mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-06-20 11:54:07 +03:00
Automatic upgrade of OCCT code by command "occt_upgrade . -nocdl": - WOK-generated header files from inc and sources from drv are moved to src - CDL files removed - All packages are converted to nocdlpack
495 lines
15 KiB
C++
495 lines
15 KiB
C++
// Created on: 1995-10-20
|
|
// Created by: Andre LIEUTIER
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
|
|
#include <gp_XY.hxx>
|
|
#include <gp_XYZ.hxx>
|
|
#include <math_Gauss.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <Plate_D1.hxx>
|
|
#include <Plate_D2.hxx>
|
|
#include <Plate_D3.hxx>
|
|
#include <Plate_GtoCConstraint.hxx>
|
|
#include <Plate_PinpointConstraint.hxx>
|
|
|
|
//alr le 12/11/96
|
|
static const Standard_Real NORMIN = 1.e-10;
|
|
static const Standard_Real COSMIN = 1.e-2;
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const Plate_GtoCConstraint& ref)
|
|
:myD1SurfInit(ref.myD1SurfInit)
|
|
{
|
|
pnt2d = ref.pnt2d;
|
|
nb_PPConstraints = ref.nb_PPConstraints;
|
|
for(Standard_Integer i = 0; i<nb_PPConstraints; i++)
|
|
myPPC[i] = ref.myPPC[i];
|
|
}
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d, const Plate_D1& D1S, const Plate_D1& D1T)
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
//alr le 12/11/96
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
//alr le 12/11/96
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
Standard_Real cos_normales = normale*normaleS;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
|
|
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
|
|
nb_PPConstraints = 2;
|
|
}
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d,
|
|
const Plate_D1& D1S, const Plate_D1& D1T, const gp_XYZ& nP)
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
|
|
gp_XYZ nSP = normaleS - nP*(nP*normaleS);
|
|
if(nSP.Modulus() < NORMIN) return;
|
|
nSP.Normalize();
|
|
|
|
Standard_Real cos_normales = normale*nSP;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = nSP* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = nSP* -(normale*D1S.Dv)*invcos;
|
|
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
|
|
nb_PPConstraints = 2;
|
|
}
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d, const Plate_D1& D1S, const Plate_D1& D1T,
|
|
const Plate_D2& D2S, const Plate_D2& D2T)
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
//alr le 12/11/96
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
//alr le 12/11/96
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
|
|
Standard_Real cos_normales = normale*normaleS;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
nb_PPConstraints = 2;
|
|
|
|
// G2 Constraints
|
|
gp_XYZ Su = D1S.Du+du;
|
|
gp_XYZ Sv = D1S.Dv+dv;
