mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-08-09 13:22:24 +03:00
License statement text corrected; compiler warnings caused by Bison 2.41 disabled for MSVC; a few other compiler warnings on 54-bit Windows eliminated by appropriate type cast Wrong license statements corrected in several files. Copyright and license statements added in XSD and GLSL files. Copyright year updated in some files. Obsolete documentation files removed from DrawResources.
562 lines
20 KiB
C++
562 lines
20 KiB
C++
// Created on: 1996-02-05
|
|
// Created by: Philippe MANGIN
|
|
// Copyright (c) 1996-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
#ifndef DEB
|
|
#define No_Standard_RangeError
|
|
#define No_Standard_OutOfRange
|
|
#endif
|
|
|
|
#include <FairCurve_Batten.ixx>
|
|
|
|
#include <BSplCLib.hxx>
|
|
#include <PLib.hxx>
|
|
#include <Geom2d_BSplineCurve.hxx>
|
|
#include <FairCurve_BattenLaw.hxx>
|
|
#include <FairCurve_EnergyOfBatten.hxx>
|
|
#include <FairCurve_Newton.hxx>
|
|
#include <math_Matrix.hxx>
|
|
#include <Precision.hxx>
|
|
|
|
#include <Standard_NegativeValue.hxx>
|
|
#include <Standard_NullValue.hxx>
|
|
|
|
// ==================================================================
|
|
FairCurve_Batten::FairCurve_Batten(const gp_Pnt2d& P1,
|
|
const gp_Pnt2d& P2,
|
|
const Standard_Real Height,
|
|
const Standard_Real Slope)
|
|
// ==================================================================
|
|
: myCode(FairCurve_OK),
|
|
OldP1(P1),
|
|
OldP2(P2),
|
|
OldAngle1(0),
|
|
OldAngle2(0),
|
|
OldHeight(Height),
|
|
OldSlope(Slope),
|
|
OldSlidingFactor(1),
|
|
OldFreeSliding(0),
|
|
OldConstraintOrder1(1),
|
|
OldConstraintOrder2(1),
|
|
NewP1(P1),
|
|
NewP2(P2),
|
|
NewAngle1(0),
|
|
NewAngle2(0),
|
|
NewHeight(Height),
|
|
NewSlope(Slope),
|
|
NewSlidingFactor(1),
|
|
NewFreeSliding(0),
|
|
NewConstraintOrder1(1),
|
|
NewConstraintOrder2(1),
|
|
Degree(9)
|
|
{
|
|
if (P1.IsEqual(P2, Precision::Confusion()))
|
|
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
|
|
if (Height <= 0)
|
|
Standard_NegativeValue::Raise("FairCurve : Height is not positive");
|
|
//
|
|
// Initialize by a straight line (2 poles)
|
|
//
|
|
Handle(TColStd_HArray1OfReal) Iknots = new TColStd_HArray1OfReal(1,2);
|
|
Handle(TColStd_HArray1OfInteger) Imults = new TColStd_HArray1OfInteger(1,2);
|
|
Handle(TColgp_HArray1OfPnt2d) Ipoles = new TColgp_HArray1OfPnt2d(1,2);
|
|
|
|
Iknots->SetValue(1, 0);
|
|
Iknots->SetValue(2, 1);
|
|
|
|
Imults->SetValue(1, 2);
|
|
Imults->SetValue(2, 2);
|
|
|
|
Ipoles->SetValue(1, P1);
|
|
Ipoles->SetValue(2, P2);
|
|
|
|
// Increase the degree
|
|
|
|
Handle(TColgp_HArray1OfPnt2d) Npoles = new TColgp_HArray1OfPnt2d(1, Degree+1);
|
|
