1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-21 10:13:43 +03:00
occt/src/GeomInt/GeomInt_IntSS_1.cxx
bugmaster b311480ed5 0023024: Update headers of OCCT files
Added appropriate copyright and license information in source files
2012-03-21 19:43:04 +04:00

1984 lines
60 KiB
C++
Executable File

// Created on: 1995-01-27
// Created by: Jacques GOUSSARD
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2012 OPEN CASCADE SAS
//
// The content of this file is subject to the Open CASCADE Technology Public
// License Version 6.5 (the "License"). You may not use the content of this file
// except in compliance with the License. Please obtain a copy of the License
// at http://www.opencascade.org and read it completely before using this file.
//
// The Initial Developer of the Original Code is Open CASCADE S.A.S., having its
// main offices at: 1, place des Freres Montgolfier, 78280 Guyancourt, France.
//
// The Original Code and all software distributed under the License is
// distributed on an "AS IS" basis, without warranty of any kind, and the
// Initial Developer hereby disclaims all such warranties, including without
// limitation, any warranties of merchantability, fitness for a particular
// purpose or non-infringement. Please see the License for the specific terms
// and conditions governing the rights and limitations under the License.
#include <GeomInt_IntSS.ixx>
#include <Precision.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pnt2d.hxx>
#include <gp_Pln.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfListOfInteger.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TColStd_ListOfInteger.hxx>
#include <TColStd_ListIteratorOfListOfInteger.hxx>
#include <TColgp_Array1OfPnt.hxx>
#include <TColgp_Array1OfPnt2d.hxx>
#include <Adaptor3d_TopolTool.hxx>
#include <IntPatch_Line.hxx>
#include <IntPatch_WLine.hxx>
#include <IntPatch_GLine.hxx>
#include <IntPatch_ALineToWLine.hxx>
#include <IntPatch_IType.hxx>
#include <AppParCurves_MultiBSpCurve.hxx>
#include <GeomAbs_SurfaceType.hxx>
#include <GeomAbs_CurveType.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Parabola.hxx>
#include <Geom_Hyperbola.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom_Circle.hxx>
#include <Geom_Ellipse.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GeomLib_CheckBSplineCurve.hxx>
#include <GeomLib_Check2dBSplineCurve.hxx>
#include <GeomProjLib.hxx>
#include <ElSLib.hxx>
#include <GeomInt_WLApprox.hxx>
#include <Extrema_ExtPS.hxx>
static
void BuildPCurves (Standard_Real f,
Standard_Real l,
Standard_Real& Tol,
const Handle (Geom_Surface)& S,
const Handle (Geom_Curve)& C,
Handle (Geom2d_Curve)& C2d);
static
void Parameters(const Handle(GeomAdaptor_HSurface)& HS1,
const Handle(GeomAdaptor_HSurface)& HS2,
const gp_Pnt& Ptref,
Standard_Real& U1,
Standard_Real& V1,
Standard_Real& U2,
Standard_Real& V2);
static
Handle(Geom_Curve) MakeBSpline (const Handle(IntPatch_WLine)& WL,
const Standard_Integer ideb,
const Standard_Integer ifin);
static
Handle(Geom2d_BSplineCurve) MakeBSpline2d(const Handle(IntPatch_WLine)& theWLine,
const Standard_Integer ideb,
const Standard_Integer ifin,
const Standard_Boolean onFirst);
static
Handle(IntPatch_WLine) ComputePurgedWLine(const Handle(IntPatch_WLine)& theWLine);
static
Standard_Boolean DecompositionOfWLine (const Handle(IntPatch_WLine)& theWLine,
const Handle(GeomAdaptor_HSurface)& theSurface1,
const Handle(GeomAdaptor_HSurface)& theSurface2,
const Standard_Real aTolSum,
const GeomInt_LineConstructor& theLConstructor,
IntPatch_SequenceOfLine& theNewLines);
static
Standard_Real AdjustPeriodic(const Standard_Real theParameter,
const Standard_Real parmin,
const Standard_Real parmax,
const Standard_Real thePeriod,
Standard_Real& theOffset) ;
static
Standard_Boolean IsPointOnBoundary(const Standard_Real theParameter,
const Standard_Real theFirstBoundary,
const Standard_Real theSecondBoundary,
const Standard_Real theResolution,
Standard_Boolean& IsOnFirstBoundary);
static
Standard_Boolean FindPoint(const gp_Pnt2d& theFirstPoint,
const gp_Pnt2d& theLastPoint,
const Standard_Real theUmin,
const Standard_Real theUmax,
const Standard_Real theVmin,
const Standard_Real theVmax,
gp_Pnt2d& theNewPoint);
static
void AdjustUPeriodic (const Handle(Geom_Surface)& aS,
Handle(Geom2d_Curve)& aC2D);
static
void GetQuadric(const Handle(GeomAdaptor_HSurface)& HS1,
IntSurf_Quadric& quad1);
//
class ProjectPointOnSurf
{
public:
ProjectPointOnSurf() : myIsDone (Standard_False) {}
void Init(const Handle(Geom_Surface)& Surface,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real Vmin,
const Standard_Real Vsup);
void Init ();
void Perform(const gp_Pnt& P);
Standard_Boolean IsDone () const { return myIsDone; }
void LowerDistanceParameters(Standard_Real& U, Standard_Real& V ) const;
Standard_Real LowerDistance() const;
protected:
Standard_Boolean myIsDone;
Standard_Integer myIndex;
Extrema_ExtPS myExtPS;
GeomAdaptor_Surface myGeomAdaptor;
};
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void ProjectPointOnSurf::Init (const Handle(Geom_Surface)& Surface,
const Standard_Real Umin,
const Standard_Real Usup,
const Standard_Real Vmin,
const Standard_Real Vsup )
{
const Standard_Real Tolerance = Precision::PConfusion();
//
myGeomAdaptor.Load(Surface, Umin,Usup,Vmin,Vsup);
myExtPS.Initialize(myGeomAdaptor, Umin, Usup, Vmin, Vsup, Tolerance, Tolerance);
myIsDone = Standard_False;
}
//=======================================================================
//function : Init
//purpose :
//=======================================================================
void ProjectPointOnSurf::Init ()
{
myIsDone = myExtPS.IsDone() && (myExtPS.NbExt() > 0);
if (myIsDone) {
// evaluate the lower distance and its index;
Standard_Real Dist2Min = myExtPS.SquareDistance(1);
myIndex = 1;
for (Standard_Integer i = 2; i <= myExtPS.NbExt(); i++)
{
const Standard_Real Dist2 = myExtPS.SquareDistance(i);
if (Dist2 < Dist2Min) {
Dist2Min = Dist2;
myIndex = i;
}
}
}
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
void ProjectPointOnSurf::Perform(const gp_Pnt& P)
{
myExtPS.Perform(P);
Init ();
}
//=======================================================================
//function : LowerDistanceParameters
//purpose :
//=======================================================================
void ProjectPointOnSurf::LowerDistanceParameters (Standard_Real& U,
Standard_Real& V ) const
{