|
|
|
|
math_Matrix mat(0,1,0,1);
|
|
mat(0,0) = Su*D1T.Du;
|
|
mat(0,1) = Su*D1T.Dv;
|
|
mat(1,0) = Sv*D1T.Du;
|
|
mat(1,1) = Sv*D1T.Dv;
|
|
math_Gauss gauss(mat);
|
|
if(!gauss.IsDone()) return;
|
|
|
|
math_Vector vec(0,1);
|
|
vec(0) = Su*Su;
|
|
vec(1) = Su*Sv;
|
|
math_Vector sol(0,1);
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real a = sol(0);
|
|
Standard_Real b = sol(1);
|
|
|
|
vec(0) = Sv*Su;
|
|
vec(1) = Sv*Sv;
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real c = sol(0);
|
|
Standard_Real d = sol(1);
|
|
|
|
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
|
|
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
|
|
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
|
|
|
|
gp_XYZ duu = normaleS * (normale*(Suu-D2S.Duu))*invcos;
|
|
gp_XYZ duv = normaleS * (normale*(Suv-D2S.Duv))*invcos;
|
|
gp_XYZ dvv = normaleS * (normale*(Svv-D2S.Dvv))*invcos;
|
|
|
|
|
|
myPPC[2] = Plate_PinpointConstraint(pnt2d, duu,2,0);
|
|
myPPC[3] = Plate_PinpointConstraint(pnt2d, duv,1,1);
|
|
myPPC[4] = Plate_PinpointConstraint(pnt2d, dvv,0,2);
|
|
nb_PPConstraints = 5;
|
|
}
|
|
|
|
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d, const Plate_D1& D1S, const Plate_D1& D1T,
|
|
const Plate_D2& D2S, const Plate_D2& D2T, const gp_XYZ& nP)
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
//alr le 12/11/96
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
//alr le 12/11/96
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
|
|
gp_XYZ nSP = normaleS - nP*(nP*normaleS);
|
|
if(nSP.Modulus() < NORMIN) return;
|
|
nSP.Normalize();
|
|
|
|
Standard_Real cos_normales = normale*nSP;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = nSP* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = nSP* -(normale*D1S.Dv)*invcos;
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
nb_PPConstraints = 2;
|
|
|
|
// G2 Constraints
|
|
gp_XYZ Su = D1S.Du+du;
|
|
gp_XYZ Sv = D1S.Dv+dv;
|
|
|
|
math_Matrix mat(0,1,0,1);
|
|
mat(0,0) = Su*D1T.Du;
|
|
mat(0,1) = Su*D1T.Dv;
|
|
mat(1,0) = Sv*D1T.Du;
|
|
mat(1,1) = Sv*D1T.Dv;
|
|
math_Gauss gauss(mat);
|
|
if(!gauss.IsDone()) return;
|
|
|
|
math_Vector vec(0,1);
|
|
vec(0) = Su*Su;
|
|
vec(1) = Su*Sv;
|
|
math_Vector sol(0,1);
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real a = sol(0);
|
|
Standard_Real b = sol(1);
|
|
|
|
vec(0) = Sv*Su;
|
|
vec(1) = Sv*Sv;
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real c = sol(0);
|
|
Standard_Real d = sol(1);
|
|
|
|
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
|
|
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
|
|
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
|
|
|
|
gp_XYZ duu = nSP * (normale*(Suu-D2S.Duu))*invcos;