Handle(TColStd_HArray1OfReal) Nweight = new TColStd_HArray1OfReal(1, 2);
|
|
Handle(TColStd_HArray1OfReal) Nknots = new TColStd_HArray1OfReal(1, 2);
|
|
Handle(TColStd_HArray1OfInteger) Nmults = new TColStd_HArray1OfInteger(1, 2);
|
|
|
|
BSplCLib::IncreaseDegree (1, Degree, Standard_False,
|
|
Ipoles->Array1(),
|
|
BSplCLib::NoWeights(),
|
|
Iknots->Array1(),
|
|
Imults->Array1(),
|
|
Npoles->ChangeArray1(),
|
|
Nweight->ChangeArray1(),
|
|
Nknots->ChangeArray1(),
|
|
Nmults->ChangeArray1() );
|
|
|
|
// and impact the result in our fields
|
|
|
|
Poles = Npoles;
|
|
Knots = Nknots;
|
|
Mults = Nmults;
|
|
|
|
// calculate "plane" nodes
|
|
|
|
Flatknots = new TColStd_HArray1OfReal
|
|
(1, BSplCLib::KnotSequenceLength(Mults->Array1(), Degree, Standard_False));
|
|
|
|
BSplCLib::KnotSequence (Knots->Array1(),
|
|
Mults->Array1(),
|
|
Degree, Standard_False,
|
|
Flatknots->ChangeArray1());
|
|
}
|
|
// ==================================================================
|
|
void FairCurve_Batten::Delete()
|
|
{}
|
|
// ==================================================================
|
|
void FairCurve_Batten::Angles(const gp_Pnt2d& P1,
|
|
const gp_Pnt2d& P2)
|
|
// ==================================================================
|
|
{
|
|
gp_Vec2d VOld(NewP1, NewP2), VNew(P1, P2);
|
|
Standard_Real Dangle = VOld.Angle(VNew);
|
|
NewAngle1 -= Dangle;
|
|
NewAngle2 += Dangle;
|
|
}
|
|
|
|
// ==================================================================
|
|
void FairCurve_Batten::SetP1(const gp_Pnt2d& P1)
|
|
// ==================================================================
|
|
{
|
|
if (P1.IsEqual(NewP2, Precision::Confusion()))
|
|
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
|
|
Angles(P1, NewP2);
|
|
NewP1 = P1;
|
|
}
|
|
|
|
// ==================================================================
|
|
void FairCurve_Batten::SetP2(const gp_Pnt2d& P2)
|
|
// ==================================================================
|
|
{
|
|
if (NewP1.IsEqual(P2, Precision::Confusion()))
|
|
Standard_NullValue::Raise("FairCurve : P1 and P2 are confused");
|
|
Angles(NewP1, P2);
|
|
NewP2 = P2;
|
|
}
|
|
|
|
// ==================================================================
|
|
Standard_Boolean FairCurve_Batten::Compute(FairCurve_AnalysisCode& ACode,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Tolerance)
|
|
// ==================================================================
|
|
{
|
|
Standard_Boolean Ok=Standard_True, End=Standard_False;
|
|
Standard_Real AngleMax = 0.7; // parameter ruling the function of increment ( 40 degrees )
|
|
Standard_Real AngleMin = 2*M_PI/100; // parameter ruling the function of increment
|
|
// full passage should not cost more than 100 steps.
