2d(pc, pc1).Angle(gp_Vec2d(pc, pc2));
|
|
cw = angle < 0.0;
|
|
}
|
|
else
|
|
{
|
|
cw = angle > 0.0;
|
|
}
|
|
|
|
// Shrinking of circles.
|
|
start = fabs(gp_Vec2d(pc1, p12).Angle(gp_Vec2d(pc1, pc)));
|
|
end = fabs(gp_Vec2d(pc2, p12).Angle(gp_Vec2d(pc2, pc)));
|
|
return Standard_True;
|
|
}
|
|
|
|
// Cuts intersecting edges of a contour.
|
|
Standard_Boolean ChFi2d_AnaFilletAlgo::Cut(const gp_Pln& thePlane, TopoDS_Edge& theE1, TopoDS_Edge& theE2)
|
|
{
|
|
gp_Pnt p;
|
|
Standard_Boolean found(Standard_False);
|
|
Standard_Real param1 = 0.0, param2 = 0.0;
|
|
Standard_Real f1, l1, f2, l2;
|
|
Handle(Geom_Curve) c1 = BRep_Tool::Curve(theE1, f1, l1);
|
|
Handle(Geom_Curve) c2 = BRep_Tool::Curve(theE2, f2, l2);
|
|
GeomAPI_ExtremaCurveCurve extrema(c1, c2, f1, l1, f2, l2);
|
|
if (extrema.NbExtrema())
|
|
{
|
|
Standard_Integer i, nb = extrema.NbExtrema();
|
|
for (i = 1; i <= nb; ++i)
|
|
{
|
|
const Standard_Real d = extrema.Distance(i);
|
|
if (d < Precision::Confusion())
|
|
{
|
|
extrema.Parameters(i, param1, param2);
|
|
if (fabs(l1 - param1) > Precision::Confusion() &&
|
|
fabs(f2 - param2) > Precision::Confusion())
|
|
{
|
|
found = Standard_True;
|
|
extrema.Points(i, p, p);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
{
|
|
BRepBuilderAPI_MakeEdge mkEdge1(c1, f1, param1);
|
|
if (mkEdge1.IsDone())
|
|
{
|
|
theE1 = mkEdge1.Edge();
|
|
|
|
BRepBuilderAPI_MakeEdge mkEdge2(c2, param2, l2);
|
|
if (mkEdge2.IsDone())
|
|
{
|
|
theE2 = mkEdge2.Edge();
|
|
|
|
gp_Pnt2d p2d = ProjLib::Project(thePlane, p);
|
|
p2d.Coord(x12, y12);
|
|
x21 = x12;
|
|
y21 = y12;
|
|
return Standard_True;
|
|
}
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|