mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-05 18:16:23 +03:00
- New method BRepLib::FindValidRange() has been added. It computes the range of the edge not covered by boundary vertices. - The algorithm of calculation of valid intersection range in the class IntTools_ShrunkRange has been corrected to use the new method. - The method BOPTools_AlgoTools::MakeSplitEdge() has been improved to protect against errors in the case of reversed orientation of the input edge. - Two new Draw commands have been added: validrange - it calls the new method BRepLib::FindValidRange(). tolsphere - it shows tolerances of vertices by drawing a sphere around each vertex of the shape. - The test cases "offset shape_type_i_c YE1,YE2" became better. The scripts have been corrected to reflect the new state.
237 lines
7.6 KiB
C++
237 lines
7.6 KiB
C++
// Created on: 2017-03-24
|
|
// Created by: Mikhail Sazonov
|
|
// Copyright (c) 2017 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#include <BRepLib.hxx>
|
|
#include <BRep_Tool.hxx>
|
|
#include <BRepAdaptor_Curve.hxx>
|
|
#include <Geom_OffsetCurve.hxx>
|
|
#include <Precision.hxx>
|
|
#include <TopExp.hxx>
|
|
#include <TopoDS_Vertex.hxx>
|
|
|
|
//=======================================================================
|
|
// function: findNearestValidPoint
|
|
// purpose : Starting from the appointed end of the curve, find the nearest
|
|
// point on the curve that is an intersection with the sphere with
|
|
// center theVertPnt and radius theTol.
|
|
//=======================================================================
|
|
static Standard_Boolean findNearestValidPoint(
|
|
const Adaptor3d_Curve& theCurve,
|
|
const Standard_Real theFirst, const Standard_Real theLast,
|
|
const Standard_Boolean isFirst,
|
|
const gp_Pnt& theVertPnt,
|
|
const Standard_Real theTol,
|
|
const Standard_Real theEps,
|
|
Standard_Real& thePar)
|
|
{
|
|
// 1. Check that the needed end is inside the sphere
|
|
|
|
Standard_Real aStartU = theFirst;
|
|
Standard_Real anEndU = theLast;
|
|
if (!isFirst)
|
|
std::swap(aStartU, anEndU);
|
|
gp_Pnt aP = theCurve.Value(aStartU);
|
|
const Standard_Real aSqTol = theTol * theTol;
|
|
if (aP.SquareDistance(theVertPnt) > aSqTol)
|
|
// the vertex does not cover the corresponding to this vertex end of the curve
|
|
return Standard_False;
|
|
|
|
// 2. Find a nearest point that is outside
|
|
|
|
// stepping along the curve by theTol till go out
|
|
//
|
|
// the general step is computed using general curve resolution
|
|
Standard_Real aStep = theCurve.Resolution(theTol) * 1.01;
|
|
// aD1Mag is a threshold to consider local derivative magnitude too small
|
|
// and to accelerate going out of sphere
|
|
// (inverse of resolution is the maximal derivative);
|
|
// this is actual for bezier and b-spline types only
|
|
Standard_Real aD1Mag = 0.;
|
|
GeomAbs_CurveType aType = theCurve.GetType();
|
|
if (aType == GeomAbs_OffsetCurve)
|
|
{
|
|
Handle(Geom_OffsetCurve) anOffsetCurve = theCurve.OffsetCurve();
|
|
Handle(Geom_Curve) aBaseCurve = anOffsetCurve->BasisCurve();
|
|
aType = GeomAdaptor_Curve(aBaseCurve).GetType();
|
|
}
|
|
if (aType == GeomAbs_BezierCurve || aType == GeomAbs_BSplineCurve)
|
|
{
|
|
aD1Mag = 1. / theCurve.Resolution(1.) * 0.01;
|
|
aD1Mag *= aD1Mag;
|
|
}
|
|
if (!isFirst)
|
|
aStep = -aStep;
|
|
Standard_Boolean isOut = Standard_False;
|
|
Standard_Real anUIn = aStartU;
|
|
Standard_Real anUOut = anUIn;
|
|
while (!isOut)
|
|
{
|
|
anUIn = anUOut;
|
|
anUOut += aStep;
|
|
if ((isFirst && anUOut > anEndU) || (!isFirst && anUOut < anEndU))
|
|
{
|
|
// step is too big and we go out of bounds,
|
|
// check if the opposite bound is outside
|
|
aP = theCurve.Value(anEndU);
|
|
isOut = (aP.SquareDistance(theVertPnt) > aSqTol);
|
|
if (!isOut)
|
|
// all range is inside sphere
|
|
return Standard_False;
|
|
anUOut = anEndU;
|
|
break;
|
|
}
|
|
if (aD1Mag > 0.)