|
|
Standard_Real DAngle1, DAngle2, Ratio, Fraction, Toler;
|
|
Standard_Real OldDist, NewDist;
|
|
|
|
// Loop of Homotopy : calculation of the step and optimisation
|
|
|
|
while (Ok && !End) {
|
|
DAngle1 = NewAngle1-OldAngle1;
|
|
DAngle2 = NewAngle2-OldAngle2;
|
|
Ratio = 1;
|
|
if (NewConstraintOrder1>0) {
|
|
Fraction = Abs(DAngle1) / (AngleMax * Exp (-Abs(OldAngle1)/AngleMax) + AngleMin);
|
|
if (Fraction > 1) Ratio = 1 / Fraction;
|
|
}
|
|
if (NewConstraintOrder2>0) {
|
|
Fraction = Abs(DAngle2) / (AngleMax * Exp (-Abs(OldAngle2)/AngleMax) + AngleMin);
|
|
if (Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
}
|
|
|
|
OldDist = OldP1.Distance(OldP2);
|
|
NewDist = NewP1.Distance(NewP2);
|
|
Fraction = Abs(OldDist-NewDist) / (OldDist/3);
|
|
if ( Fraction > 1) Ratio = (Ratio < 1 / Fraction ? Ratio : 1 / Fraction);
|
|
|
|
gp_Vec2d DeltaP1(OldP1, NewP1) , DeltaP2(OldP2, NewP2);
|
|
if ( Ratio == 1) {
|
|
End = Standard_True;
|
|
Toler = Tolerance;
|
|
}
|
|
else {
|
|
DeltaP1 *= Ratio;
|
|
DeltaP2 *= Ratio;
|
|
DAngle1 *= Ratio;
|
|
DAngle2 *= Ratio;
|
|
Toler = 10 * Tolerance;
|
|
}
|
|
|
|
Ok = Compute( DeltaP1, DeltaP2,
|
|
DAngle1, DAngle2,
|
|
ACode,
|
|
NbIterations,
|
|
Toler);
|
|
|
|
if (ACode != FairCurve_OK) End = Standard_True;
|
|
if (NewFreeSliding) NewSlidingFactor = OldSlidingFactor;
|
|
if (NewConstraintOrder1 == 0) NewAngle1 = OldAngle1;
|
|
if (NewConstraintOrder2 == 0) NewAngle2 = OldAngle2;
|
|
}
|
|
myCode = ACode;
|
|
return Ok;
|
|
}
|
|
// =============================================================================
|
|
Standard_Boolean FairCurve_Batten::Compute(const gp_Vec2d& DeltaP1,
|
|
const gp_Vec2d& DeltaP2,
|
|
const Standard_Real DeltaAngle1,
|
|
const Standard_Real DeltaAngle2,
|
|
FairCurve_AnalysisCode& ACode,
|
|
const Standard_Integer NbIterations,
|
|
const Standard_Real Tolerance)
|
|
// =============================================================================
|
|
{
|
|
Standard_Boolean Ok, OkCompute=Standard_True;
|
|
ACode = FairCurve_OK;
|
|
|
|
// Deformation of the curve by adding a polynom of interpolation
|
|
Standard_Integer L = 2 + NewConstraintOrder1 + NewConstraintOrder2, kk, ii;
|
|
TColStd_Array1OfReal knots (1,2);
|
|
knots(1) = 0;
|
|
knots(2) = 1;
|
|
TColStd_Array1OfInteger mults (1,2);
|
|
TColgp_Array1OfPnt2d HermitePoles(1,L);
|
|
TColgp_Array1OfPnt2d Interpolation(1,L);
|
|
Handle(TColgp_HArray1OfPnt2d) NPoles = new TColgp_HArray1OfPnt2d(1, Poles->Length());
|
|
|
|
// Polynoms of Hermite
|
|
math_Matrix HermiteCoef(1, L, 1, L);
|
|
Ok = PLib::HermiteCoefficients(0,1, NewConstraintOrder1, NewConstraintOrder2,
|
|
HermiteCoef);
|
|
if (!Ok) return Standard_False;
|
|
|
|
// Definition of constraints of interpolation
|
|
TColgp_Array1OfXY ADelta(1,L);
|
|
gp_Vec2d VOld(OldP1, OldP2), VNew( -(OldP1.XY()+DeltaP1.XY()) + (OldP2.XY()+DeltaP2.XY()) );
|
|
Standard_Real DAngleRef = VNew.Angle(VOld);
