1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-08-09 13:22:24 +03:00
Files
occt/src/FairCurve/FairCurve_Batten.cxx
abv d5f74e42d6 0024624: Lost word in license statement in source files
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast
Wrong license statements corrected in several files.
Copyright and license statements added in XSD and GLSL files.
Copyright year updated in some files.
Obsolete documentation files removed from DrawResources.
2014-02-20 16:15:17 +04:00

562 lines
20 KiB
C++

// Created on: 1996-02-05
// Created by: Philippe MANGIN
// Copyright (c) 1996-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef DEB
#define No_Standard_RangeError
#define No_Standard_OutOfRange
#endif
#include <FairCurve_Batten.ixx>
#include <BSplCLib.hxx>
#include <PLib.hxx>
#include <Geom2d_BSplineCurve.hxx>
#include <FairCurve_BattenLaw.hxx>
#include <FairCurve_EnergyOfBatten.hxx>
#include <FairCurve_Newton.hxx>
#include <math_Matrix.hxx>
#include <Precision.hxx>
#include <Standard_NegativeValue.hxx>
#include <Standard_NullValue.hxx>
// ==================================================================
FairCurve_Batten::FairCurve_Batten(const gp_Pnt2d& P1,
const gp_Pnt2d& P2,
const Standard_Real Height,
const Standard_Real Slope)
// ==================================================================
: myCode(FairCurve_OK),
OldP1(P1),
OldP2(P2),
OldAngle1(0),
OldAngle2(0),
OldHeight(Height),
OldSlope(Slope),
OldSlidingFactor(1),
OldFreeSliding(0),
OldConstraintOrder1(1),
OldConstraintOrder2(1),
NewP1(P1),
NewP2(P2),
NewAngle1(0),
NewAngle2(0),
NewHeight(Height),
NewSlope(Slope),
NewSlidingFactor(1),
NewFreeSliding(0),
NewConstraintOrder1(1),
NewConstraintOrder2(1),
Degree(9)
{
if (P1.IsEqual(P2, Precision::Confusion()))
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
if (Height <= 0)
Standard_NegativeValue::Raise("FairCurve : Height is not positive");
//
// Initialize by a straight line (2 poles)
//
Handle(TColStd_HArray1OfReal) Iknots = new TColStd_HArray1OfReal(1,2);
Handle(TColStd_HArray1OfInteger) Imults = new TColStd_HArray1OfInteger(1,2);
Handle(TColgp_HArray1OfPnt2d) Ipoles = new TColgp_HArray1OfPnt2d(1,2);
Iknots->SetValue(1, 0);
Iknots->SetValue(2, 1);
Imults->SetValue(1, 2);
Imults->SetValue(2, 2);
Ipoles->SetValue(1, P1);
Ipoles->SetValue(2, P2);
// Increase the degree
Handle(TColgp_HArray1OfPnt2d) Npoles = new TColgp_HArray1OfPnt2d(1, Degree+1);
Handle(TColStd_HArray1OfReal) Nweight = new TColStd_HArray1OfReal(1, 2);
Handle(TColStd_HArray1OfReal) Nknots = new TColStd_HArray1OfReal(1, 2);
Handle(TColStd_HArray1OfInteger) Nmults = new TColStd_HArray1OfInteger(1, 2);
BSplCLib::IncreaseDegree (1, Degree, Standard_False,
Ipoles->Array1(),
BSplCLib::NoWeights(),
Iknots->Array1(),
Imults->Array1(),
Npoles->ChangeArray1(),
Nweight->ChangeArray1(),
Nknots->ChangeArray1(),
Nmults->ChangeArray1() );
// and impact the result in our fields
Poles = Npoles;
Knots = Nknots;
Mults = Nmults;
// calculate "plane" nodes
Flatknots = new TColStd_HArray1OfReal
(1, BSplCLib::KnotSequenceLength(Mults->Array1(), Degree, Standard_False));
BSplCLib::KnotSequence (Knots->Array1(),
Mults->Array1(),
Degree, Standard_False,
Flatknots->ChangeArray1());
}
// ==================================================================
void FairCurve_Batten::Delete()
{}
// ==================================================================
void FairCurve_Batten::Angles(const gp_Pnt2d& P1,
const gp_Pnt2d& P2)
// ==================================================================
{
gp_Vec2d VOld(NewP1, NewP2), VNew(P1, P2);
Standard_Real Dangle = VOld.Angle(VNew);
NewAngle1 -= Dangle;
NewAngle2 += Dangle;
}
// ==================================================================
void FairCurve_Batten::SetP1(const gp_Pnt2d& P1)
// ==================================================================
{
if (P1.IsEqual(NewP2, Precision::Confusion()))
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
Angles(P1, NewP2);
NewP1 = P1;
}
// ==================================================================
void FairCurve_Batten::SetP2(const gp_Pnt2d& P2)
// ==================================================================
{
if (NewP1.IsEqual(P2, Precision::Confusion()))
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
Angles(NewP1, P2);
NewP2 = P2;
}
// ==================================================================
Standard_Boolean FairCurve_Batten::Compute(FairCurve_AnalysisCode& ACode,
const Standard_Integer NbIterations,
const Standard_Real Tolerance)
// ==================================================================
{
Standard_Boolean Ok=Standard_True, End=Standard_False;
Standard_Real AngleMax = 0.7; // parameter ruling the function of increment ( 40 degrees )
Standard_Real AngleMin = 2*M_PI/100; // parameter ruling the function of increment
// full passage should not cost more than 100 steps.