|
|
gp_XYZ duv = nSP * (normale*(Suv-D2S.Duv))*invcos;
|
|
gp_XYZ dvv = nSP * (normale*(Svv-D2S.Dvv))*invcos;
|
|
|
|
|
|
myPPC[2] = Plate_PinpointConstraint(pnt2d, duu,2,0);
|
|
myPPC[3] = Plate_PinpointConstraint(pnt2d, duv,1,1);
|
|
myPPC[4] = Plate_PinpointConstraint(pnt2d, dvv,0,2);
|
|
nb_PPConstraints = 5;
|
|
}
|
|
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d, const Plate_D1& D1S, const Plate_D1& D1T,
|
|
const Plate_D2& D2S, const Plate_D2& D2T,
|
|
const Plate_D3& D3S, const Plate_D3& D3T)
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
|
|
Standard_Real cos_normales = normale*normaleS;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
nb_PPConstraints = 2;
|
|
|
|
// G2 Constraints
|
|
gp_XYZ Su = D1S.Du+du;
|
|
gp_XYZ Sv = D1S.Dv+dv;
|
|
|
|
math_Matrix mat(0,1,0,1);
|
|
mat(0,0) = Su*D1T.Du;
|
|
mat(0,1) = Su*D1T.Dv;
|
|
mat(1,0) = Sv*D1T.Du;
|
|
mat(1,1) = Sv*D1T.Dv;
|
|
math_Gauss gauss(mat);
|
|
if(!gauss.IsDone()) return;
|
|
|
|
math_Vector vec(0,1);
|
|
vec(0) = Su*Su;
|
|
vec(1) = Su*Sv;
|
|
math_Vector sol(0,1);
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real a = sol(0);
|
|
Standard_Real b = sol(1);
|
|
|
|
vec(0) = Sv*Su;
|
|
vec(1) = Sv*Sv;
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real c = sol(0);
|
|
Standard_Real d = sol(1);
|
|
|
|
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
|
|
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
|
|
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
|
|
|
|
gp_XYZ duu = normaleS * (normale*(Suu-D2S.Duu))*invcos;
|
|
gp_XYZ duv = normaleS * (normale*(Suv-D2S.Duv))*invcos;
|
|
gp_XYZ dvv = normaleS * (normale*(Svv-D2S.Dvv))*invcos;
|
|
|
|
|
|
myPPC[2] = Plate_PinpointConstraint(pnt2d, duu,2,0);
|
|
myPPC[3] = Plate_PinpointConstraint(pnt2d, duv,1,1);
|
|
myPPC[4] = Plate_PinpointConstraint(pnt2d, dvv,0,2);
|
|
nb_PPConstraints = 5;
|
|
|
|
// G3 Constraints
|
|
|
|
vec(0) = (D2S.Duu + duu - Suu)*Su;
|
|
vec(1) = (D2S.Duu + duu - Suu)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0uu = sol(0);
|
|
Standard_Real B1uu = sol(1);
|
|
|
|
vec(0) = (D2S.Duv + duv - Suv)*Su;
|
|
vec(1) = (D2S.Duv + duv - Suv)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0uv = sol(0);
|
|
Standard_Real B1uv = sol(1);
|
|
|
|
vec(0) = (D2S.Dvv + dvv - Svv)*Su;
|
|
vec(1) = (D2S.Dvv + dvv - Svv)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0vv = sol(0);
|
|
Standard_Real B1vv = sol(1);
|
|
|
|
gp_XYZ Suuu = D3T.Duuu*(a*a*a) + D3T.Duuv*(3*a*a*b) + D3T.Duvv*(3*a*b*b) + D3T.Dvvv*(b*b*b);
|
|
gp_XYZ Suuv = D3T.Duuu*(a*a*c) + D3T.Duuv*(a*a*d+2*a*b*c) + D3T.Duvv*(b*b*c+2*a*b*d) + D3T.Dvvv*(b*b*d);
|
|
gp_XYZ Suvv = D3T.Duuu*(a*c*c) + D3T.Duuv*(b*c*c+2*a*c*d) + D3T.Duvv*(a*d*d+2*b*c*d) + D3T.Dvvv*(b*d*d);