StdFail_NotDone_Raise_if(!myIsDone, "GeomInt_IntSS::ProjectPointOnSurf::LowerDistanceParameters");
(myExtPS.Point(myIndex)).Parameter(U,V);
}
//=======================================================================
//function : LowerDistance
//purpose :
//=======================================================================
Standard_Real ProjectPointOnSurf::LowerDistance() const
{
StdFail_NotDone_Raise_if(!myIsDone, "GeomInt_IntSS::ProjectPointOnSurf::LowerDistance");
return sqrt(myExtPS.SquareDistance(myIndex));
}
//
//=======================================================================
//function : MakeCurve
//purpose :
//=======================================================================
void GeomInt_IntSS::MakeCurve(const Standard_Integer Index,
const Handle(Adaptor3d_TopolTool) & dom1,
const Handle(Adaptor3d_TopolTool) & dom2,
const Standard_Real Tol,
const Standard_Boolean Approx,
const Standard_Boolean ApproxS1,
const Standard_Boolean ApproxS2)
{
Standard_Boolean myApprox1, myApprox2, myApprox;
Standard_Real Tolpc, myTolApprox;
IntPatch_IType typl;
Handle(Geom2d_BSplineCurve) H1;
Handle(Geom_Surface) aS1, aS2;
//
Tolpc = Tol;
myApprox=Approx;
myApprox1=ApproxS1;
myApprox2=ApproxS2;
myTolApprox=0.0000001;
//
aS1=myHS1->ChangeSurface().Surface();
aS2=myHS2->ChangeSurface().Surface();
//
Handle(IntPatch_Line) L = myIntersector.Line(Index);
typl = L->ArcType();
//
if(typl==IntPatch_Walking) {
Handle(IntPatch_Line) anewL =
ComputePurgedWLine(Handle(IntPatch_WLine)::DownCast(L));
//
if(anewL.IsNull()) {
return;
}
L = anewL;
}
//
// Line Constructor
myLConstruct.Perform(L);
if (!myLConstruct.IsDone() || myLConstruct.NbParts() <= 0) {
return;
}
// Do the Curve
Standard_Boolean ok;
Standard_Integer i, j, aNbParts;
Standard_Real fprm, lprm;
Handle(Geom_Curve) newc;
switch (typl) {
//########################################
// Line, Parabola, Hyperbola
//########################################
case IntPatch_Lin:
case IntPatch_Parabola:
case IntPatch_Hyperbola: {
if (typl == IntPatch_Lin) {
newc=new Geom_Line (Handle(IntPatch_GLine)::DownCast(L)->Line());
}
else if (typl == IntPatch_Parabola) {
newc=new Geom_Parabola(Handle(IntPatch_GLine)::DownCast(L)->Parabola());
}
else if (typl == IntPatch_Hyperbola) {
newc=new Geom_Hyperbola (Handle(IntPatch_GLine)::DownCast(L)->Hyperbola());
}
//
aNbParts=myLConstruct.NbParts();
for (i=1; i<=aNbParts; i++) {
myLConstruct.Part(i, fprm, lprm);
if (!Precision::IsNegativeInfinite(fprm) &&
!Precision::IsPositiveInfinite(lprm)) {
// /cto/900/F1
//if (typl == IntPatch_Lin) {
//Standard_Real dPrm=1.3e-6;
//fprm=fprm-dPrm;
//lprm=lprm+dPrm;
//}
//
Handle(Geom_TrimmedCurve) aCT3D=new Geom_TrimmedCurve(newc, fprm, lprm);
sline.Append(aCT3D);
//
if(myApprox1) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm, lprm, Tolpc, myHS1->ChangeSurface().Surface(), newc, C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0.) {
myTolReached2d=Tolpc;
}
slineS1.Append(new Geom2d_TrimmedCurve(C2d,fprm,lprm));
}
else {
slineS1.Append(H1);
}
//
if(myApprox2) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm,lprm,Tolpc,myHS2->ChangeSurface().Surface(),newc,C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0.) {
myTolReached2d=Tolpc;
}
//
slineS2.Append(new Geom2d_TrimmedCurve(C2d,fprm,lprm));
}
else {
slineS2.Append(H1);
}
} // if (!Precision::IsNegativeInfinite(fprm) && !Precision::IsPositiveInfinite(lprm))
else {
GeomAbs_SurfaceType typS1 = myHS1->Surface().GetType();
GeomAbs_SurfaceType typS2 = myHS2->Surface().GetType();
if( typS1 == GeomAbs_SurfaceOfExtrusion ||
typS1 == GeomAbs_OffsetSurface ||
typS1 == GeomAbs_SurfaceOfRevolution ||
typS2 == GeomAbs_SurfaceOfExtrusion ||
typS2 == GeomAbs_OffsetSurface ||
typS2 == GeomAbs_SurfaceOfRevolution) {
sline.Append(newc);
slineS1.Append(H1);
slineS2.Append(H1);
continue;
}
Standard_Boolean bFNIt, bLPIt;
Standard_Real aTestPrm, dT=100.;
Standard_Real u1, v1, u2, v2, TolX;
//
bFNIt=Precision::IsNegativeInfinite(fprm);
bLPIt=Precision::IsPositiveInfinite(lprm);
aTestPrm=0.;
if (bFNIt && !bLPIt) {
aTestPrm=lprm-dT;
}
else if (!bFNIt && bLPIt) {
aTestPrm=fprm+dT;
}
//
gp_Pnt ptref(newc->Value(aTestPrm));
//
TolX = Precision::Confusion();
Parameters(myHS1, myHS2, ptref, u1, v1, u2, v2);
ok = (dom1->Classify(gp_Pnt2d(u1, v1), TolX) != TopAbs_OUT);
if(ok) {
ok = (dom2->Classify(gp_Pnt2d(u2,v2),TolX) != TopAbs_OUT);
}
if (ok) {
sline.Append(newc);
slineS1.Append(H1);
slineS2.Append(H1);
}
}
}// end of for (i=1; i<=myLConstruct.NbParts(); i++)
}// case IntPatch_Lin: case IntPatch_Parabola: case IntPatch_Hyperbola:
break;
//########################################
// Circle and Ellipse
//########################################
case IntPatch_Circle:
case IntPatch_Ellipse: {
if (typl == IntPatch_Circle) {
newc = new Geom_Circle
(Handle(IntPatch_GLine)::DownCast(L)->Circle());
}
else {
newc = new Geom_Ellipse
(Handle(IntPatch_GLine)::DownCast(L)->Ellipse());
}
//
Standard_Real aPeriod, aNul, aRealEpsilon;
//
aRealEpsilon=RealEpsilon();
aNul=0.;
aPeriod=M_PI+M_PI;
//
aNbParts=myLConstruct.NbParts();
//
for (i=1; i<=aNbParts; i++) {
myLConstruct.Part(i, fprm, lprm);
//
if (Abs(fprm) > aRealEpsilon || Abs(lprm-aPeriod) > aRealEpsilon) {
//==============================================
Handle(Geom_TrimmedCurve) aTC3D=new Geom_TrimmedCurve(newc,fprm,lprm);
//
sline.Append(aTC3D);
//
fprm=aTC3D->FirstParameter();
lprm=aTC3D->LastParameter ();
////
if(myApprox1) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm,lprm,Tolpc,myHS1->ChangeSurface().Surface(),newc,C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0.) {
myTolReached2d=Tolpc;
}
slineS1.Append(C2d);
}
else { ////
slineS1.Append(H1);
}
//
if(myApprox2) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm,lprm,Tolpc,myHS2->ChangeSurface().Surface(),newc,C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0) {
myTolReached2d=Tolpc;
}
slineS2.Append(C2d);
}
else {
slineS2.Append(H1);
}
//==============================================
} //if (Abs(fprm) > RealEpsilon() || Abs(lprm-2.*M_PI) > RealEpsilon())
//
else {// on regarde si on garde
//
if (aNbParts==1) {
if (Abs(fprm) < RealEpsilon() && Abs(lprm-2.*M_PI) < RealEpsilon()) {
Handle(Geom_TrimmedCurve) aTC3D=new Geom_TrimmedCurve(newc,fprm,lprm);
//
sline.Append(aTC3D);
fprm=aTC3D->FirstParameter();
lprm=aTC3D->LastParameter ();
if(myApprox1) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm,lprm,Tolpc,myHS1->ChangeSurface().Surface(),newc,C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0) {