|
|
|
|
ADelta(1) = DeltaP1.XY();
|
|
kk = 2;
|
|
if (NewConstraintOrder1>0) {
|
|
gp_Vec2d OldDerive( Poles->Value(Poles->Lower()),
|
|
Poles->Value(Poles->Lower()+1) );
|
|
OldDerive *= Degree / (Knots->Value(2) - Knots->Value(1));
|
|
ADelta(kk) = (OldDerive.Rotated(DeltaAngle1-DAngleRef) - OldDerive).XY();
|
|
kk += 1;
|
|
}
|
|
ADelta(kk) = DeltaP2.XY();
|
|
kk += 1;
|
|
if (NewConstraintOrder2>0) {
|
|
gp_Vec2d OldDerive( Poles->Value(Poles->Upper()-1),
|
|
Poles->Value(Poles->Upper()) );
|
|
OldDerive *= Degree / (Knots->Value(Knots->Upper()) - Knots->Value(Knots->Upper()-1) );
|
|
ADelta(kk) = (OldDerive.Rotated(DAngleRef-DeltaAngle2) - OldDerive).XY();
|
|
}
|
|
|
|
// Interpolation
|
|
gp_XY AuxXY (0,0);
|
|
for (ii=1; ii<=L; ii++) {
|
|
AuxXY.SetCoord(0.0, 0);
|
|
for (kk=1; kk<=L; kk++) {
|
|
AuxXY += HermiteCoef(kk, ii) * ADelta(kk);
|
|
}
|
|
Interpolation(ii).SetXY(AuxXY);
|
|
}
|
|
// Conversion into BSpline of the same structure as the current batten.
|
|
PLib::CoefficientsPoles( Interpolation, PLib::NoWeights(),
|
|
HermitePoles, PLib::NoWeights() );
|
|
|
|
mults.Init(L);
|
|
|
|
Handle(Geom2d_BSplineCurve) DeltaCurve =
|
|
new Geom2d_BSplineCurve( HermitePoles,
|
|
knots, mults, L-1);
|
|
|
|
DeltaCurve->IncreaseDegree(Degree);
|
|
if (Mults->Length()>2) {
|
|
DeltaCurve->InsertKnots(Knots->Array1(), Mults->Array1(), 1.e-10);
|
|
}
|
|
|
|
// Summing
|
|
DeltaCurve->Poles( NPoles->ChangeArray1() );
|
|
for (kk= NPoles->Lower(); kk<=NPoles->Upper(); kk++) {
|
|
NPoles->ChangeValue(kk).ChangeCoord() += Poles->Value(kk).Coord();
|
|
}
|
|
|
|
// Intermediary data
|
|
|
|
Standard_Real Angle1, Angle2, SlidingLength,
|
|
Alph1 = OldAngle1 + DeltaAngle1,
|
|
Alph2 = OldAngle2 + DeltaAngle2,
|
|
Dist = NPoles->Value(NPoles->Upper())
|
|
. Distance( NPoles->Value( NPoles->Lower() ) ),
|
|
LReference = SlidingOfReference(Dist, Alph1, Alph2);
|
|
gp_Vec2d Ox(1, 0),
|
|
P1P2 ( NPoles->Value(NPoles->Upper()).Coord()
|
|
- NPoles->Value(NPoles->Lower()).Coord() );
|
|
|
|
// Angles corresponding to axis ox
|
|
|
|
Angle1 = Ox.Angle(P1P2) + Alph1;
|
|
Angle2 = -Ox.Angle(P1P2) + Alph2;
|
|
|
|
// Calculation of the length of sliding (imposed or intial);
|
|
|
|
if (!NewFreeSliding) {
|
|
SlidingLength = NewSlidingFactor * LReference;
|
|
}
|
|
else {
|
|
if (OldFreeSliding) {
|
|
SlidingLength = OldSlidingFactor * LReference;
|
|
}
|
|
else {
|
|
SlidingLength = SlidingOfReference(Dist, Alph1, Alph2);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Energy and vectors of initialisation
|
|
FairCurve_BattenLaw LBatten (NewHeight, NewSlope, SlidingLength );
|
|
FairCurve_EnergyOfBatten EBatten (Degree+1, Flatknots, NPoles,
|
|
NewConstraintOrder1, NewConstraintOrder2,
|
|
LBatten, SlidingLength, NewFreeSliding,
|
|
Angle1, Angle2);
|
|
math_Vector VInit (1, EBatten.NbVariables());
|
|
|
|
// The valeur below is the smallest value of the criterion of flexion.