|
|
gp_XYZ Svvv = D3T.Duuu*(c*c*c) + D3T.Duuv*(3*c*c*d) + D3T.Duvv*(3*c*d*d) + D3T.Dvvv*(d*d*d);
|
|
|
|
Standard_Real &A0u = a;
|
|
Standard_Real &A1u = b;
|
|
Standard_Real &A0v = c;
|
|
Standard_Real &A1v = d;
|
|
Suuu += D2T.Duu*(3*A0u*B0uu) + D2T.Duv*(3*(A0u*B1uu+A1u*B0uu)) + D2T.Dvv*(3*A1u*B1uu);
|
|
Suuv += D2T.Duu*(2*A0u*B0uv+A0v*B0uu) + D2T.Duv*(2*(A0u*B1uv+A1u*B0uv)+A0v*B1uu+A1v*B0uu) + D2T.Dvv*(2*A1u*B1uv+A1v*B1uu);
|
|
Suvv += D2T.Duu*(A0u*B0vv+2*A0v*B0uv) + D2T.Duv*(2*(A0v*B1uv+A1v*B0uv)+A0u*B1vv+A1u*B0vv) + D2T.Dvv*(2*A1v*B1uv+A1u*B1vv);
|
|
Svvv += D2T.Duu*(3*A0v*B0vv) + D2T.Duv*(3*(A0v*B1vv+A1v*B0vv)) + D2T.Dvv*(3*A1v*B1vv);
|
|
|
|
gp_XYZ duuu = normaleS * (normale*(Suuu-D3S.Duuu))*invcos;
|
|
gp_XYZ duuv = normaleS * (normale*(Suuv-D3S.Duuv))*invcos;
|
|
gp_XYZ duvv = normaleS * (normale*(Suvv-D3S.Duvv))*invcos;
|
|
gp_XYZ dvvv = normaleS * (normale*(Svvv-D3S.Dvvv))*invcos;
|
|
|
|
myPPC[5] = Plate_PinpointConstraint(pnt2d, duuu,3,0);
|
|
myPPC[6] = Plate_PinpointConstraint(pnt2d, duuv,2,1);
|
|
myPPC[7] = Plate_PinpointConstraint(pnt2d, duvv,1,2);
|
|
myPPC[8] = Plate_PinpointConstraint(pnt2d, dvvv,0,3);
|
|
nb_PPConstraints = 9;
|
|
}
|
|
|
|
|
|
Plate_GtoCConstraint::Plate_GtoCConstraint(const gp_XY& point2d, const Plate_D1& D1S, const Plate_D1& D1T,
|
|
const Plate_D2& D2S, const Plate_D2& D2T,
|
|
const Plate_D3& D3S, const Plate_D3& D3T,
|
|
// const gp_XYZ& nP)
|
|
const gp_XYZ& )
|
|
:myD1SurfInit(D1S)
|
|
{
|
|
|
|
pnt2d = point2d;
|
|
nb_PPConstraints = 0;
|
|
|
|
gp_XYZ normale = D1T.Du^D1T.Dv;
|
|
if(normale.Modulus() < NORMIN) return;
|
|
normale.Normalize();
|
|
|
|
// G1 Constraints
|
|
gp_XYZ normaleS = D1S.Du^D1S.Dv;
|
|
if(normaleS.Modulus() < NORMIN) return;
|
|
normaleS.Normalize();
|
|
|
|
Standard_Real cos_normales = normale*normaleS;
|
|
if( fabs(cos_normales)<COSMIN) return;
|
|
Standard_Real invcos = 1./cos_normales;
|
|
|
|
gp_XYZ du = normaleS* -(normale*D1S.Du)*invcos;
|
|
gp_XYZ dv = normaleS* -(normale*D1S.Dv)*invcos;
|
|
|
|
myPPC[0] = Plate_PinpointConstraint(pnt2d, du,1,0);
|
|
myPPC[1] = Plate_PinpointConstraint(pnt2d, dv,0,1);
|
|
nb_PPConstraints = 2;
|
|
|
|
// G2 Constraints
|
|
gp_XYZ Su = D1S.Du+du;
|
|
gp_XYZ Sv = D1S.Dv+dv;
|
|
|
|
math_Matrix mat(0,1,0,1);
|
|
mat(0,0) = Su*D1T.Du;
|
|
mat(0,1) = Su*D1T.Dv;
|
|
mat(1,0) = Sv*D1T.Du;
|
|
mat(1,1) = Sv*D1T.Dv;
|
|
math_Gauss gauss(mat);
|
|
|
|
if(!gauss.IsDone()) return;
|
|
|
|
math_Vector vec(0,1);
|
|
vec(0) = Su*Su;
|
|
vec(1) = Su*Sv;
|
|
math_Vector sol(0,1);
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real a = sol(0);
|
|
Standard_Real b = sol(1);
|
|
|
|
vec(0) = Sv*Su;
|
|
vec(1) = Sv*Sv;
|
|