myTolReached2d=Tolpc;
}
slineS1.Append(C2d);
}
else { ////
slineS1.Append(H1);
}
if(myApprox2) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm,lprm,Tolpc,myHS2->ChangeSurface().Surface(),newc,C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0) {
myTolReached2d=Tolpc;
}
slineS2.Append(C2d);
}
else {
slineS2.Append(H1);
}
break;
}
}
//
Standard_Real aTwoPIdiv17, u1, v1, u2, v2, TolX;
//
aTwoPIdiv17=2.*M_PI/17.;
//
for (j=0; j<=17; j++) {
gp_Pnt ptref (newc->Value (j*aTwoPIdiv17));
TolX = Precision::Confusion();
Parameters(myHS1, myHS2, ptref, u1, v1, u2, v2);
ok = (dom1->Classify(gp_Pnt2d(u1,v1),TolX) != TopAbs_OUT);
if(ok) {
ok = (dom2->Classify(gp_Pnt2d(u2,v2),TolX) != TopAbs_OUT);
}
if (ok) {
sline.Append(newc);
//==============================================
if(myApprox1) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm, lprm, Tolpc, myHS1->ChangeSurface().Surface(), newc, C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0) {
myTolReached2d=Tolpc;
}
slineS1.Append(C2d);
}
else {
slineS1.Append(H1);
}
if(myApprox2) {
Handle (Geom2d_Curve) C2d;
BuildPCurves(fprm, lprm, Tolpc,myHS2->ChangeSurface().Surface(), newc, C2d);
if(Tolpc>myTolReached2d || myTolReached2d==0) {
myTolReached2d=Tolpc;
}
slineS2.Append(C2d);
}
else {
slineS2.Append(H1);
}
break;
}// end of if (ok) {
}// end of for (Standard_Integer j=0; j<=17; j++)
}// end of else { on regarde si on garde
}// for (i=1; i<=myLConstruct.NbParts(); i++)
}// IntPatch_Circle: IntPatch_Ellipse:
break;
//########################################
// Analytic
//########################################
case IntPatch_Analytic: {
IntSurf_Quadric quad1,quad2;
//
GetQuadric(myHS1, quad1);
GetQuadric(myHS2, quad2);
//=========
IntPatch_ALineToWLine convert (quad1, quad2);
if (!myApprox) {
Handle(Geom2d_BSplineCurve) aH1, aH2;
//
aNbParts=myLConstruct.NbParts();
for (i=1; i<=aNbParts; i++) {
myLConstruct.Part(i, fprm, lprm);
Handle(IntPatch_WLine) WL =
convert.MakeWLine(Handle(IntPatch_ALine)::DownCast(L), fprm, lprm);
//
if(myApprox1) {
aH1 = MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
}
if(myApprox2) {
aH2 = MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
}
sline.Append(MakeBSpline(WL,1,WL->NbPnts()));
slineS1.Append(aH1);
slineS2.Append(aH2);
}
} // if (!myApprox)
else { // myApprox=TRUE
GeomInt_WLApprox theapp3d;
Standard_Real tol2d = myTolApprox;
//
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_True);
aNbParts=myLConstruct.NbParts();
for (i=1; i<=aNbParts; i++) {
myLConstruct.Part(i, fprm, lprm);
Handle(IntPatch_WLine) WL =
convert.MakeWLine(Handle(IntPatch_ALine):: DownCast(L),fprm,lprm);
theapp3d.Perform(myHS1,myHS2,WL,Standard_True,myApprox1,myApprox2, 1, WL->NbPnts());
if (!theapp3d.IsDone()) {
//
Handle(Geom2d_BSplineCurve) aH1, aH2;
if(myApprox1) {
aH1 = MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_True);
}
if(myApprox2) {
aH2 = MakeBSpline2d(WL, 1, WL->NbPnts(), Standard_False);
}
sline.Append(MakeBSpline(WL,1,WL->NbPnts()));
slineS1.Append(aH1);
slineS2.Append(aH1);
}
//
else {
if(myApprox1 || myApprox2) {
if( theapp3d.TolReached2d()>myTolReached2d || myTolReached2d==0) {
myTolReached2d = theapp3d.TolReached2d();
}
}
if( theapp3d.TolReached3d()>myTolReached3d || myTolReached3d==0) {
myTolReached3d = theapp3d.TolReached3d();
}
Standard_Integer aNbMultiCurves, nbpoles;
aNbMultiCurves=theapp3d.NbMultiCurves();
for (j=1; j<=aNbMultiCurves; j++) {
const AppParCurves_MultiBSpCurve& mbspc = theapp3d.Value(j);
nbpoles = mbspc.NbPoles();
TColgp_Array1OfPnt tpoles(1, nbpoles);
mbspc.Curve(1, tpoles);
Handle(Geom_BSplineCurve) BS=new Geom_BSplineCurve(tpoles,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_CheckBSplineCurve Check(BS, myTolCheck, myTolAngCheck);
Check.FixTangent(Standard_True,Standard_True);
//
sline.Append(BS);
//
if(myApprox1) {
TColgp_Array1OfPnt2d tpoles2d(1,nbpoles);
mbspc.Curve(2,tpoles2d);
Handle(Geom2d_BSplineCurve) BS2=new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve newCheck(BS2,myTolCheck,myTolAngCheck);
newCheck.FixTangent(Standard_True,Standard_True);
slineS1.Append(BS2);
}
else {
slineS1.Append(H1);
}
if(myApprox2) {
TColgp_Array1OfPnt2d tpoles2d(1, nbpoles);
Standard_Integer TwoOrThree;
TwoOrThree=myApprox1 ? 3 : 2;
mbspc.Curve(TwoOrThree, tpoles2d);
Handle(Geom2d_BSplineCurve) BS2 =new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve newCheck(BS2,myTolCheck,myTolAngCheck);
newCheck.FixTangent(Standard_True,Standard_True);
//
slineS2.Append(BS2);
}
else {
slineS2.Append(H1);
}
//
}// for (j=1; j<=aNbMultiCurves; j++) {
}// else from if (!theapp3d.IsDone())
}// for (i=1; i<=aNbParts; i++) {
}// else { // myApprox=TRUE
}// case IntPatch_Analytic:
break;
//########################################
// Walking
//########################################
case IntPatch_Walking:{
Handle(IntPatch_WLine) WL =
Handle(IntPatch_WLine)::DownCast(L);
//
Standard_Integer ifprm, ilprm;
//
if (!myApprox) {
aNbParts=myLConstruct.NbParts();
for (i=1; i<=aNbParts; i++) {
myLConstruct.Part(i, fprm, lprm);
ifprm=(Standard_Integer)fprm;
ilprm=(Standard_Integer)lprm;
//
Handle(Geom2d_BSplineCurve) aH1, aH2;
if(myApprox1) {
aH1 = MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
}
if(myApprox2) {
aH2 = MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
}
//
Handle(Geom_Curve) aBSp=MakeBSpline(WL, ifprm, ilprm);
//
sline.Append(aBSp);
slineS1.Append(aH1);
slineS2.Append(aH2);
}
}
//
else {
Standard_Boolean bIsDecomposited;
Standard_Integer nbiter, aNbSeqOfL;
GeomInt_WLApprox theapp3d;
IntPatch_SequenceOfLine aSeqOfL;
Standard_Real tol2d, aTolSS;
//
tol2d = myTolApprox;
aTolSS=2.e-7;
if(myHS1 == myHS2) {
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_False);
}
else {
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_True);
}
//
bIsDecomposited =
DecompositionOfWLine(WL, myHS1, myHS2, aTolSS, myLConstruct, aSeqOfL);
//
aNbParts=myLConstruct.NbParts();
aNbSeqOfL=aSeqOfL.Length();
//
nbiter = (bIsDecomposited) ? aNbSeqOfL : aNbParts;
//
for(i = 1; i <= nbiter; i++) {
if(bIsDecomposited) {
WL = Handle(IntPatch_WLine)::DownCast(aSeqOfL.Value(i));
ifprm = 1;
ilprm = WL->NbPnts();
}
else {
myLConstruct.Part(i, fprm, lprm);
ifprm = (Standard_Integer)fprm;
ilprm = (Standard_Integer)lprm;
}
//-- lbr :
//-- Si une des surfaces est un plan , on approxime en 2d
//-- sur cette surface et on remonte les points 2d en 3d.