|
|
Standard_Real VConvex = 0.01 * pow(NewHeight / SlidingLength, 3);
|
|
if (VConvex < 1.e-12) {VConvex = 1.e-12;}
|
|
|
|
Ok = EBatten.Variable(VInit);
|
|
|
|
// Minimisation
|
|
FairCurve_Newton Newton(EBatten,
|
|
Tolerance*P1P2.Magnitude()/10,
|
|
Tolerance,
|
|
NbIterations,
|
|
VConvex);
|
|
Newton.Perform(EBatten, VInit);
|
|
Ok = Newton.IsDone();
|
|
|
|
if (Ok) {
|
|
Poles = NPoles;
|
|
Newton.Location(VInit);
|
|
if (NewFreeSliding) { OldSlidingFactor = VInit(VInit.Upper()) / LReference;}
|
|
else { OldSlidingFactor = NewSlidingFactor; }
|
|
|
|
if (NewConstraintOrder1 == 0) {
|
|
gp_Vec2d Tangente ( Poles->Value(Poles->Lower()+1).Coord()
|
|
- Poles->Value(Poles->Lower()).Coord() );
|
|
OldAngle1 = P1P2.Angle(Tangente);
|
|
}
|
|
else {OldAngle1 = Alph1;}
|
|
|
|
if (NewConstraintOrder2 == 0) {
|
|
gp_Vec2d Tangente ( Poles->Value(Poles->Upper()).Coord()
|
|
- Poles->Value(Poles->Upper()-1).Coord() );
|
|
OldAngle2 = (-Tangente).Angle(-P1P2);
|
|
}
|
|
else {OldAngle2 = Alph2;}
|
|
|
|
OldP1 = Poles->Value(Poles->Lower());
|
|
OldP2 = Poles->Value(Poles->Upper());
|
|
OldConstraintOrder1 = NewConstraintOrder1;
|
|
OldConstraintOrder2 = NewConstraintOrder2;
|
|
OldFreeSliding = NewFreeSliding;
|
|
OldSlope = NewSlope;
|
|
OldHeight = NewHeight;
|
|
}
|
|
else {
|
|
Standard_Real V;
|
|
ACode = EBatten.Status();
|
|
if (!LBatten.Value(0, V) || !LBatten.Value(1, V)) {
|
|
ACode = FairCurve_NullHeight;
|
|
}
|
|
else { OkCompute = Standard_False;}
|
|
return OkCompute;
|
|
}
|
|
|
|
Ok = EBatten.Variable(VInit);
|
|
|
|
// Processing of non-convergence
|
|
if (!Newton.IsConverged()) {
|
|
ACode = FairCurve_NotConverged;
|
|
}
|
|
|
|
|
|
// Prevention of infinite sliding
|
|
if (NewFreeSliding && VInit(VInit.Upper()) > 2*LReference)
|
|
ACode = FairCurve_InfiniteSliding;
|
|
|
|
|
|
// Eventual insertion of Nodes
|
|
Standard_Boolean NewKnots = Standard_False;
|
|
Standard_Integer NbKnots = Knots->Length();
|
|
Standard_Real ValAngles = (Abs(OldAngle1) + Abs(OldAngle2)
|
|
+ 2 * Abs(OldAngle2 - OldAngle1) ) ;
|
|
while ( ValAngles > (2*(NbKnots-2) + 1)*(1+2*NbKnots) ) {
|
|
NewKnots = Standard_True;
|
|
NbKnots += NbKnots-1;
|
|
}
|
|
|
|
if (NewKnots) {
|
|
Handle(Geom2d_BSplineCurve) NewBS =
|
|
new Geom2d_BSplineCurve( NPoles->Array1(), Knots->Array1(),
|
|
Mults->Array1(), Degree);
|
|
|
|
Handle(TColStd_HArray1OfInteger) NMults =
|
|
new TColStd_HArray1OfInteger (1,NbKnots);
|
|
NMults->Init(Degree-3);
|
|
|
|
Handle(TColStd_HArray1OfReal) NKnots =
|
|
new TColStd_HArray1OfReal (1,NbKnots);
|
|
for (ii=1; ii<=NbKnots; ii++) {
|
|
NKnots->ChangeValue(ii) = (double) (ii-1) / (NbKnots-1);
