1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/BRepAlgo/BRepAlgo.cxx
dpasukhi f91655b0c5 Coding - Isolate long attached comments for clang-format #259
Automatically update code with clang-format disabling for avoiding formatting.
You can check the python script in GitHub PR
2025-01-16 20:15:29 +00:00

700 lines
24 KiB
C++

// Created on: 1997-03-10
// Created by: Stagiaire Francois DUMONT
// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <BRep_Builder.hxx>
#include <BRep_Tool.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepAdaptor_Curve2d.hxx>
#include <BRepAlgo.hxx>
#include <BRepLib.hxx>
#include <BRepLib_MakeEdge.hxx>
#include <BRepLib_MakeWire.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <ElCLib.hxx>
#include <Geom_Curve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2dConvert_ApproxArcsSegments.hxx>
#include <GeomAbs_CurveType.hxx>
#include <GeomConvert.hxx>
#include <GeomConvert_CompCurveToBSplineCurve.hxx>
#include <GeomLProp.hxx>
#include <NCollection_Vector.hxx>
#include <gp_Pnt.hxx>
#include <Precision.hxx>
#include <ShapeFix_Shape.hxx>
#include <TColGeom_Array1OfBSplineCurve.hxx>
#include <TColGeom_HArray1OfBSplineCurve.hxx>
#include <TColGeom_SequenceOfCurve.hxx>
#include <TColStd_Array1OfBoolean.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_SequenceOfBoolean.hxx>
#include <TColStd_SequenceOfReal.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Shape.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
// The minimal tolerance of approximation (edges can be defined with yet smaller tolerance)
static const Standard_Real MINIMAL_TOLERANCE = 0.0001;
namespace {
struct OrientedCurve
{
Handle(Geom2d_TrimmedCurve) Curve;
Standard_Boolean IsReverse;
inline gp_Pnt2d Point (const Standard_Boolean isEnd) const
{
if (isEnd == IsReverse)
return Curve->StartPoint();
return Curve->EndPoint();
}
};
}
//=======================================================================
//function : ConvertWire
//purpose :
//=======================================================================
TopoDS_Wire BRepAlgo::ConvertWire(const TopoDS_Wire& theWire,
const Standard_Real theAngleTol,
const TopoDS_Face& theFace)
{
TopoDS_Wire aResult;
Standard_Real aMaxTol(0.);
const Handle(Geom_Surface) aSurf = BRep_Tool::Surface(theFace);
NCollection_Vector<OrientedCurve> vecCurve;
BRepTools_WireExplorer anExpE(theWire, theFace);
// Explore the edges in the current wire, in their connection order
for (; anExpE.More(); anExpE.Next()) {
const TopoDS_Edge& anEdge = anExpE.Current();
BRepAdaptor_Curve2d aCurve(anEdge, theFace);
Standard_Real aTol = BRep_Tool::Tolerance(anEdge);
if (aTol < MINIMAL_TOLERANCE)
aTol = MINIMAL_TOLERANCE;
if (aTol > aMaxTol)
aMaxTol = aTol;
Geom2dConvert_ApproxArcsSegments anAlgo(aCurve, aTol, theAngleTol);
const TColGeom2d_SequenceOfCurve& aResultApprox = anAlgo.GetResult();
// Form the array of approximated elementary curves
if (anEdge.Orientation() == TopAbs_REVERSED) {
for (Standard_Integer iCrv = aResultApprox.Length(); iCrv > 0 ; iCrv--) {
const Handle(Geom2d_Curve)& aCrv = aResultApprox(iCrv);
if (aCrv.IsNull() == Standard_False) {
OrientedCurve& anOCurve = vecCurve.Append(OrientedCurve());
anOCurve.Curve = Handle(Geom2d_TrimmedCurve)::DownCast(aCrv);
anOCurve.IsReverse = Standard_True;
}
}
} else {
for (Standard_Integer iCrv = 1; iCrv <= aResultApprox.Length(); iCrv++) {
const Handle(Geom2d_Curve)& aCrv = aResultApprox(iCrv);
if (aCrv.IsNull() == Standard_False) {