Standard_Real DAngle1, DAngle2, Ratio, Fraction, Toler;
Standard_Real OldDist, NewDist;
// Loop of Homotopy : calculation of the step and optimisation
while (Ok && !End) {
DAngle1 = NewAngle1-OldAngle1;
DAngle2 = NewAngle2-OldAngle2;
Ratio = 1;
if (NewConstraintOrder1>0) {
Fraction = Abs(DAngle1) / (AngleMax * Exp (-Abs(OldAngle1)/AngleMax) + AngleMin);
if (Fraction > 1) Ratio = 1 / Fraction;
}
if (NewConstraintOrder2>0) {
Fraction = Abs(DAngle2) / (AngleMax * Exp (-Abs(OldAngle2)/AngleMax) + AngleMin);
if (Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
}
OldDist = OldP1.Distance(OldP2);
NewDist = NewP1.Distance(NewP2);
Fraction = Abs(OldDist-NewDist) / (OldDist/3);
if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
gp_Vec2d DeltaP1(OldP1, NewP1) , DeltaP2(OldP2, NewP2);
if ( Ratio == 1) {
End = Standard_True;
Toler = Tolerance;
}
else {
DeltaP1 *= Ratio;
DeltaP2 *= Ratio;
DAngle1 *= Ratio;
DAngle2 *= Ratio;
Toler = 10 * Tolerance;
}
Ok = Compute( DeltaP1, DeltaP2,
DAngle1, DAngle2,
ACode,
NbIterations,
Toler);
if (ACode != FairCurve_OK) End = Standard_True;
if (NewFreeSliding) NewSlidingFactor = OldSlidingFactor;
if (NewConstraintOrder1 == 0) NewAngle1 = OldAngle1;
if (NewConstraintOrder2 == 0) NewAngle2 = OldAngle2;
}
myCode = ACode;
return Ok;
}
// =============================================================================
Standard_Boolean FairCurve_Batten::Compute(const gp_Vec2d& DeltaP1,
const gp_Vec2d& DeltaP2,
const Standard_Real DeltaAngle1,
const Standard_Real DeltaAngle2,
FairCurve_AnalysisCode& ACode,
const Standard_Integer NbIterations,
const Standard_Real Tolerance)
// =============================================================================
{
Standard_Boolean Ok, OkCompute=Standard_True;
ACode = FairCurve_OK;
// Deformation of the curve by adding a polynom of interpolation
Standard_Integer L = 2 + NewConstraintOrder1 + NewConstraintOrder2, kk, ii;
TColStd_Array1OfReal knots (1,2);
knots(1) = 0;
knots(2) = 1;
TColStd_Array1OfInteger mults (1,2);
TColgp_Array1OfPnt2d HermitePoles(1,L);
TColgp_Array1OfPnt2d Interpolation(1,L);
Handle(TColgp_HArray1OfPnt2d) NPoles = new TColgp_HArray1OfPnt2d(1, Poles->Length());
// Polynoms of Hermite
math_Matrix HermiteCoef(1, L, 1, L);
Ok = PLib::HermiteCoefficients(0,1, NewConstraintOrder1, NewConstraintOrder2,
HermiteCoef);
if (!Ok) return Standard_False;
// Definition of constraints of interpolation
TColgp_Array1OfXY ADelta(1,L);
gp_Vec2d VOld(OldP1, OldP2), VNew( -(OldP1.XY()+DeltaP1.XY()) + (OldP2.XY()+DeltaP2.XY()) );