GeomAbs_SurfaceType typs1, typs2;
typs1 = myHS1->Surface().GetType();
typs2 = myHS2->Surface().GetType();
//
if(typs1 == GeomAbs_Plane) {
theapp3d.Perform(myHS1, myHS2, WL, Standard_False,
Standard_True, myApprox2,
ifprm, ilprm);
}
else if(typs2 == GeomAbs_Plane) {
theapp3d.Perform(myHS1,myHS2,WL,Standard_False,
myApprox1,Standard_True,
ifprm, ilprm);
}
else {
//
if (myHS1 != myHS2){
if ((typs1==GeomAbs_BezierSurface || typs1==GeomAbs_BSplineSurface) &&
(typs2==GeomAbs_BezierSurface || typs2==GeomAbs_BSplineSurface)) {
theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_True);
//Standard_Boolean bUseSurfaces;
//bUseSurfaces=NotUseSurfacesForApprox(myFace1, myFace2, WL, ifprm, ilprm);
//if (bUseSurfaces) {
//theapp3d.SetParameters(myTolApprox, tol2d, 4, 8, 0, Standard_False);
//}
}
}
//
theapp3d.Perform(myHS1,myHS2,WL,Standard_True,
myApprox1,myApprox2,
ifprm, ilprm);
}
if (!theapp3d.IsDone()) {
//
Handle(Geom2d_BSplineCurve) aH1, aH2;
//
Handle(Geom_Curve) aBSp=MakeBSpline(WL, ifprm, ilprm);
if(myApprox1) {
aH1 = MakeBSpline2d(WL, ifprm, ilprm, Standard_True);
}
if(myApprox2) {
aH2 = MakeBSpline2d(WL, ifprm, ilprm, Standard_False);
}
//
sline.Append(aBSp);
slineS1.Append(aH1);
slineS2.Append(aH2);
}//if (!theapp3d.IsDone())
else {
if(myApprox1 || myApprox2 || (typs1==GeomAbs_Plane || typs2==GeomAbs_Plane)) {
if( theapp3d.TolReached2d()>myTolReached2d || myTolReached2d==0.) {
myTolReached2d = theapp3d.TolReached2d();
}
}
if(typs1==GeomAbs_Plane || typs2==GeomAbs_Plane) {
myTolReached3d = myTolReached2d;
}
else if( theapp3d.TolReached3d()>myTolReached3d || myTolReached3d==0.) {
myTolReached3d = theapp3d.TolReached3d();
}
Standard_Integer aNbMultiCurves, nbpoles;
//
aNbMultiCurves=theapp3d.NbMultiCurves();
for (j=1; j<=aNbMultiCurves; j++) {
if(typs1 == GeomAbs_Plane) {
const AppParCurves_MultiBSpCurve& mbspc = theapp3d.Value(j);
nbpoles = mbspc.NbPoles();
TColgp_Array1OfPnt2d tpoles2d(1,nbpoles);
TColgp_Array1OfPnt tpoles(1,nbpoles);
mbspc.Curve(1,tpoles2d);
const gp_Pln& Pln = myHS1->Surface().Plane();
//
Standard_Integer ik;
for(ik = 1; ik<= nbpoles; ik++) {
tpoles.SetValue(ik,
ElSLib::Value(tpoles2d.Value(ik).X(),
tpoles2d.Value(ik).Y(),
Pln));
}
//
Handle(Geom_BSplineCurve) BS =
new Geom_BSplineCurve(tpoles,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_CheckBSplineCurve Check(BS,myTolCheck,myTolAngCheck);
Check.FixTangent(Standard_True, Standard_True);
//
sline.Append(BS);
//
if(myApprox1) {
Handle(Geom2d_BSplineCurve) BS1 =
new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve Check1(BS1,myTolCheck,myTolAngCheck);
Check1.FixTangent(Standard_True,Standard_True);
//
AdjustUPeriodic (aS1, BS1);
//
slineS1.Append(BS1);
}
else {
slineS1.Append(H1);
}
if(myApprox2) {
mbspc.Curve(2, tpoles2d);
Handle(Geom2d_BSplineCurve) BS2 = new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve newCheck(BS2,myTolCheck,myTolAngCheck);
newCheck.FixTangent(Standard_True,Standard_True);
//
AdjustUPeriodic (aS2, BS2);
//
slineS2.Append(BS2);
}
else {
slineS2.Append(H1);
}
}//if(typs1 == GeomAbs_Plane)
//
else if(typs2 == GeomAbs_Plane) {
const AppParCurves_MultiBSpCurve& mbspc = theapp3d.Value(j);
nbpoles = mbspc.NbPoles();
TColgp_Array1OfPnt2d tpoles2d(1,nbpoles);
TColgp_Array1OfPnt tpoles(1,nbpoles);
mbspc.Curve((myApprox1==Standard_True)? 2 : 1,tpoles2d);
const gp_Pln& Pln = myHS2->Surface().Plane();
//
Standard_Integer ik;
for(ik = 1; ik<= nbpoles; ik++) {
tpoles.SetValue(ik,
ElSLib::Value(tpoles2d.Value(ik).X(),
tpoles2d.Value(ik).Y(),
Pln));
}
//
Handle(Geom_BSplineCurve) BS=new Geom_BSplineCurve(tpoles,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_CheckBSplineCurve Check(BS,myTolCheck,myTolAngCheck);
Check.FixTangent(Standard_True,Standard_True);
//
sline.Append(BS);
//
if(myApprox2) {
Handle(Geom2d_BSplineCurve) BS1=new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve Check1(BS1,myTolCheck,myTolAngCheck);
Check1.FixTangent(Standard_True,Standard_True);
//
//
AdjustUPeriodic (aS2, BS1);
//
slineS2.Append(BS1);
}
else {
slineS2.Append(H1);
}
if(myApprox1) {
mbspc.Curve(1,tpoles2d);
Handle(Geom2d_BSplineCurve) BS2=new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve Check2(BS2,myTolCheck,myTolAngCheck);
Check2.FixTangent(Standard_True,Standard_True);
//
//
AdjustUPeriodic (aS1, BS2);
//
slineS1.Append(BS2);
}
else {
slineS1.Append(H1);
}
} // else if(typs2 == GeomAbs_Plane)
//
else { // typs1!=GeomAbs_Plane && typs2!=GeomAbs_Plane
const AppParCurves_MultiBSpCurve& mbspc = theapp3d.Value(j);
nbpoles = mbspc.NbPoles();
TColgp_Array1OfPnt tpoles(1,nbpoles);
mbspc.Curve(1,tpoles);
Handle(Geom_BSplineCurve) BS=new Geom_BSplineCurve(tpoles,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_CheckBSplineCurve Check(BS,myTolCheck,myTolAngCheck);
Check.FixTangent(Standard_True,Standard_True);
//
sline.Append(BS);
if(myApprox1) {
TColgp_Array1OfPnt2d tpoles2d(1,nbpoles);
mbspc.Curve(2,tpoles2d);
Handle(Geom2d_BSplineCurve) BS1=new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve newCheck(BS1,myTolCheck,myTolAngCheck);
newCheck.FixTangent(Standard_True,Standard_True);
//
AdjustUPeriodic (aS1, BS1);
//
slineS1.Append(BS1);
}
else {
slineS1.Append(H1);
}
if(myApprox2) {
TColgp_Array1OfPnt2d tpoles2d(1,nbpoles);
mbspc.Curve((myApprox1==Standard_True)? 3 : 2,tpoles2d);
Handle(Geom2d_BSplineCurve) BS2=new Geom2d_BSplineCurve(tpoles2d,
mbspc.Knots(),
mbspc.Multiplicities(),
mbspc.Degree());
GeomLib_Check2dBSplineCurve newCheck(BS2,myTolCheck,myTolAngCheck);
newCheck.FixTangent(Standard_True,Standard_True);
//
AdjustUPeriodic (aS2, BS2);
//
slineS2.Append(BS2);
}
else {
slineS2.Append(H1);
}
}// else { // typs1!=GeomAbs_Plane && typs2!=GeomAbs_Plane
}// for (j=1; j<=aNbMultiCurves; j++
}
}
}
}
break;
case IntPatch_Restriction:
break;
}
}
//
//=======================================================================
//function : AdjustUPeriodic
//purpose :
//=======================================================================
void AdjustUPeriodic (const Handle(Geom_Surface)& aS, Handle(Geom2d_Curve)& aC2D)
{
if (aC2D.IsNull() || !aS->IsUPeriodic())
return;
//
const Standard_Real aEps=Precision::PConfusion();//1.e-9
const Standard_Real aEpsilon=Epsilon(10.);//1.77e-15
//
Standard_Real umin,umax,vmin,vmax;
aS->Bounds(umin,umax,vmin,vmax);
const Standard_Real aPeriod = aS->UPeriod();
const Standard_Real aT1=aC2D->FirstParameter();
const Standard_Real aT2=aC2D->LastParameter();
const Standard_Real aTx=aT1+0.467*(aT2-aT1);
const gp_Pnt2d aPx=aC2D->Value(aTx);
//
Standard_Real aUx=aPx.X();
if (fabs(aUx)<aEpsilon)
aUx=0.;
if (fabs(aUx-aPeriod)<aEpsilon)
aUx=aPeriod;
//
Standard_Real dU=0.;
while(aUx <(umin-aEps)) {
aUx+=aPeriod;
dU+=aPeriod;
}
while(aUx>(umax+aEps)) {
aUx-=aPeriod;
dU-=aPeriod;
}
//
if (dU!=0.) {
gp_Vec2d aV2D(dU, 0.);
aC2D->Translate(aV2D);
}
}
//
//
//=======================================================================
//function : BuildPCurves
//purpose :
//=======================================================================
void BuildPCurves (Standard_Real f, Standard_Real l,
Standard_Real& Tol,
const Handle(Geom_Surface)& S,
const Handle(Geom_Curve)& C,
Handle(Geom2d_Curve)& C2d)
{
if (C2d.IsNull())
{
C2d = GeomProjLib::Curve2d(C,f,l,S,Tol);
if (S->IsUPeriodic())
{
Standard_Real umin,umax,vmin,vmax;
S->Bounds(umin,umax,vmin,vmax);
// Recadre dans le domaine UV de la face
const Standard_Real period = S->UPeriod();
gp_Pnt2d Pf=C2d->Value(f);
