1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-26 10:19:45 +03:00
occt/src/Image/Image_PlanarPixelInterpolation.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

284 lines
7.9 KiB
C++
Executable File

// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <Image_PlanarPixelInterpolation.ixx>
Image_PlanarPixelInterpolation::Image_PlanarPixelInterpolation() {}
Standard_Boolean Image_PlanarPixelInterpolation::Interpolate(
const Handle(Image_Image)& aImage,
const Standard_Real FX, const Standard_Real FY,
const Standard_Integer LowX,
const Standard_Integer LowY,
const Standard_Integer UpX,
const Standard_Integer UpY,
Aspect_Pixel& aPixel ) const
{
if ( aImage->IsKind(STANDARD_TYPE(Image_DIndexedImage))) {
return Interpolate( Handle(Image_DIndexedImage)::DownCast( aImage ),
FX,FY,LowX,LowY,UpX,UpY,(Aspect_IndexPixel &)aPixel ) ;
}
else if ( aImage->IsKind(STANDARD_TYPE(Image_DColorImage))) {
return Interpolate( Handle(Image_DColorImage)::DownCast( aImage ),
FX,FY,LowX,LowY,UpX,UpY,(Aspect_ColorPixel &)aPixel ) ;
}
else {
return Image_PixelInterpolation::Interpolate( aImage,
FX,FY,LowX,LowY,UpX,UpY,aPixel ) ;
}
}
static Standard_Real DoInterpolation( const Standard_Integer NX[3],
const Standard_Integer NY[3],
const Standard_Real NZ[3],
const Standard_Real FX,
const Standard_Real FY )
{ Standard_Real VX[3], VY[3], VZ[3] ;
Standard_Real Result ;
if ( NZ[0] == NZ[1] && NZ[0] == NZ[2] ) {
Result = NZ[0] ;
}
else {
VX[1] = NX[1] - NX[0] ;
VY[1] = NY[1] - NY[0] ;
VZ[1] = NZ[1] - NZ[0] ;
VX[2] = NX[2] - NX[0] ;
VY[2] = NY[2] - NY[0] ;
VZ[2] = NZ[2] - NZ[0] ;
if ( VZ[1] == 0. && VZ[2] == 0. ) {
Result = NZ[0] ;
}
else {
VX[0] = VY[1]*VZ[2] - VY[2]*VZ[1] ;
VY[0] = VZ[1]*VX[2] - VZ[2]*VX[1] ;
VZ[0] = VX[1]*VY[2] - VX[2]*VY[1] ;
if ( VZ[0] != 0. ) {
Result = NZ[0] -
( (FX-NX[0])*VX[0] + (FY-NY[0])*VY[0] ) / VZ[0];
}
else {
Result = NZ[0] ;
}
}
}
return Result ;
}
Standard_Boolean Image_PlanarPixelInterpolation::Interpolate(
const Handle(Image_DColorImage)& aImage,
const Standard_Real FX, const Standard_Real FY,
const Standard_Integer LowX,
const Standard_Integer LowY,
const Standard_Integer UpX,
const Standard_Integer UpY,
Aspect_ColorPixel& aPixel ) const
{ Standard_Integer NX[3], NY[3] ;
Standard_Real NZ[3] ;
Standard_Real R,G,B ;
static Quantity_Color Col ;
if ( FX < 0. ) NX[0] = Standard_Integer(FX-0.5) ;
else NX[0] = Standard_Integer(FX+0.5) ;
if ( FY < 0. ) NY[0] = Standard_Integer(FY-0.5) ;
else NY[0] = Standard_Integer(FY+0.5) ;
if ( NX[0] < LowX || NX[0] > UpX ||
NY[0] < LowY || NY[0] > UpY ) {
return Standard_False ;
}
else if ( ( FX-NX[0] ) == 0. && ( FY-NY[0] ) == 0. ) {
aImage->Pixel( NX[0], NY[0], aPixel );
return Standard_True ;
}
else {
if ( ( FX-NX[0] ) >= 0. ) { NX[1] = NX[0]+1 ; NY[1] = NY[0] ; }
else { NX[1] = NX[0]-1 ; NY[1] = NY[0] ; }
if ( ( FY-NY[0] ) >= 0. ) { NX[2] = NX[0] ; NY[2] = NY[0]+1 ; }
else { NX[2] = NX[0] ; NY[2] = NY[0]-1 ; }
if ( NX[1] < LowX || NX[1] > UpX || NY[1] < LowY || NY[1] > UpY ||
NX[2] < LowX || NX[2] > UpX || NY[2] < LowY || NY[2] > UpY ) {
aImage->Pixel( NX[0], NY[0], aPixel );
}
else {
NZ[0] = aImage->Pixel( NX[0],NY[0] ).Value().Red() ;
NZ[1] = aImage->Pixel( NX[1],NY[1] ).Value().Red() ;
NZ[2] = aImage->Pixel( NX[2],NY[2] ).Value().Red() ;
R = DoInterpolation( NX,NY,NZ, FX,FY ) ;
NZ[0] = aImage->Pixel( NX[0],NY[0] ).Value().Green() ;
NZ[1] = aImage->Pixel( NX[1],NY[1] ).Value().Green() ;