OrientedCurve& anOCurve = vecCurve.Append(OrientedCurve());
anOCurve.Curve = Handle(Geom2d_TrimmedCurve)::DownCast(aCrv);
anOCurve.IsReverse = Standard_False;
}
}
}
}
if (vecCurve.Length() > 0)
{
// Build the first vertex
BRep_Builder aVBuilder;
gp_Pnt2d aPnt[2] = {
vecCurve(0).Point(Standard_False),
vecCurve(vecCurve.Length() - 1).Point(Standard_True)
};
Standard_Real aDist = aPnt[0].Distance(aPnt[1]);
if (aDist > aMaxTol + Precision::Confusion())
aDist = Precision::Confusion();
else {
aDist = 0.5 * aDist + Precision::Confusion();
aPnt[0] = 0.5 * (aPnt[0].XY() + aPnt[1].XY());
}
gp_Pnt aPnt3d;
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
TopoDS_Vertex aFirstVertex;
aVBuilder.MakeVertex(aFirstVertex, aPnt3d, aDist);
// Loop creating edges
BRepBuilderAPI_MakeWire aMkWire;
TopoDS_Edge anEdgeRes;
TopoDS_Vertex aVertex = aFirstVertex;
for (Standard_Integer iCrv = 0; iCrv < vecCurve.Length(); iCrv++) {
const OrientedCurve& anOCurve = vecCurve(iCrv);
TopoDS_Vertex aNextVertex;
aPnt[0] = anOCurve.Point(Standard_True);
if (iCrv == vecCurve.Length() - 1) {
aPnt[1] = vecCurve(0).Point(Standard_False);
aDist = aPnt[0].Distance(aPnt[1]);
if (aDist > aMaxTol + Precision::Confusion()) {
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
aVBuilder.MakeVertex(aNextVertex, aPnt3d, Precision::Confusion());
} else {
aNextVertex = aFirstVertex;
}
} else {
aPnt[1] = vecCurve(iCrv + 1).Point(Standard_False);
aDist = 0.5 * (aPnt[0].Distance(aPnt[1])) + Precision::Confusion();
aPnt[0] = 0.5 * (aPnt[0].XY() + aPnt[1].XY());
aSurf->D0(aPnt[0].X(), aPnt[0].Y(), aPnt3d);
aVBuilder.MakeVertex(aNextVertex, aPnt3d, aDist);
}
const Standard_Real aParam[2] = {
anOCurve.Curve->FirstParameter(),
anOCurve.Curve->LastParameter()
};
if (anOCurve.IsReverse) {
BRepBuilderAPI_MakeEdge aMkEdge(anOCurve.Curve, aSurf, aNextVertex,
aVertex, aParam[0], aParam[1]);
anEdgeRes = aMkEdge.Edge();
anEdgeRes.Orientation(TopAbs_REVERSED);
} else {
BRepBuilderAPI_MakeEdge aMkEdge(anOCurve.Curve, aSurf, aVertex,
aNextVertex, aParam[0], aParam[1]);
anEdgeRes = aMkEdge.Edge();
}
aVertex = aNextVertex;
aMkWire.Add(anEdgeRes);
}
if (aMkWire.IsDone())
aResult = aMkWire.Wire();
}
return aResult;
}
//=======================================================================
//function : ConvertFace
//purpose :
//=======================================================================
TopoDS_Face BRepAlgo::ConvertFace (const TopoDS_Face& theFace,
const Standard_Real theAngleTolerance)
{
TopoDS_Face aResult;
const Handle(Geom_Surface) aSurf = BRep_Tool::Surface(theFace);
BRepBuilderAPI_MakeFace aMkFace(aSurf,Precision::Confusion());
TopExp_Explorer anExp(theFace, TopAbs_WIRE);
for (; anExp.More(); anExp.Next()) {
const TopoDS_Wire& aWire = TopoDS::Wire(anExp.Current());
const TopoDS_Wire aNewWire = ConvertWire(aWire, theAngleTolerance, theFace);
aMkFace.Add(aNewWire);
}
if (aMkFace.IsDone()) {
aResult = aMkFace.Face();
}
return aResult;
}
//=======================================================================
//function : ConcatenateWire
//purpose :
//=======================================================================
TopoDS_Wire BRepAlgo::ConcatenateWire(const TopoDS_Wire& W,
const GeomAbs_Shape Option,
const Standard_Real TolAngular)
{
Standard_Integer nb_curve, //number of curves in the Wire
index;
BRepTools_WireExplorer WExp(W) ;
TopoDS_Edge edge;
TopLoc_Location L ;
Standard_Real First=0.,Last=0., //extremal values for the curve
First0 = 0.,