//
Standard_Real U0=Pf.X();
//
const Standard_Real aEpsilon=Epsilon(10.);//1.77e-15
if (fabs(U0)<aEpsilon)
U0=0.;
if (fabs(U0-period)<aEpsilon)
U0=period;
//
const Standard_Real aEps=Precision::PConfusion();//1.e-9
Standard_Real du=0.;
while(U0 <(umin-aEps)) {
U0+=period;
du+=period;
}
while(U0>(umax+aEps)) {
U0-=period;
du-=period;
}
if (du!=0.) {
gp_Vec2d T1(du, 0.);
C2d->Translate(T1);
}
}
}
}
//
//=======================================================================
//function : GetQuadric
//purpose :
//=======================================================================
void GetQuadric(const Handle(GeomAdaptor_HSurface)& HS1, IntSurf_Quadric& quad1)
{
switch (HS1->Surface().GetType())
{
case GeomAbs_Plane: quad1.SetValue(HS1->Surface().Plane()); break;
case GeomAbs_Cylinder: quad1.SetValue(HS1->Surface().Cylinder()); break;
case GeomAbs_Cone: quad1.SetValue(HS1->Surface().Cone()); break;
case GeomAbs_Sphere: quad1.SetValue(HS1->Surface().Sphere()); break;
default: Standard_ConstructionError::Raise("GeomInt_IntSS::MakeCurve");
}
}
//=======================================================================
//function : Parameters
//purpose :
//=======================================================================
void Parameters(const Handle(GeomAdaptor_HSurface)& HS1,
const Handle(GeomAdaptor_HSurface)& HS2,
const gp_Pnt& Ptref,
Standard_Real& U1,
Standard_Real& V1,
Standard_Real& U2,
Standard_Real& V2)
{
IntSurf_Quadric quad1,quad2;
//
GetQuadric(HS1, quad1);
GetQuadric(HS2, quad2);
//
quad1.Parameters(Ptref,U1,V1);
quad2.Parameters(Ptref,U2,V2);
}
//=======================================================================
//function : MakeBSpline
//purpose :
//=======================================================================
Handle(Geom_Curve) MakeBSpline (const Handle(IntPatch_WLine)& WL,
const Standard_Integer ideb,
const Standard_Integer ifin)
{
const Standard_Integer nbpnt = ifin-ideb+1;
TColgp_Array1OfPnt poles(1,nbpnt);
TColStd_Array1OfReal knots(1,nbpnt);
TColStd_Array1OfInteger mults(1,nbpnt);
Standard_Integer i = 1, ipidebm1 = ideb;
for(; i<=nbpnt; ipidebm1++, i++)
{
poles(i) = WL->Point(ipidebm1).Value();
mults(i) = 1;
knots(i) = i-1;
}
mults(1) = mults(nbpnt) = 2;
return new Geom_BSplineCurve(poles,knots,mults,1);
}
//=======================================================================
//function : MakeBSpline2d
//purpose :
//=======================================================================
Handle(Geom2d_BSplineCurve) MakeBSpline2d(const Handle(IntPatch_WLine)& theWLine,
const Standard_Integer ideb,
const Standard_Integer ifin,
const Standard_Boolean onFirst)
{
const Standard_Integer nbpnt = ifin-ideb+1;
TColgp_Array1OfPnt2d poles(1,nbpnt);
TColStd_Array1OfReal knots(1,nbpnt);
TColStd_Array1OfInteger mults(1,nbpnt);
Standard_Integer i = 1, ipidebm1 = ideb;
for(; i <= nbpnt; ipidebm1++, i++)
{
Standard_Real U, V;
if(onFirst)
theWLine->Point(ipidebm1).ParametersOnS1(U, V);
else
theWLine->Point(ipidebm1).ParametersOnS2(U, V);
poles(i).SetCoord(U, V);
mults(i) = 1;
knots(i) = i-1;
}
mults(1) = mults(nbpnt) = 2;
return new Geom2d_BSplineCurve(poles,knots,mults,1);
}
//=========================================================================
// static function : ComputePurgedWLine
// purpose : Removes equal points (leave one of equal points) from theWLine
// and recompute vertex parameters.
// Returns new WLine or null WLine if the number
// of the points is less than 2.
//=========================================================================
Handle(IntPatch_WLine) ComputePurgedWLine(const Handle(IntPatch_WLine)& theWLine)
{
Handle(IntPatch_WLine) aResult;
Handle(IntPatch_WLine) aLocalWLine;
Handle(IntPatch_WLine) aTmpWLine = theWLine;
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
Standard_Integer i, k, v, nb, nbvtx;
nbvtx = theWLine->NbVertex();
nb = theWLine->NbPnts();
for(i = 1; i <= nb; i++) {
aLineOn2S->Add(theWLine->Point(i));
}
for(v = 1; v <= nbvtx; v++) {
aLocalWLine->AddVertex(theWLine->Vertex(v));
}
for(i = 1; i <= aLineOn2S->NbPoints(); i++) {
Standard_Integer aStartIndex = i + 1;
Standard_Integer anEndIndex = i + 5;
nb = aLineOn2S->NbPoints();
anEndIndex = (anEndIndex > nb) ? nb : anEndIndex;
if((aStartIndex >= nb) || (anEndIndex <= 1)) {
continue;
}
k = aStartIndex;
while(k <= anEndIndex) {
if(i != k) {
IntSurf_PntOn2S p1 = aLineOn2S->Value(i);
IntSurf_PntOn2S p2 = aLineOn2S->Value(k);
if(p1.Value().IsEqual(p2.Value(), gp::Resolution())) {
aTmpWLine = aLocalWLine;
aLocalWLine = new IntPatch_WLine(aLineOn2S, Standard_False);
for(v = 1; v <= aTmpWLine->NbVertex(); v++) {
IntPatch_Point aVertex = aTmpWLine->Vertex(v);
Standard_Integer avertexindex = (Standard_Integer)aVertex.ParameterOnLine();
if(avertexindex >= k) {
aVertex.SetParameter(aVertex.ParameterOnLine() - 1.);
}
aLocalWLine->AddVertex(aVertex);
}
aLineOn2S->RemovePoint(k);
anEndIndex--;
continue;
}
}
k++;
}
}
if(aLineOn2S->NbPoints() > 1) {
aResult = aLocalWLine;
}
return aResult;
}
//=======================================================================
//function : DecompositionOfWLine
//purpose :
//=======================================================================
Standard_Boolean DecompositionOfWLine(const Handle(IntPatch_WLine)& theWLine,
const Handle(GeomAdaptor_HSurface)& theSurface1,
const Handle(GeomAdaptor_HSurface)& theSurface2,
const Standard_Real aTolSum,
const GeomInt_LineConstructor& theLConstructor,
IntPatch_SequenceOfLine& theNewLines)
{
Standard_Boolean bIsPrevPointOnBoundary, bIsCurrentPointOnBoundary;
Standard_Integer nblines, aNbPnts, aNbParts, pit, i, j, aNbListOfPointIndex;
Standard_Real aTol, umin, umax, vmin, vmax;
TColStd_ListOfInteger aListOfPointIndex;
//GeomAPI_ProjectPointOnSurf aPrj1, aPrj2;
ProjectPointOnSurf aPrj1, aPrj2;
Handle(Geom_Surface) aSurf1, aSurf2;
//
aNbParts=theLConstructor.NbParts();
aNbPnts=theWLine->NbPnts();
//
if((!aNbPnts) || (!aNbParts)){
return Standard_False;
}
//
TColStd_Array1OfListOfInteger anArrayOfLines(1, aNbPnts);
TColStd_Array1OfInteger anArrayOfLineType(1, aNbPnts);
//
nblines = 0;
aTol = Precision::Confusion();
//
aSurf1 = theSurface1->ChangeSurface().Surface();
aSurf1->Bounds(umin, umax, vmin, vmax);
aPrj1.Init(aSurf1, umin, umax, vmin, vmax);
//
aSurf2 = theSurface2->ChangeSurface().Surface();
aSurf2->Bounds(umin, umax, vmin, vmax);
aPrj2.Init(aSurf2, umin, umax, vmin, vmax);
//
//
bIsPrevPointOnBoundary=Standard_False;
for(pit=1; pit<=aNbPnts; pit++) {
const IntSurf_PntOn2S& aPoint = theWLine->Point(pit);
bIsCurrentPointOnBoundary=Standard_False;
//
// whether aPoint is on boundary or not
//
for(i=0; i<2; i++) {// exploration Surface 1,2
Handle(GeomAdaptor_HSurface) aGASurface = (!i) ? theSurface1 : theSurface2;
aGASurface->ChangeSurface().Surface()->Bounds(umin, umax, vmin, vmax);
//
for(j=0; j<2; j++) {// exploration of coordinate U,V
Standard_Boolean isperiodic;
//
isperiodic = (!j) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
if(!isperiodic) {
continue;
}
//
Standard_Real aResolution, aPeriod, alowerboundary, aupperboundary, U, V;
Standard_Real aParameter, anoffset, anAdjustPar;
Standard_Boolean bIsOnFirstBoundary, bIsPointOnBoundary;
//
aResolution = (!j) ? aGASurface->UResolution(aTol) : aGASurface->VResolution(aTol);
aPeriod = (!j) ? aGASurface->UPeriod() : aGASurface->VPeriod();
alowerboundary = (!j) ? umin : vmin;
aupperboundary = (!j) ? umax : vmax;
U=0.;V=0.;//?