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real c = sol(0);
|
|
Standard_Real d = sol(1);
|
|
|
|
gp_XYZ Suu = D2T.Duu*(a*a) + D2T.Duv*(2*a*b) + D2T.Dvv*(b*b);
|
|
gp_XYZ Suv = D2T.Duu*(a*c) + D2T.Duv*(a*d+b*c) + D2T.Dvv*(b*d);
|
|
gp_XYZ Svv = D2T.Duu*(c*c) + D2T.Duv*(2*c*d) + D2T.Dvv*(d*d);
|
|
|
|
gp_XYZ duu = normaleS * (normale*(Suu-D2S.Duu))*invcos;
|
|
gp_XYZ duv = normaleS * (normale*(Suv-D2S.Duv))*invcos;
|
|
gp_XYZ dvv = normaleS * (normale*(Svv-D2S.Dvv))*invcos;
|
|
|
|
myPPC[2] = Plate_PinpointConstraint(pnt2d, duu,2,0);
|
|
myPPC[3] = Plate_PinpointConstraint(pnt2d, duv,1,1);
|
|
myPPC[4] = Plate_PinpointConstraint(pnt2d, dvv,0,2);
|
|
nb_PPConstraints = 5;
|
|
|
|
// G3 Constraints
|
|
vec(0) = (D2S.Duu + duu - Suu)*Su;
|
|
vec(1) = (D2S.Duu + duu - Suu)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0uu = sol(0);
|
|
Standard_Real B1uu = sol(1);
|
|
|
|
vec(0) = (D2S.Duv + duv - Suv)*Su;
|
|
vec(1) = (D2S.Duv + duv - Suv)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0uv = sol(0);
|
|
Standard_Real B1uv = sol(1);
|
|
|
|
vec(0) = (D2S.Dvv + dvv - Svv)*Su;
|
|
vec(1) = (D2S.Dvv + dvv - Svv)*Sv;
|
|
gauss.Solve(vec,sol);
|
|
Standard_Real B0vv = sol(0);
|
|
Standard_Real B1vv = sol(1);
|
|
|
|
gp_XYZ Suuu = D3T.Duuu*(a*a*a) + D3T.Duuv*(3*a*a*b) + D3T.Duvv*(3*a*b*b) + D3T.Dvvv*(b*b*b);
|
|
gp_XYZ Suuv = D3T.Duuu*(a*a*c) + D3T.Duuv*(a*a*d+2*a*b*c) + D3T.Duvv*(b*b*c+2*a*b*d) + D3T.Dvvv*(b*b*d);
|
|
gp_XYZ Suvv = D3T.Duuu*(a*c*c) + D3T.Duuv*(b*c*c+2*a*c*d) + D3T.Duvv*(a*d*d+2*b*c*d) + D3T.Dvvv*(b*d*d);
|
|
gp_XYZ Svvv = D3T.Duuu*(c*c*c) + D3T.Duuv*(3*c*c*d) + D3T.Duvv*(3*c*d*d) + D3T.Dvvv*(d*d*d);
|
|
|
|
Standard_Real &A0u = a;
|
|
Standard_Real &A1u = b;
|
|
Standard_Real &A0v = c;
|
|
Standard_Real &A1v = d;
|
|
Suuu += D2T.Duu*(3*A0u*B0uu) + D2T.Duv*(3*(A0u*B1uu+A1u*B0uu)) + D2T.Dvv*(3*A1u*B1uu);
|
|
Suuv += D2T.Duu*(2*A0u*B0uv+A0v*B0uu) + D2T.Duv*(2*(A0u*B1uv+A1u*B0uv)+A0v*B1uu+A1v*B0uu) + D2T.Dvv*(2*A1u*B1uv+A1v*B1uu);
|
|
Suvv += D2T.Duu*(A0u*B0vv+2*A0v*B0uv) + D2T.Duv*(2*(A0v*B1uv+A1v*B0uv)+A0u*B1vv+A1u*B0vv) + D2T.Dvv*(2*A1v*B1uv+A1u*B1vv);
|
|
Svvv += D2T.Duu*(3*A0v*B0vv) + D2T.Duv*(3*(A0v*B1vv+A1v*B0vv)) + D2T.Dvv*(3*A1v*B1vv);
|
|
|
|
gp_XYZ duuu = normaleS * (normale*(Suuu-D3S.Duuu))*invcos;
|
|
gp_XYZ duuv = normaleS * (normale*(Suuv-D3S.Duuv))*invcos;
|
|
gp_XYZ duvv = normaleS * (normale*(Suvv-D3S.Duvv))*invcos;
|
|
gp_XYZ dvvv = normaleS * (normale*(Svvv-D3S.Dvvv))*invcos;
|
|
|
|
myPPC[5] = Plate_PinpointConstraint(pnt2d, duuu,3,0);
|
|
myPPC[6] = Plate_PinpointConstraint(pnt2d, duuv,2,1);
|
|
myPPC[7] = Plate_PinpointConstraint(pnt2d, duvv,1,2);
|
|
myPPC[8] = Plate_PinpointConstraint(pnt2d, dvvv,0,3);
|
|
nb_PPConstraints = 9;
|
|
}
|