Standard_Real DAngleRef = VNew.Angle(VOld);
ADelta(1) = DeltaP1.XY();
kk = 2;
if (NewConstraintOrder1>0) {
gp_Vec2d OldDerive( Poles->Value(Poles->Lower()),
Poles->Value(Poles->Lower()+1) );
OldDerive *= Degree / (Knots->Value(2) - Knots->Value(1));
ADelta(kk) = (OldDerive.Rotated(DeltaAngle1-DAngleRef) - OldDerive).XY();
kk += 1;
}
ADelta(kk) = DeltaP2.XY();
kk += 1;
if (NewConstraintOrder2>0) {
gp_Vec2d OldDerive( Poles->Value(Poles->Upper()-1),
Poles->Value(Poles->Upper()) );
OldDerive *= Degree / (Knots->Value(Knots->Upper()) - Knots->Value(Knots->Upper()-1) );
ADelta(kk) = (OldDerive.Rotated(DAngleRef-DeltaAngle2) - OldDerive).XY();
}
// Interpolation
gp_XY AuxXY (0,0);
for (ii=1; ii<=L; ii++) {
AuxXY.SetCoord(0.0, 0);
for (kk=1; kk<=L; kk++) {
AuxXY += HermiteCoef(kk, ii) * ADelta(kk);
}
Interpolation(ii).SetXY(AuxXY);
}
// Conversion into BSpline of the same structure as the current batten.
PLib::CoefficientsPoles( Interpolation, PLib::NoWeights(),
HermitePoles, PLib::NoWeights() );
mults.Init(L);
Handle(Geom2d_BSplineCurve) DeltaCurve =
new Geom2d_BSplineCurve( HermitePoles,
knots, mults, L-1);
DeltaCurve->IncreaseDegree(Degree);
if (Mults->Length()>2) {
DeltaCurve->InsertKnots(Knots->Array1(), Mults->Array1(), 1.e-10);
}
// Summing
DeltaCurve->Poles( NPoles->ChangeArray1() );
for (kk= NPoles->Lower(); kk<=NPoles->Upper(); kk++) {
NPoles->ChangeValue(kk).ChangeCoord() += Poles->Value(kk).Coord();
}
// Intermediary data
Standard_Real Angle1, Angle2, SlidingLength,
Alph1 = OldAngle1 + DeltaAngle1,
Alph2 = OldAngle2 + DeltaAngle2,
Dist = NPoles->Value(NPoles->Upper())
. Distance( NPoles->Value( NPoles->Lower() ) ),
LReference = SlidingOfReference(Dist, Alph1, Alph2);
gp_Vec2d Ox(1, 0),
P1P2 ( NPoles->Value(NPoles->Upper()).Coord()
- NPoles->Value(NPoles->Lower()).Coord() );
// Angles corresponding to axis ox
Angle1 = Ox.Angle(P1P2) + Alph1;
Angle2 = -Ox.Angle(P1P2) + Alph2;
// Calculation of the length of sliding (imposed or intial);
if (!NewFreeSliding) {
SlidingLength = NewSlidingFactor * LReference;
}
else {
if (OldFreeSliding) {
SlidingLength = OldSlidingFactor * LReference;
}
else {
SlidingLength = SlidingOfReference(Dist, Alph1, Alph2);
}
}
// Energy and vectors of initialisation
FairCurve_BattenLaw LBatten (NewHeight, NewSlope, SlidingLength );
FairCurve_EnergyOfBatten EBatten (Degree+1, Flatknots, NPoles,
NewConstraintOrder1, NewConstraintOrder2,
LBatten, SlidingLength, NewFreeSliding,
Angle1, Angle2);
math_Vector VInit (1, EBatten.NbVariables());
// The valeur below is the smallest value of the criterion of flexion.