//
if(!i){
aPoint.ParametersOnS1(U, V);
}
else{
aPoint.ParametersOnS2(U, V);
}
//
aParameter = (!j) ? U : V;
anoffset=0.;
anAdjustPar=AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
//
bIsOnFirstBoundary=Standard_True;
//
bIsPointOnBoundary=
IsPointOnBoundary(anAdjustPar, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary);
if(bIsPointOnBoundary) {
bIsCurrentPointOnBoundary = Standard_True;
break;
}
}// for(j=0; j<2; j++)
if(bIsCurrentPointOnBoundary){
break;
}
}// for(i=0; i<2; i++)
//
if((bIsCurrentPointOnBoundary != bIsPrevPointOnBoundary)) {
if(!aListOfPointIndex.IsEmpty()) {
nblines++;
anArrayOfLines.SetValue(nblines, aListOfPointIndex);
anArrayOfLineType.SetValue(nblines, bIsPrevPointOnBoundary);
aListOfPointIndex.Clear();
}
bIsPrevPointOnBoundary = bIsCurrentPointOnBoundary;
}
aListOfPointIndex.Append(pit);
} // for(pit=1; pit<=aNbPnts; pit++)
//
aNbListOfPointIndex=aListOfPointIndex.Extent();
if(aNbListOfPointIndex) {
nblines++;
anArrayOfLines.SetValue(nblines, aListOfPointIndex);
anArrayOfLineType.SetValue(nblines, bIsPrevPointOnBoundary);
aListOfPointIndex.Clear();
}
//
if(nblines <= 1){
return Standard_False;
}
//
// Correct wlines.begin
Standard_Integer aLineType;
TColStd_Array1OfListOfInteger anArrayOfLineEnds(1, nblines);
Handle(IntSurf_LineOn2S) aSeqOfPntOn2S = new IntSurf_LineOn2S();
//
for(i = 1; i <= nblines; i++) {
aLineType=anArrayOfLineType.Value(i);
if(aLineType) {
continue;
}
//
const TColStd_ListOfInteger& aListOfIndex = anArrayOfLines.Value(i);
if(aListOfIndex.Extent() < 2) {
continue;
}
//
TColStd_ListOfInteger aListOfFLIndex;
Standard_Integer aneighbourindex, aLineTypeNeib;
//
for(j = 0; j < 2; j++) {// neighbour line choice
aneighbourindex = (!j) ? (i-1) : (i+1);
if((aneighbourindex < 1) || (aneighbourindex > nblines)){
continue;
}
//
aLineTypeNeib=anArrayOfLineType.Value(aneighbourindex);
if(!aLineTypeNeib){
continue;
}
//
const TColStd_ListOfInteger& aNeighbour = anArrayOfLines.Value(aneighbourindex);
Standard_Integer anIndex = (!j) ? aNeighbour.Last() : aNeighbour.First();
const IntSurf_PntOn2S& aPoint = theWLine->Point(anIndex);
// check if need use derivative.begin .end [absence]
//
IntSurf_PntOn2S aNewP = aPoint;
Standard_Integer surfit, parit;
//
for(surfit = 0; surfit < 2; ++surfit) {
Handle(GeomAdaptor_HSurface) aGASurface = (!surfit) ? theSurface1 : theSurface2;
aGASurface->ChangeSurface().Surface()->Bounds(umin, umax, vmin, vmax);
Standard_Real U=0., V=0.;
if(!surfit) {
aNewP.ParametersOnS1(U, V);
}
else {
aNewP.ParametersOnS2(U, V);
}
//
Standard_Integer nbboundaries = 0;
Standard_Integer bIsUBoundary = Standard_False; // use if nbboundaries == 1
Standard_Integer bIsFirstBoundary = Standard_False; // use if nbboundaries == 1
//
for(parit = 0; parit < 2; parit++) {
Standard_Boolean isperiodic = (!parit) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
Standard_Real aResolution = (!parit) ? aGASurface->UResolution(aTol) : aGASurface->VResolution(aTol);
Standard_Real alowerboundary = (!parit) ? umin : vmin;
Standard_Real aupperboundary = (!parit) ? umax : vmax;
Standard_Real aParameter = (!parit) ? U : V;
Standard_Boolean bIsOnFirstBoundary = Standard_True;
if(!isperiodic) {
if(IsPointOnBoundary(aParameter, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary)) {
bIsUBoundary = (!parit);
bIsFirstBoundary = bIsOnFirstBoundary;
nbboundaries++;
}
}
else {
Standard_Real aPeriod = (!parit) ? aGASurface->UPeriod() : aGASurface->VPeriod();
Standard_Real anoffset = 0.;
Standard_Real anAdjustPar = AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
if(IsPointOnBoundary(anAdjustPar, alowerboundary, aupperboundary, aResolution, bIsOnFirstBoundary)) {
bIsUBoundary = (parit == 0);
bIsFirstBoundary = bIsOnFirstBoundary;
nbboundaries++;
}
}
}
//
Standard_Boolean bComputeLineEnd = Standard_False;
if(nbboundaries == 2) {
bComputeLineEnd = Standard_True;
}
else if(nbboundaries == 1) {
Standard_Boolean isperiodic = (bIsUBoundary) ? aGASurface->IsUPeriodic() : aGASurface->IsVPeriodic();
if(isperiodic) {
Standard_Real alowerboundary = (bIsUBoundary) ? umin : vmin;
Standard_Real aupperboundary = (bIsUBoundary) ? umax : vmax;
Standard_Real aPeriod = (bIsUBoundary) ? aGASurface->UPeriod() : aGASurface->VPeriod();
Standard_Real aParameter = (bIsUBoundary) ? U : V;
Standard_Real anoffset = 0.;
Standard_Real anAdjustPar = AdjustPeriodic(aParameter, alowerboundary, aupperboundary, aPeriod, anoffset);
Standard_Real adist = (bIsFirstBoundary) ? fabs(anAdjustPar - alowerboundary) : fabs(anAdjustPar - aupperboundary);
Standard_Real anotherPar = (bIsFirstBoundary) ? (aupperboundary - adist) : (alowerboundary + adist);
anotherPar += anoffset;
Standard_Integer aneighbourpointindex = (j == 0) ? aListOfIndex.First() : aListOfIndex.Last();
const IntSurf_PntOn2S& aNeighbourPoint = theWLine->Point(aneighbourpointindex);
Standard_Real nU1, nV1;
if(surfit == 0)
aNeighbourPoint.ParametersOnS1(nU1, nV1);
else
aNeighbourPoint.ParametersOnS2(nU1, nV1);
Standard_Real adist1 = (bIsUBoundary) ? fabs(nU1 - U) : fabs(nV1 - V);
Standard_Real adist2 = (bIsUBoundary) ? fabs(nU1 - anotherPar) : fabs(nV1 - anotherPar);
bComputeLineEnd = Standard_True;
Standard_Boolean bCheckAngle1 = Standard_False;
Standard_Boolean bCheckAngle2 = Standard_False;
gp_Vec2d aNewVec;
Standard_Real anewU = (bIsUBoundary) ? anotherPar : U;
Standard_Real anewV = (bIsUBoundary) ? V : anotherPar;
//
if(((adist1 - adist2) > Precision::PConfusion()) &&
(adist2 < (aPeriod / 4.))) {
bCheckAngle1 = Standard_True;
aNewVec = gp_Vec2d(gp_Pnt2d(nU1, nV1), gp_Pnt2d(anewU, anewV));
if(aNewVec.SquareMagnitude() < (gp::Resolution() * gp::Resolution())) {
aNewP.SetValue((surfit == 0), anewU, anewV);
bCheckAngle1 = Standard_False;
}
}
else if(adist1 < (aPeriod / 4.)) {
bCheckAngle2 = Standard_True;
aNewVec = gp_Vec2d(gp_Pnt2d(nU1, nV1), gp_Pnt2d(U, V));
if(aNewVec.SquareMagnitude() < (gp::Resolution() * gp::Resolution())) {
bCheckAngle2 = Standard_False;
}
}
//