toler = 0.,
tolleft,tolright; //Vertex tolerances
TopoDS_Vertex Vfirst,Vlast; //Vertex of the Wire
gp_Pnt Pfirst,Plast; //, Pint; corresponding points
BRepLib_MakeWire MakeResult;
Standard_Real closed_tolerance =0.0;
Standard_Boolean closed_flag = Standard_False ;
nb_curve = 0;
while ( WExp.More()){ //computation of the curve number
nb_curve++ ;
WExp.Next();
}
if (nb_curve > 1) {
TColGeom_Array1OfBSplineCurve tab(0,nb_curve-1); //array of the wire's curve
TColStd_Array1OfReal tabtolvertex(0,nb_curve-2); //array of the tolerance's vertex
WExp.Init(W);
for (index=0 ;index<nb_curve; index++){ //main loop
edge = WExp.Current() ;
const Handle(Geom_Curve)& aCurve = BRep_Tool::Curve(edge, L, First, Last);
Handle(Geom_TrimmedCurve) aTrCurve = new Geom_TrimmedCurve(aCurve, First, Last);
tab(index) = GeomConvert::CurveToBSplineCurve(aTrCurve); //storage in a array
tab(index)->Transform(L.Transformation());
GeomConvert::C0BSplineToC1BSplineCurve(tab(index),Precision::Confusion());
if (index >= 1){ //continuity test loop
if (edge.Orientation()==TopAbs_REVERSED)
tab(index)->Reverse();
tolleft=BRep_Tool::Tolerance(TopExp::LastVertex(edge));
tolright=BRep_Tool::Tolerance(TopExp::FirstVertex(edge));
tabtolvertex(index-1)=Max(tolleft,tolright);
}
if(index==0){ //storage of the first edge features
First0=First;
if(edge.Orientation()==TopAbs_REVERSED){ //(useful for the closed wire)
Vfirst=TopExp::LastVertex(edge);
tab(index)->Reverse();
}
else
Vfirst=TopExp::FirstVertex(edge);
}
if(index==nb_curve-1){ //storage of the last edge features
if(edge.Orientation()==TopAbs_REVERSED)
Vlast=TopExp::FirstVertex(edge);
else
Vlast=TopExp::LastVertex(edge);
}
WExp.Next() ;
}
if (BRep_Tool::Tolerance(Vfirst)>BRep_Tool::Tolerance(Vlast)) //computation of the closing tolerance
toler=BRep_Tool::Tolerance(Vfirst);
else
toler=BRep_Tool::Tolerance(Vlast);
Pfirst=BRep_Tool::Pnt(Vfirst);
Plast=BRep_Tool::Pnt(Vlast);
if ((Pfirst.Distance(Plast)<=toler)&& //C0 continuity test at the closing point
(GeomLProp::Continuity(tab(nb_curve-1),tab(0),Last,First0,
Standard_True,Standard_True,
toler, TolAngular)>=GeomAbs_G1))
{
// clang-format off
closed_tolerance =toler; //if ClosedG1!=0 it will be True and
// clang-format on
closed_flag = Standard_True ;
} //with the toler value
Handle(TColGeom_HArray1OfBSplineCurve) concatcurve; //array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfIndices; //array of the remaining Vertex
if (Option==GeomAbs_G1)
GeomConvert::ConcatG1(tab,
tabtolvertex,
concatcurve,
closed_flag,
closed_tolerance) ; //G1 concatenation
else
GeomConvert::ConcatC1(tab,
tabtolvertex,
ArrayOfIndices,
concatcurve,
closed_flag,
closed_tolerance); //C1 concatenation
for (index=0;index<=(concatcurve->Length()-1);index++){ //building of the resulting Wire
BRepLib_MakeEdge EdgeBuilder(concatcurve->Value(index));
edge = EdgeBuilder.Edge();
MakeResult.Add(edge);
}
}
else {
WExp.Init(W);
edge = WExp.Current() ;
const Handle(Geom_Curve)& aC = BRep_Tool::Curve(edge,L,First,Last);
Handle(Geom_BSplineCurve) aBS = GeomConvert::CurveToBSplineCurve(new Geom_TrimmedCurve(aC,First,Last));
aBS->Transform(L.Transformation());
GeomConvert::C0BSplineToC1BSplineCurve(aBS, Precision::Confusion());
if (edge.Orientation()==TopAbs_REVERSED)
{
aBS->Reverse();
}
BRepLib_MakeEdge EdgeBuilder(aBS);
edge = EdgeBuilder.Edge();
MakeResult.Add(edge);
}
return MakeResult.Wire() ;
}
//=======================================================================