|
|
}
|
|
|
|
NewBS -> InsertKnots(NKnots->Array1(), NMults->Array1(), 1.e-10);
|
|
Handle(TColgp_HArray1OfPnt2d) NPoles =
|
|
new TColgp_HArray1OfPnt2d(1, NewBS->NbPoles());
|
|
NewBS -> Poles( NPoles->ChangeArray1() );
|
|
NewBS -> Multiplicities( NMults->ChangeArray1() );
|
|
NewBS -> Knots( NKnots->ChangeArray1() );
|
|
Handle(TColStd_HArray1OfReal) FKnots =
|
|
new TColStd_HArray1OfReal (1, NewBS->NbPoles() + Degree+1);
|
|
NewBS -> KnotSequence( FKnots->ChangeArray1());
|
|
|
|
Poles = NPoles;
|
|
Mults = NMults;
|
|
Knots = NKnots;
|
|
Flatknots = FKnots;
|
|
}
|
|
|
|
// For eventual debug
|
|
// Newton.Dump(cout);
|
|
|
|
return OkCompute;
|
|
}
|
|
|
|
|
|
// ==================================================================
|
|
Standard_Real FairCurve_Batten::SlidingOfReference() const
|
|
// ==================================================================
|
|
{
|
|
return SlidingOfReference(NewP1.Distance(NewP2), NewAngle1, NewAngle2 );
|
|
}
|
|
// ==================================================================
|
|
Standard_Real FairCurve_Batten::SlidingOfReference(const Standard_Real Dist,
|
|
const Standard_Real Angle1,
|
|
const Standard_Real Angle2) const
|
|
// ==================================================================
|
|
{
|
|
Standard_Real a1, a2;
|
|
|
|
// case of angle without constraints
|
|
if ( (NewConstraintOrder1 == 0) && (NewConstraintOrder2 == 0)) return Dist;
|
|
|
|
if (NewConstraintOrder1 == 0) a1 = Abs( Abs(NewAngle2)<M_PI ? Angle2/2 : M_PI/2);
|
|
else a1 = Abs(Angle1);
|
|
|
|
if (NewConstraintOrder2 == 0) a2 = Abs( Abs(NewAngle1)<M_PI ? Angle1/2 : M_PI/2);
|
|
else a2 = Abs(Angle2);
|
|
|
|
// case of angle of the same sign
|
|
if (Angle1 * Angle2 >= 0 ) {
|
|
return Compute(Dist, a1, a2);
|
|
}
|
|
|
|
// case of angle of opposite sign
|
|
else {
|
|
Standard_Real Ratio = a1 / ( a1 + a2 );
|
|
Standard_Real AngleMilieu = pow(1-Ratio,2) * a1 + pow(Ratio,2) * a2;
|
|
if (AngleMilieu > M_PI/2) AngleMilieu = M_PI/2;
|
|
|
|
return Ratio * Compute(Dist, a1, AngleMilieu )
|
|
+ (1-Ratio) * Compute(Dist, a2, AngleMilieu );
|
|
}
|
|
}
|
|
|
|
|
|
// ==================================================================
|
|
Standard_Real FairCurve_Batten::Compute(const Standard_Real Dist,
|
|
const Standard_Real Angle1,
|
|
const Standard_Real Angle2) const
|
|
// ==================================================================
|
|
{
|
|
Standard_Real L1 = Compute(Dist, Angle1);
|
|
Standard_Real L2 = Compute(Dist, Angle2), Aux;
|
|
if (L1 < L2) {
|
|
Aux = L2;
|
|
L2 = L1;
|
|
L1 = Aux;
|
|
}
|
|
return 0.3 * L1 + 0.7 * L2;
|
|
}
|
|
|
|