if(bCheckAngle1 || bCheckAngle2) {
// assume there are at least two points in line (see "if" above)
Standard_Integer anindexother = aneighbourpointindex;
while((anindexother <= aListOfIndex.Last()) && (anindexother >= aListOfIndex.First())) {
anindexother = (j == 0) ? (anindexother + 1) : (anindexother - 1);
const IntSurf_PntOn2S& aPrevNeighbourPoint = theWLine->Point(anindexother);
Standard_Real nU2, nV2;
if(surfit == 0)
aPrevNeighbourPoint.ParametersOnS1(nU2, nV2);
else
aPrevNeighbourPoint.ParametersOnS2(nU2, nV2);
gp_Vec2d aVecOld(gp_Pnt2d(nU2, nV2), gp_Pnt2d(nU1, nV1));
if(aVecOld.SquareMagnitude() <= (gp::Resolution() * gp::Resolution())) {
continue;
}
else {
Standard_Real anAngle = aNewVec.Angle(aVecOld);
if((fabs(anAngle) < (M_PI * 0.25)) && (aNewVec.Dot(aVecOld) > 0.)) {
if(bCheckAngle1) {
Standard_Real U1, U2, V1, V2;
IntSurf_PntOn2S atmppoint = aNewP;
atmppoint.SetValue((surfit == 0), anewU, anewV);
atmppoint.Parameters(U1, V1, U2, V2);
gp_Pnt P1 = theSurface1->Value(U1, V1);
gp_Pnt P2 = theSurface2->Value(U2, V2);
gp_Pnt P0 = aPoint.Value();
if(P0.IsEqual(P1, aTol) &&
P0.IsEqual(P2, aTol) &&
P1.IsEqual(P2, aTol)) {
bComputeLineEnd = Standard_False;
aNewP.SetValue((surfit == 0), anewU, anewV);
}
}
if(bCheckAngle2) {
bComputeLineEnd = Standard_False;
}
}
break;
}
} // end while(anindexother...)
}
}
}
//
if(bComputeLineEnd) {
Standard_Integer aneighbourpointindex1 = (j == 0) ? aListOfIndex.First() : aListOfIndex.Last();
const IntSurf_PntOn2S& aNeighbourPoint = theWLine->Point(aneighbourpointindex1);
Standard_Real nU1, nV1;
if(surfit == 0)
aNeighbourPoint.ParametersOnS1(nU1, nV1);
else
aNeighbourPoint.ParametersOnS2(nU1, nV1);
gp_Pnt2d ap1(nU1, nV1);
gp_Pnt2d ap2(nU1, nV1);
Standard_Integer aneighbourpointindex2 = aneighbourpointindex1;
while((aneighbourpointindex2 <= aListOfIndex.Last()) && (aneighbourpointindex2 >= aListOfIndex.First())) {
aneighbourpointindex2 = (j == 0) ? (aneighbourpointindex2 + 1) : (aneighbourpointindex2 - 1);
const IntSurf_PntOn2S& aPrevNeighbourPoint = theWLine->Point(aneighbourpointindex2);
Standard_Real nU2, nV2;
if(surfit == 0)
aPrevNeighbourPoint.ParametersOnS1(nU2, nV2);
else
aPrevNeighbourPoint.ParametersOnS2(nU2, nV2);
ap2.SetX(nU2);
ap2.SetY(nV2);
if(ap1.SquareDistance(ap2) > (gp::Resolution() * gp::Resolution())) {
break;
}
}
gp_Pnt2d anewpoint;
Standard_Boolean found = FindPoint(ap2, ap1, umin, umax, vmin, vmax, anewpoint);
if(found) {
// check point
Standard_Real aCriteria =aTolSum;// BRep_Tool::Tolerance(theFace1) + BRep_Tool::Tolerance(theFace2);
//GeomAPI_ProjectPointOnSurf& aProjector = (surfit == 0) ? aPrj2 : aPrj1;
ProjectPointOnSurf& aProjector = (surfit == 0) ? aPrj2 : aPrj1;
Handle(GeomAdaptor_HSurface) aSurface = (surfit == 0) ? theSurface1 : theSurface2;
gp_Pnt aP3d = aSurface->Value(anewpoint.X(), anewpoint.Y());
aProjector.Perform(aP3d);
if(aProjector.IsDone()) {
if(aProjector.LowerDistance() < aCriteria) {
Standard_Real foundU = U, foundV = V;
aProjector.LowerDistanceParameters(foundU, foundV);
if(surfit == 0)
aNewP.SetValue(aP3d, anewpoint.X(), anewpoint.Y(), foundU, foundV);
else
aNewP.SetValue(aP3d, foundU, foundV, anewpoint.X(), anewpoint.Y());
}
}
}
}
}
aSeqOfPntOn2S->Add(aNewP);
aListOfFLIndex.Append(aSeqOfPntOn2S->NbPoints());
}
anArrayOfLineEnds.SetValue(i, aListOfFLIndex);
}
// Correct wlines.end
// Split wlines.begin
for(j = 1; j <= theLConstructor.NbParts(); j++) {
Standard_Real fprm = 0., lprm = 0.;
theLConstructor.Part(j, fprm, lprm);
Standard_Integer ifprm = (Standard_Integer)fprm;
Standard_Integer ilprm = (Standard_Integer)lprm;
//
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
//
for(i = 1; i <= nblines; i++) {
if(anArrayOfLineType.Value(i) != 0) {
continue;
}
const TColStd_ListOfInteger& aListOfIndex = anArrayOfLines.Value(i);
if(aListOfIndex.Extent() < 2) {
continue;
}
const TColStd_ListOfInteger& aListOfFLIndex = anArrayOfLineEnds.Value(i);
Standard_Boolean bhasfirstpoint = (aListOfFLIndex.Extent() == 2);
Standard_Boolean bhaslastpoint = (aListOfFLIndex.Extent() == 2);
if(!bhasfirstpoint && !aListOfFLIndex.IsEmpty()) {
bhasfirstpoint = (i != 1);
}
if(!bhaslastpoint && !aListOfFLIndex.IsEmpty()) {
bhaslastpoint = (i != nblines);
}
Standard_Boolean bIsFirstInside = ((ifprm >= aListOfIndex.First()) && (ifprm <= aListOfIndex.Last()));
Standard_Boolean bIsLastInside = ((ilprm >= aListOfIndex.First()) && (ilprm <= aListOfIndex.Last()));
if(!bIsFirstInside && !bIsLastInside) {
if((ifprm < aListOfIndex.First()) && (ilprm > aListOfIndex.Last())) {
// append whole line, and boundaries if neccesary
if(bhasfirstpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.First());
aLineOn2S->Add(aP);
}
TColStd_ListIteratorOfListOfInteger anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
if(bhaslastpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.Last());
aLineOn2S->Add(aP);
}
// check end of split line (end is almost always)
Standard_Integer aneighbour = i + 1;
Standard_Boolean bIsEndOfLine = Standard_True;
if(aneighbour <= nblines) {
const TColStd_ListOfInteger& aListOfNeighbourIndex = anArrayOfLines.Value(aneighbour);
if((anArrayOfLineType.Value(aneighbour) != 0) &&
(aListOfNeighbourIndex.IsEmpty())) {
bIsEndOfLine = Standard_False;
}
}
if(bIsEndOfLine) {
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
aLineOn2S = new IntSurf_LineOn2S();
}
}
continue;
}
// end if(!bIsFirstInside && !bIsLastInside)
if(bIsFirstInside && bIsLastInside) {
// append inside points between ifprm and ilprm
TColStd_ListIteratorOfListOfInteger anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if((anIt.Value() < ifprm) || (anIt.Value() > ilprm))
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
}
else {
if(bIsFirstInside) {
// append points from ifprm to last point + boundary point
TColStd_ListIteratorOfListOfInteger anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if(anIt.Value() < ifprm)
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