Standard_Real VConvex = 0.01 * pow(NewHeight / SlidingLength, 3);
if (VConvex < 1.e-12) {VConvex = 1.e-12;}
Ok = EBatten.Variable(VInit);
// Minimisation
FairCurve_Newton Newton(EBatten,
Tolerance*P1P2.Magnitude()/10,
Tolerance,
NbIterations,
VConvex);
Newton.Perform(EBatten, VInit);
Ok = Newton.IsDone();
if (Ok) {
Poles = NPoles;
Newton.Location(VInit);
if (NewFreeSliding) { OldSlidingFactor = VInit(VInit.Upper()) / LReference;}
else { OldSlidingFactor = NewSlidingFactor; }
if (NewConstraintOrder1 == 0) {
gp_Vec2d Tangente ( Poles->Value(Poles->Lower()+1).Coord()
- Poles->Value(Poles->Lower()).Coord() );
OldAngle1 = P1P2.Angle(Tangente);
}
else {OldAngle1 = Alph1;}
if (NewConstraintOrder2 == 0) {
gp_Vec2d Tangente ( Poles->Value(Poles->Upper()).Coord()
- Poles->Value(Poles->Upper()-1).Coord() );
OldAngle2 = (-Tangente).Angle(-P1P2);
}
else {OldAngle2 = Alph2;}
OldP1 = Poles->Value(Poles->Lower());
OldP2 = Poles->Value(Poles->Upper());
OldConstraintOrder1 = NewConstraintOrder1;
OldConstraintOrder2 = NewConstraintOrder2;
OldFreeSliding = NewFreeSliding;
OldSlope = NewSlope;
OldHeight = NewHeight;
}
else {
Standard_Real V;
ACode = EBatten.Status();
if (!LBatten.Value(0, V) || !LBatten.Value(1, V)) {
ACode = FairCurve_NullHeight;
}
else { OkCompute = Standard_False;}
return OkCompute;
}
Ok = EBatten.Variable(VInit);
// Processing of non-convergence
if (!Newton.IsConverged()) {
ACode = FairCurve_NotConverged;
}
// Prevention of infinite sliding
if (NewFreeSliding && VInit(VInit.Upper()) > 2*LReference)
ACode = FairCurve_InfiniteSliding;
// Eventual insertion of Nodes
Standard_Boolean NewKnots = Standard_False;
Standard_Integer NbKnots = Knots->Length();
Standard_Real ValAngles = (Abs(OldAngle1) + Abs(OldAngle2)
+ 2 * Abs(OldAngle2 - OldAngle1) ) ;
while ( ValAngles > (2*(NbKnots-2) + 1)*(1+2*NbKnots) ) {
NewKnots = Standard_True;
NbKnots += NbKnots-1;
}
if (NewKnots) {
Handle(Geom2d_BSplineCurve) NewBS =
new Geom2d_BSplineCurve( NPoles->Array1(), Knots->Array1(),
Mults->Array1(), Degree);
Handle(TColStd_HArray1OfInteger) NMults =
new TColStd_HArray1OfInteger (1,NbKnots);
NMults->Init(Degree-3);
Handle(TColStd_HArray1OfReal) NKnots =
new TColStd_HArray1OfReal (1,NbKnots);
for (ii=1; ii<=NbKnots; ii++) {
NKnots->ChangeValue(ii) = (double) (ii-1) / (NbKnots-1);
}
NewBS -> InsertKnots(NKnots->Array1(), NMults->Array1(), 1.e-10);
Handle(TColgp_HArray1OfPnt2d) NPoles =
new TColgp_HArray1OfPnt2d(1, NewBS->NbPoles());
NewBS -> Poles( NPoles->ChangeArray1() );
NewBS -> Multiplicities( NMults->ChangeArray1() );
NewBS -> Knots( NKnots->ChangeArray1() );
Handle(TColStd_HArray1OfReal) FKnots =
new TColStd_HArray1OfReal (1, NewBS->NbPoles() + Degree+1);
NewBS -> KnotSequence( FKnots->ChangeArray1());
Poles = NPoles;
Mults = NMults;
Knots = NKnots;
Flatknots = FKnots;
}
// For eventual debug
// Newton.Dump(cout);
return OkCompute;
}
// ==================================================================
Standard_Real FairCurve_Batten::SlidingOfReference() const
// ==================================================================
{
return SlidingOfReference(NewP1.Distance(NewP2), NewAngle1, NewAngle2 );
}
// ==================================================================
Standard_Real FairCurve_Batten::SlidingOfReference(const Standard_Real Dist,
const Standard_Real Angle1,
const Standard_Real Angle2) const
// ==================================================================
{
Standard_Real a1, a2;
// case of angle without constraints