// ==================================================================
|
|
Standard_Real FairCurve_Batten::Compute(const Standard_Real Dist,
|
|
const Standard_Real Angle) const
|
|
// ==================================================================
|
|
{
|
|
if (Angle < Precision::Angular() ) { return Dist; } // length of segment P1P2
|
|
if (Angle < M_PI/2) { return Angle*Dist / sin(Angle); } // length of circle P1P2 respecting ANGLE
|
|
if (Angle > M_PI) { return Sqrt(Angle*M_PI) * Dist;}
|
|
else { return Angle * Dist; } // linear interpolation
|
|
}
|
|
|
|
// ==================================================================
|
|
Handle(Geom2d_BSplineCurve) FairCurve_Batten::Curve() const
|
|
// ==================================================================
|
|
{
|
|
Handle(Geom2d_BSplineCurve) TheCurve = new
|
|
Geom2d_BSplineCurve ( Poles->Array1(),
|
|
Knots->Array1(),
|
|
Mults->Array1(),
|
|
Degree);
|
|
return TheCurve;
|
|
}
|
|
|
|
// ==================================================================
|
|
void FairCurve_Batten::Dump(Standard_OStream& o) const
|
|
// ==================================================================
|
|
{
|
|
|
|
o << " Batten |"; o.width(7); o<< "Old " << " | " << " New" << endl;
|
|
o << " P1 X |"; o.width(7); o<< OldP1.X() << " | " << NewP1.X() << endl;
|
|
o << " Y |"; o.width(7); o<< OldP1.Y() << " | " << NewP1.Y() << endl;
|
|
o << " P2 X |"; o.width(7); o<< OldP2.X() << " | " << NewP2.X() << endl;
|
|
o << " Y |"; o.width(7); o<< OldP2.Y() << " | " << NewP2.Y() << endl;
|
|
o << " Angle1 |"; o.width(7); o<< OldAngle1 << " | " << NewAngle1 << endl;
|
|
o << " Angle2 |"; o.width(7); o<< OldAngle2 << " | " << NewAngle2 << endl;
|
|
o << " Height |"; o.width(7); o<< OldHeight << " | " << NewHeight << endl;
|
|
o << " Slope |"; o.width(7); o<< OldSlope << " | " << NewSlope << endl;
|
|
o << " SlidingFactor |"; o.width(7); o<< OldSlidingFactor << " | " << NewSlidingFactor << endl;
|
|
o << " FreeSliding |"; o.width(7); o<< OldFreeSliding << " | " << NewFreeSliding << endl;
|
|
o << " ConstrOrder1 |"; o.width(7); o<< OldConstraintOrder1 << " | " << NewConstraintOrder1 << endl;
|
|
o << " ConstrOrder2 |" ; o.width(7); o<< OldConstraintOrder2 << " | " << NewConstraintOrder2 << endl;
|
|
switch (myCode) {
|
|
case FairCurve_OK :
|
|
o << "AnalysisCode : Ok" << endl;
|
|
break;
|
|
case FairCurve_NotConverged :
|
|
o << "AnalysisCode : NotConverged" << endl;
|
|
break;
|
|
case FairCurve_InfiniteSliding :
|
|
o << "AnalysisCode : InfiniteSliding" << endl;
|
|
break;
|
|
case FairCurve_NullHeight :
|
|
o << "AnalysisCode : NullHeight" << endl;
|
|
break;
|
|
}
|
|
}
|
|
|