if(bhaslastpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.Last());
aLineOn2S->Add(aP);
}
// check end of split line (end is almost always)
Standard_Integer aneighbour = i + 1;
Standard_Boolean bIsEndOfLine = Standard_True;
if(aneighbour <= nblines) {
const TColStd_ListOfInteger& aListOfNeighbourIndex = anArrayOfLines.Value(aneighbour);
if((anArrayOfLineType.Value(aneighbour) != 0) &&
(aListOfNeighbourIndex.IsEmpty())) {
bIsEndOfLine = Standard_False;
}
}
if(bIsEndOfLine) {
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
aLineOn2S = new IntSurf_LineOn2S();
}
}
// end if(bIsFirstInside)
if(bIsLastInside) {
// append points from first boundary point to ilprm
if(bhasfirstpoint) {
const IntSurf_PntOn2S& aP = aSeqOfPntOn2S->Value(aListOfFLIndex.First());
aLineOn2S->Add(aP);
}
TColStd_ListIteratorOfListOfInteger anIt(aListOfIndex);
for(; anIt.More(); anIt.Next()) {
if(anIt.Value() > ilprm)
continue;
const IntSurf_PntOn2S& aP = theWLine->Point(anIt.Value());
aLineOn2S->Add(aP);
}
}
//end if(bIsLastInside)
}
}
if(aLineOn2S->NbPoints() > 1) {
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
}
// Split wlines.end
//
// cda002/I3
Standard_Real fprm, lprm;
Standard_Integer ifprm, ilprm, aNbPoints, aIndex;
//
aNbParts=theLConstructor.NbParts();
//
for(j = 1; j <= aNbParts; j++) {
theLConstructor.Part(j, fprm, lprm);
ifprm=(Standard_Integer)fprm;
ilprm=(Standard_Integer)lprm;
//
if ((ilprm-ifprm)==1) {
for(i = 1; i <= nblines; i++) {
aLineType=anArrayOfLineType.Value(i);
if(aLineType) {
continue;
}
//
const TColStd_ListOfInteger& aListOfIndex = anArrayOfLines.Value(i);
aNbPoints=aListOfIndex.Extent();
if(aNbPoints==1) {
aIndex=aListOfIndex.First();
if (aIndex==ifprm || aIndex==ilprm) {
Handle(IntSurf_LineOn2S) aLineOn2S = new IntSurf_LineOn2S();
const IntSurf_PntOn2S& aP1 = theWLine->Point(ifprm);
const IntSurf_PntOn2S& aP2 = theWLine->Point(ilprm);
aLineOn2S->Add(aP1);
aLineOn2S->Add(aP2);
Handle(IntPatch_WLine) aNewWLine =
new IntPatch_WLine(aLineOn2S, Standard_False);
theNewLines.Append(aNewWLine);
}
}
}
}
}
//
return Standard_True;
}
//=======================================================================
//function : AdjustPeriodic
//purpose :
//=======================================================================
Standard_Real AdjustPeriodic(const Standard_Real theParameter,
const Standard_Real parmin,
const Standard_Real parmax,
const Standard_Real thePeriod,
Standard_Real& theOffset)
{
Standard_Real aresult = theParameter;
theOffset = 0.;
while(aresult < parmin) {
aresult += thePeriod;
theOffset += thePeriod;
}
while(aresult > parmax) {
aresult -= thePeriod;
theOffset -= thePeriod;
}
return aresult;
}
//=======================================================================
//function : IsPointOnBoundary
//purpose :
//=======================================================================
Standard_Boolean IsPointOnBoundary(const Standard_Real theParameter,
const Standard_Real theFirstBoundary,
const Standard_Real theSecondBoundary,
const Standard_Real theResolution,
Standard_Boolean& IsOnFirstBoundary)
{
IsOnFirstBoundary = Standard_True;
if(fabs(theParameter - theFirstBoundary) < theResolution)
return Standard_True;
if(fabs(theParameter - theSecondBoundary) < theResolution)
{
IsOnFirstBoundary = Standard_False;
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : FindPoint
//purpose :
//=======================================================================
Standard_Boolean FindPoint(const gp_Pnt2d& theFirstPoint,
const gp_Pnt2d& theLastPoint,
const Standard_Real theUmin,
const Standard_Real theUmax,
const Standard_Real theVmin,
const Standard_Real theVmax,
gp_Pnt2d& theNewPoint)
{
gp_Vec2d aVec(theFirstPoint, theLastPoint);
Standard_Integer i = 0, j = 0;
for(i = 0; i < 4; i++) {
gp_Vec2d anOtherVec;
gp_Vec2d anOtherVecNormal;
gp_Pnt2d aprojpoint = theLastPoint;
if((i % 2) == 0) {
anOtherVec.SetX(0.);
anOtherVec.SetY(1.);
anOtherVecNormal.SetX(1.);
anOtherVecNormal.SetY(0.);
if(i < 2)
aprojpoint.SetX(theUmin);
else
aprojpoint.SetX(theUmax);
}
else {
anOtherVec.SetX(1.);
anOtherVec.SetY(0.);
anOtherVecNormal.SetX(0.);
anOtherVecNormal.SetY(1.);
if(i < 2)
aprojpoint.SetY(theVmin);
else
aprojpoint.SetY(theVmax);
}
gp_Vec2d anormvec = aVec;
anormvec.Normalize();
Standard_Real adot1 = anormvec.Dot(anOtherVecNormal);
if(fabs(adot1) < Precision::Angular())
continue;
Standard_Real adist = 0.;
if((i % 2) == 0) {
adist = (i < 2) ? fabs(theLastPoint.X() - theUmin) : fabs(theLastPoint.X() - theUmax);
}
else {
adist = (i < 2) ? fabs(theLastPoint.Y() - theVmin) : fabs(theLastPoint.Y() - theVmax);
}
Standard_Real anoffset = adist * anOtherVec.Dot(anormvec) / adot1;
for(j = 0; j < 2; j++) {
anoffset = (j == 0) ? anoffset : -anoffset;
gp_Pnt2d acurpoint(aprojpoint.XY() + (anOtherVec.XY()*anoffset));
gp_Vec2d acurvec(theLastPoint, acurpoint);
//
Standard_Real aDotX, anAngleX, aPC;
//
aDotX=aVec.Dot(acurvec);
anAngleX=aVec.Angle(acurvec);
aPC=Precision::PConfusion();
//
if(aDotX > 0. && fabs(anAngleX) < aPC) {
//
if((i % 2) == 0) {
if((acurpoint.Y() >= theVmin) &&
(acurpoint.Y() <= theVmax)) {
theNewPoint = acurpoint;
return Standard_True;
}
}
else {
if((acurpoint.X() >= theUmin) &&
(acurpoint.X() <= theUmax)) {
theNewPoint = acurpoint;
return Standard_True;
}
}
}
}
}
return Standard_False;
}
/*
static
void DumpWLine (const Handle(IntPatch_WLine)& theWLine);
//=======================================================================
//function : DumpWLine
//purpose :
//=======================================================================
void DumpWLine (const Handle(IntPatch_WLine)& theWLine)
{
Standard_Integer i, nbp;
Standard_Real u1,v1,u2,v2;
//
nbp=theWLine->NbPnts();
printf(" nbp=%d\n", nbp);
for(i=1;i<=nbp;i++) {
const IntSurf_PntOn2S& aPoint = theWLine->Point(i);
const gp_Pnt& aP=aPoint.Value();
aPoint.Parameters(u1,v1,u2,v2);
printf("point i%d %lf %lf %lf [ %lf %lf ] [ %lf %lf ]\n",
i, aP.X(), aP.Y(), aP.Z(), u1, v1, u2, v2);
}
}
*/