if ( (NewConstraintOrder1 == 0) && (NewConstraintOrder2 == 0)) return Dist;
if (NewConstraintOrder1 == 0) a1 = Abs( Abs(NewAngle2)<M_PI ? Angle2/2 : M_PI/2);
else a1 = Abs(Angle1);
if (NewConstraintOrder2 == 0) a2 = Abs( Abs(NewAngle1)<M_PI ? Angle1/2 : M_PI/2);
else a2 = Abs(Angle2);
// case of angle of the same sign
if (Angle1 * Angle2 >= 0 ) {
return Compute(Dist, a1, a2);
}
// case of angle of opposite sign
else {
Standard_Real Ratio = a1 / ( a1 + a2 );
Standard_Real AngleMilieu = pow(1-Ratio,2) * a1 + pow(Ratio,2) * a2;
if (AngleMilieu > M_PI/2) AngleMilieu = M_PI/2;
return Ratio * Compute(Dist, a1, AngleMilieu )
+ (1-Ratio) * Compute(Dist, a2, AngleMilieu );
}
}
// ==================================================================
Standard_Real FairCurve_Batten::Compute(const Standard_Real Dist,
const Standard_Real Angle1,
const Standard_Real Angle2) const
// ==================================================================
{
Standard_Real L1 = Compute(Dist, Angle1);
Standard_Real L2 = Compute(Dist, Angle2), Aux;
if (L1 < L2) {
Aux = L2;
L2 = L1;
L1 = Aux;
}
return 0.3 * L1 + 0.7 * L2;
}
// ==================================================================
Standard_Real FairCurve_Batten::Compute(const Standard_Real Dist,
const Standard_Real Angle) const
// ==================================================================
{
if (Angle < Precision::Angular() ) { return Dist; } // length of segment P1P2
if (Angle < M_PI/2) { return Angle*Dist / sin(Angle); } // length of circle P1P2 respecting ANGLE
if (Angle > M_PI) { return Sqrt(Angle*M_PI) * Dist;}
else { return Angle * Dist; } // linear interpolation
}
// ==================================================================
Handle(Geom2d_BSplineCurve) FairCurve_Batten::Curve() const
// ==================================================================
{
Handle(Geom2d_BSplineCurve) TheCurve = new
Geom2d_BSplineCurve ( Poles->Array1(),
Knots->Array1(),
Mults->Array1(),
Degree);
return TheCurve;
}
// ==================================================================
void FairCurve_Batten::Dump(Standard_OStream& o) const
// ==================================================================
{
o << " Batten |"; o.width(7); o<< "Old " << " | " << " New" << endl;
o << " P1 X |"; o.width(7); o<< OldP1.X() << " | " << NewP1.X() << endl;
o << " Y |"; o.width(7); o<< OldP1.Y() << " | " << NewP1.Y() << endl;
o << " P2 X |"; o.width(7); o<< OldP2.X() << " | " << NewP2.X() << endl;
o << " Y |"; o.width(7); o<< OldP2.Y() << " | " << NewP2.Y() << endl;
o << " Angle1 |"; o.width(7); o<< OldAngle1 << " | " << NewAngle1 << endl;
o << " Angle2 |"; o.width(7); o<< OldAngle2 << " | " << NewAngle2 << endl;
o << " Height |"; o.width(7); o<< OldHeight << " | " << NewHeight << endl;
o << " Slope |"; o.width(7); o<< OldSlope << " | " << NewSlope << endl;
o << " SlidingFactor |"; o.width(7); o<< OldSlidingFactor << " | " << NewSlidingFactor << endl;
o << " FreeSliding |"; o.width(7); o<< OldFreeSliding << " | " << NewFreeSliding << endl;
o << " ConstrOrder1 |"; o.width(7); o<< OldConstraintOrder1 << " | " << NewConstraintOrder1 << endl;
o << " ConstrOrder2 |" ; o.width(7); o<< OldConstraintOrder2 << " | " << NewConstraintOrder2 << endl;
switch (myCode) {
case FairCurve_OK :
o << "AnalysisCode : Ok" << endl;
break;
case FairCurve_NotConverged :
o << "AnalysisCode : NotConverged" << endl;
break;
case FairCurve_InfiniteSliding :
o << "AnalysisCode : InfiniteSliding" << endl;
break;
case FairCurve_NullHeight :
o << "AnalysisCode : NullHeight" << endl;
break;
}
}