NZ[2] = aImage->Pixel( NX[2],NY[2] ).Value().Green() ;
G = DoInterpolation( NX,NY,NZ, FX,FY ) ;
NZ[0] = aImage->Pixel( NX[0],NY[0] ).Value().Blue() ;
NZ[1] = aImage->Pixel( NX[1],NY[1] ).Value().Blue() ;
NZ[2] = aImage->Pixel( NX[2],NY[2] ).Value().Blue() ;
B = DoInterpolation( NX,NY,NZ, FX,FY ) ;
Col.SetValues( R, G, B, Quantity_TOC_RGB ) ;
aPixel.SetValue( Col ) ;
}
return Standard_True ;
}
}
Standard_Boolean Image_PlanarPixelInterpolation::Interpolate(
const Handle(Image_DIndexedImage)& aImage,
const Standard_Real FX, const Standard_Real FY,
const Standard_Integer LowX,
const Standard_Integer LowY,
const Standard_Integer UpX,
const Standard_Integer UpY,
Aspect_IndexPixel& aPixel ) const
{ Standard_Integer NX[3], NY[3] ;
Standard_Real NZ[3] ;
if ( FX < 0. ) NX[0] = Standard_Integer(FX-0.5) ;
else NX[0] = Standard_Integer(FX+0.5) ;
if ( FY < 0. ) NY[0] = Standard_Integer(FY-0.5) ;
else NY[0] = Standard_Integer(FY+0.5) ;
if ( NX[0] < LowX || NX[0] > UpX ||
NY[0] < LowY || NY[0] > UpY ) {
return Standard_False ;
}
else if ( ( FX-NX[0] ) == 0. && ( FY-NY[0] ) == 0. ) {
aImage->Pixel( NX[0], NY[0], aPixel );
return Standard_True ;
}
else {
if ( ( FX-NX[0] ) >= 0. ) { NX[1] = NX[0]+1 ; NY[1] = NY[0] ; }
else { NX[1] = NX[0]-1 ; NY[1] = NY[0] ; }
if ( ( FY-NY[0] ) >= 0. ) { NX[2] = NX[0] ; NY[2] = NY[0]+1 ; }
else { NX[2] = NX[0] ; NY[2] = NY[0]-1 ; }
if ( NX[1] < LowX || NX[1] > UpX || NY[1] < LowY || NY[1] > UpY ||
NX[2] < LowX || NX[2] > UpX || NY[2] < LowY || NY[2] > UpY ) {
aImage->Pixel( NX[0], NY[0], aPixel );
}
else {
NZ[0] = aImage->Pixel( NX[0],NY[0] ).Value() ;
NZ[1] = aImage->Pixel( NX[1],NY[1] ).Value() ;
NZ[2] = aImage->Pixel( NX[2],NY[2] ).Value() ;
aPixel.SetValue(
Standard_Integer( DoInterpolation( NX,NY,NZ, FX,FY ) )
) ;
}
return Standard_True ;
}
}
//##############################################################################
#ifdef OLD
{ Standard_Integer NX[3], NY[3], NZ[3] ;
Standard_Integer Result ;
Standard_Real VX[3], VY[3], VZ[3], PVALUE ;
NX[0] = Standard_Integer(FX+0.5) ;
NY[0] = Standard_Integer(FY+0.5) ;
if ( NX[0] < LowX || NX[0] > UpX ||
NY[0] < LowY || NY[0] > UpY ) {
return Standard_False ;
}
else if ( ( FX-NX[0] ) == 0. && ( FY-NY[0] ) == 0. ) {
aImage->Pixel( NX[0], NY[0], aPixel );
return Standard_True ;
}
else {
if ( ( FX-NX[0] ) >= 0. ) { NX[1] = NX[0]+1 ; NY[1] = NY[0] ; }
else { NX[1] = NX[0]-1 ; NY[1] = NY[0] ; }
if ( ( FY-NY[0] ) >= 0. ) { NX[2] = NX[0] ; NY[2] = NY[0]+1 ; }
else { NX[2] = NX[0] ; NY[2] = NY[0]-1 ; }
if ( NX[1] < LowX || NX[1] > UpX || NY[1] < LowY || NY[1] > UpY ||
NX[2] < LowX || NX[2] > UpX || NY[2] < LowY || NY[2] > UpY ) {
aImage->Pixel( NX[0], NY[0], aPixel );
}
else {
NZ[0] = aImage->Pixel( NX[0],NY[0] ).Value() ;
NZ[1] = aImage->Pixel( NX[1],NY[1] ).Value() ;
NZ[2] = aImage->Pixel( NX[2],NY[2] ).Value() ;
VX[1] = NX[1] - NX[0] ;
VY[1] = NY[1] - NY[0] ;
VZ[1] = NZ[1] - NZ[0] ;
VX[2] = NX[2] - NX[0] ;
VY[2] = NY[2] - NY[0] ;
VZ[2] = NZ[2] - NZ[0] ;
if ( VZ[1] == 0. && VZ[2] == 0. ) {
Result = NZ[0] ;
}
else {
VX[0] = VY[1]*VZ[2] - VY[2]*VZ[1] ;
VY[0] = VZ[1]*VX[2] - VZ[2]*VX[1] ;
VZ[0] = VX[1]*VY[2] - VX[2]*VY[1] ;
if ( VZ[0] != 0. ) {
PVALUE = NZ[0] -
( (FX-NX[0])*VX[0] + (FY-NY[0])*VY[0] ) / VZ[0];
Result = Standard_Integer( PVALUE ) ;
}
else {
Result = NZ[0] ;
}
}
aPixel.SetValue( Result ) ;
}
return Standard_True ;
}
}
#endif