|
|
{
|
|
Standard_Real aStepLocal = aStep;
|
|
for (;;)
|
|
{
|
|
// cycle to go out of local singularity
|
|
gp_Vec aD1;
|
|
theCurve.D1(anUOut, aP, aD1);
|
|
if (aD1.SquareMagnitude() < aD1Mag)
|
|
{
|
|
aStepLocal *= 2.;
|
|
anUOut += aStepLocal;
|
|
if ((isFirst && anUOut < anEndU) || (!isFirst && anUOut > anEndU))
|
|
// still in range
|
|
continue;
|
|
// went out of range, so check if the end point has out state
|
|
anUOut = anEndU;
|
|
aP = theCurve.Value(anUOut);
|
|
isOut = (aP.SquareDistance(theVertPnt) > aSqTol);
|
|
if (!isOut)
|
|
// all range is inside sphere
|
|
return Standard_False;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
aP = theCurve.Value(anUOut);
|
|
}
|
|
if (!isOut)
|
|
isOut = (aP.SquareDistance(theVertPnt) > aSqTol);
|
|
}
|
|
|
|
// 3. Precise solution with binary search
|
|
|
|
Standard_Real aDelta = Abs(anUOut - anUIn);
|
|
while (aDelta > theEps)
|
|
{
|
|
Standard_Real aMidU = (anUIn + anUOut) * 0.5;
|
|
aP = theCurve.Value(aMidU);
|
|
isOut = (aP.SquareDistance(theVertPnt) > aSqTol);
|
|
if (isOut)
|
|
anUOut = aMidU;
|
|
else
|
|
anUIn = aMidU;
|
|
aDelta = Abs(anUOut - anUIn);
|
|
}
|
|
thePar = (anUIn + anUOut) * 0.5;
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function: FindValidRange
|
|
// purpose :
|
|
//=======================================================================
|
|
Standard_Boolean BRepLib::FindValidRange
|
|
(const Adaptor3d_Curve& theCurve, const Standard_Real theTolE,
|
|
const Standard_Real theParV1, const gp_Pnt& thePntV1, const Standard_Real theTolV1,
|
|
const Standard_Real theParV2, const gp_Pnt& thePntV2, const Standard_Real theTolV2,
|
|
Standard_Real& theFirst, Standard_Real& theLast)
|
|
{
|
|
if (theParV2 - theParV1 < Precision::PConfusion())
|
|
return Standard_False;
|
|
|
|
Standard_Real anEps = Max(theCurve.Resolution(theTolE) * 0.1, Precision::PConfusion());
|
|
|
|
if (Precision::IsInfinite(theParV1))
|
|
theFirst = theParV1;
|
|
else
|
|
{
|
|
if (!findNearestValidPoint(theCurve, theParV1, theParV2, Standard_True,
|
|
thePntV1, theTolV1, anEps, theFirst))
|
|
return Standard_False;
|
|
if (theParV2 - theFirst < anEps)
|
|
return Standard_False;
|
|
}
|
|
|
|
if (Precision::IsInfinite(theParV2))
|
|
theLast = theParV2;
|
|
else
|
|
{
|
|
if (!findNearestValidPoint(theCurve, theParV1, theParV2, Standard_False,
|
|
thePntV2, theTolV2, anEps, theLast))
|
|
return Standard_False;
|
|
if (theLast - theParV1 < anEps)
|
|
return Standard_False;
|
|
}
|
|
|
|
// check found parameters
|
|
if (theFirst > theLast)
|
|
{
|
|
// overlapping, not valid range
|
|
return Standard_False;
|
|
}
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
// function: FindValidRange
|
|
// purpose :
|
|
//=======================================================================
|
|
Standard_Boolean BRepLib::FindValidRange
|
|
(const TopoDS_Edge& theEdge, Standard_Real& theFirst, Standard_Real& theLast)
|
|
{
|
|
TopLoc_Location aLoc;
|
|
Standard_Real f, l;
|
|
if (BRep_Tool::Curve(theEdge, aLoc, f, l).IsNull())
|
|
return Standard_False;
|
|
BRepAdaptor_Curve anAC(theEdge);
|
|
Standard_Real aParV[2] = { anAC.FirstParameter(), anAC.LastParameter() };
|
|
if (aParV[1] - aParV[0] < Precision::PConfusion())
|
|
return Standard_False;
|
|
|
|
// get vertices
|
|
TopoDS_Vertex aV[2];
|
|
TopExp::Vertices(theEdge, aV[0], aV[1]);
|
|
|
|
Standard_Real aTolE = BRep_Tool::Tolerance(theEdge);
|
|
// to have correspondence with intersection precision
|
|
// the tolerances of vertices are increased on Precision::Confusion()
|
|
Standard_Real aTolV[2] = { Precision::Confusion(), Precision::Confusion() };
|
|
gp_Pnt aPntV[2];
|
|
for (Standard_Integer i = 0; i < 2; i++)
|
|
{
|
|
if (!aV[i].IsNull())
|
|
{
|
|
aTolV[i] += BRep_Tool::Tolerance(aV[i]);
|
|
aPntV[i] = BRep_Tool::Pnt(aV[i]);
|
|
}
|
|
else if (!Precision::IsInfinite(aParV[i]))
|
|
{
|
|
aTolV[i] += aTolE;
|
|
aPntV[i] = anAC.Value(aParV[i]);
|
|
}
|
|
}
|
|
return FindValidRange(anAC, aTolE,
|
|
aParV[0], aPntV[0], aTolV[0],
|
|
aParV[1], aPntV[1], aTolV[1],
|
|
theFirst, theLast);
|
|
}
|