1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-06-10 11:34:06 +03:00
occt/src/math/math_Householder.cxx
Pasukhin Dmitry fb73c3b712
Coding - Initialize member variables with default values #362
Clang-tidy applying rule for cppcoreguidelines-pro-type-member-init.
Updated: TKernel and TKMath
Update constructor in some classes instead of direct initialization
Refactor Bnd_BoundSortBox and Bnd_Box constructors to initialize member variables directly
2025-02-12 14:26:00 +00:00

198 lines
5.7 KiB
C++

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
// #ifndef OCCT_DEBUG
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#define No_Standard_DimensionError
// #endif
#include <math_Householder.hxx>
#include <math_Matrix.hxx>
#include <Standard_DimensionError.hxx>
#include <StdFail_NotDone.hxx>
// Cette classe decrit la methode de Householder qui transforme A en un
// produit de matrice orthogonale par une triangulaire superieure. Les seconds
// membres sont modifies dans le meme temps.
// Les references sur le cote sont celles de l'algorithme explique en page
// 90 du livre "Introduction a l'analyse numerique matricielle et a
// l'optimisation." par P.G. CIARLET, edition MASSON. Les secondes
// references sont celles du sous-programme HOUSEO d'Euclid.
// A la difference du sous-programme Houseo, la premiere colonne n'est pas
// traitee separement. Les tests effectues ont montre que le code effectue
// specialement pour celle-ci etait plus long qu'une simple recopie. C'est
// donc cette solution de recopie initiale qui a ete retenue.
math_Householder::math_Householder(const math_Matrix& A,
const math_Vector& B,
const Standard_Real EPS)
: Sol(1, A.ColNumber(), 1, 1),
Q(1, A.RowNumber(), 1, A.ColNumber()),
Done(Standard_False)
{
mylowerArow = A.LowerRow();
mylowerAcol = A.LowerCol();
myupperArow = A.UpperRow();
myupperAcol = A.UpperCol();
math_Matrix B1(1, B.Length(), 1, 1);
B1.SetCol(1, B);
Perform(A, B1, EPS);
}
math_Householder::math_Householder(const math_Matrix& A,
const math_Matrix& B,
const Standard_Real EPS)
: Sol(1, A.ColNumber(), 1, B.ColNumber()),
Q(1, A.RowNumber(), A.LowerCol(), A.UpperCol()),
Done(Standard_False)
{
mylowerArow = A.LowerRow();
mylowerAcol = A.LowerCol();
myupperArow = A.UpperRow();
myupperAcol = A.UpperCol();
Perform(A, B, EPS);
}
math_Householder::math_Householder(const math_Matrix& A,
const math_Matrix& B,
const Standard_Integer lowerArow,
const Standard_Integer upperArow,
const Standard_Integer lowerAcol,
const Standard_Integer upperAcol,
const Standard_Real EPS)
: Sol(1, upperAcol - lowerAcol + 1, 1, B.ColNumber()),
Q(1, upperArow - lowerArow + 1, 1, upperAcol - lowerAcol + 1),
Done(Standard_False)
{
mylowerArow = lowerArow;
myupperArow = upperArow;
mylowerAcol = lowerAcol;
myupperAcol = upperAcol;
Perform(A, B, EPS);
}
void math_Householder::Perform(const math_Matrix& A, const math_Matrix& B, const Standard_Real EPS)
{
Standard_Integer i, j, k, n, l, m;
Standard_Real f, g, h = 0., alfaii;
Standard_Real qki;
Standard_Real cj;
n = Q.ColNumber();
l = Q.RowNumber();
m = B.ColNumber();
math_Matrix B2(1, l, 1, m);
Standard_Integer lbrow = B.LowerRow();
for (i = 1; i <= l; i++)
{
for (j = 1; j <= n; j++)
{
Q(i, j) = A(i + mylowerArow - 1, j + mylowerAcol - 1);
}
for (j = 1; j <= m; j++)
{
B2(i, j) = B(i + lbrow - 1, j);
}
}
Standard_DimensionError_Raise_if(l != B.RowNumber() || n > l, " ");
// Traitement de chaque colonne de A:
for (i = 1; i <= n; i++)
{
h = 0.0;
for (k = i; k <= l; k++)
{
qki = Q(k, i);
h += qki * qki; // = ||a||*||a|| = EUAI
}
f = Q(i, i); // = a1 = AII
g = f < 1.e-15 ? Sqrt(h) : -Sqrt(h);
if (fabs(g) <= EPS)
{
Done = Standard_False;
return;
}
h -= f * g; // = (v*v)/2 = C1
alfaii = g - f; // = v = ALFAII
for (j = i + 1; j <= n; j++)
{
Standard_Real scale = 0.0;
for (k = i; k <= l; k++)
{
scale += Q(k, i) * Q(k, j); // = SCAL
}
cj = (g * Q(i, j) - scale) / h;
Q(i, j) = Q(i, j) - alfaii * cj;
for (k = i + 1; k <= l; k++)
{
Q(k, j) = Q(k, j) + cj * Q(k, i);
}
}
// Modification de B:
for (j = 1; j <= m; j++)
{
Standard_Real scale = Q(i, i) * B2(i, j);
for (k = i + 1; k <= l; k++)
{
scale += Q(k, i) * B2(k, j);
}
cj = (g * B2(i, j) - scale) / h;
B2(i, j) = B2(i, j) - cj * alfaii;
for (k = i + 1; k <= l; k++)
{
B2(k, j) = B2(k, j) + cj * Q(k, i);
}
}
Q(i, i) = g;
}
// Remontee:
for (j = 1; j <= m; j++)
{
Sol(n, j) = B2(n, j) / Q(n, n);
for (i = n - 1; i >= 1; i--)
{
Standard_Real scale = 0.0;
for (k = i + 1; k <= n; k++)
{
scale += Q(i, k) * Sol(k, j);
}
Sol(i, j) = (B2(i, j) - scale) / Q(i, i);
}
}
Done = Standard_True;
}
void math_Householder::Dump(Standard_OStream& o) const
{
o << "math_Householder ";
if (Done)
{
o << " Status = Done \n";
}
else
{
o << "Status = not Done \n";
}
}