//function : ConcatenateWireC0
//purpose :
//=======================================================================
TopoDS_Edge BRepAlgo::ConcatenateWireC0(const TopoDS_Wire& aWire)
{
Standard_Real LinTol = Precision::Confusion();
Standard_Real AngTol = Precision::Angular();
TopoDS_Edge ResEdge;
TopoDS_Wire theWire = aWire;
BRepLib::BuildCurves3d(theWire);
Handle(ShapeFix_Shape) Fixer = new ShapeFix_Shape(theWire);
Fixer->SetPrecision(LinTol);
Fixer->SetMaxTolerance(LinTol);
Fixer->Perform();
theWire = TopoDS::Wire(Fixer->Shape());
TColGeom_SequenceOfCurve CurveSeq;
TColStd_SequenceOfReal FparSeq;
TColStd_SequenceOfReal LparSeq;
TColStd_SequenceOfReal TolSeq;
TColStd_SequenceOfBoolean IsFwdSeq;
GeomAbs_CurveType CurType = GeomAbs_OtherCurve;
TopoDS_Vertex FirstVertex, LastVertex;
BRepTools_WireExplorer wexp(theWire);
for (; wexp.More(); wexp.Next()) {
const TopoDS_Edge& anEdge = wexp.Current();
Standard_Real fpar, lpar;
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(anEdge, fpar, lpar);
if (aCurve.IsNull())
continue;
GeomAdaptor_Curve aGACurve(aCurve);
GeomAbs_CurveType aType = aGACurve.GetType();
const Handle(Geom_Curve)& aBasisCurve = aGACurve.Curve();
Standard_Boolean isFwd = (wexp.Orientation() != TopAbs_REVERSED);
if (aBasisCurve->IsPeriodic()) {
ElCLib::AdjustPeriodic
(aBasisCurve->FirstParameter(), aBasisCurve->LastParameter(),
Precision::PConfusion(), fpar, lpar);
}
if (CurveSeq.IsEmpty()) {
CurveSeq.Append(aCurve);
FparSeq.Append(fpar);
LparSeq.Append(lpar);
IsFwdSeq.Append(isFwd);
CurType = aType;
FirstVertex = wexp.CurrentVertex();
} else {
Standard_Boolean isSameCurve = Standard_False;
Standard_Real NewFpar = RealFirst(), NewLpar = RealLast();
GeomAdaptor_Curve GAprevcurve(CurveSeq.Last());
if (aCurve == CurveSeq.Last()) {
NewFpar = fpar;
NewLpar = lpar;
isSameCurve = Standard_True;
} else if (aType == CurType) {
switch (aType) {
case GeomAbs_Line:
{
gp_Lin aLine = aGACurve.Line();
gp_Lin PrevLine = GAprevcurve.Line();
if (aLine.Contains(PrevLine.Location(), LinTol) &&
aLine.Direction().IsParallel(PrevLine.Direction(), AngTol)) {
gp_Pnt P1 = ElCLib::Value(fpar, aLine);
gp_Pnt P2 = ElCLib::Value(lpar, aLine);
NewFpar = ElCLib::Parameter(PrevLine, P1);
NewLpar = ElCLib::Parameter(PrevLine, P2);
isSameCurve = Standard_True;
}
break;
}
case GeomAbs_Circle:
{
gp_Circ aCircle = aGACurve.Circle();
gp_Circ PrevCircle = GAprevcurve.Circle();
if (aCircle.Location().Distance(PrevCircle.Location()) <= LinTol &&
Abs(aCircle.Radius() - PrevCircle.Radius()) <= LinTol &&
aCircle.Axis().IsParallel(PrevCircle.Axis(), AngTol)) {
gp_Pnt P1 = ElCLib::Value(fpar, aCircle);
gp_Pnt P2 = ElCLib::Value(lpar, aCircle);
NewFpar = ElCLib::Parameter(PrevCircle, P1);
NewLpar = ElCLib::Parameter(PrevCircle, P2);
isSameCurve = Standard_True;
}
break;
}
case GeomAbs_Ellipse:
{
gp_Elips anEllipse = aGACurve.Ellipse();
gp_Elips PrevEllipse = GAprevcurve.Ellipse();
if (anEllipse.Focus1().Distance(PrevEllipse.Focus1()) <= LinTol &&
anEllipse.Focus2().Distance(PrevEllipse.Focus2()) <= LinTol &&
Abs(anEllipse.MajorRadius() - PrevEllipse.MajorRadius()) <= LinTol &&
Abs(anEllipse.MinorRadius() - PrevEllipse.MinorRadius()) <= LinTol &&
anEllipse.Axis().IsParallel(PrevEllipse.Axis(), AngTol)) {
gp_Pnt P1 = ElCLib::Value(fpar, anEllipse);
gp_Pnt P2 = ElCLib::Value(lpar, anEllipse);
NewFpar = ElCLib::Parameter(PrevEllipse, P1);
NewLpar = ElCLib::Parameter(PrevEllipse, P2);
isSameCurve = Standard_True;
}
break;
}
case GeomAbs_Hyperbola:
{
gp_Hypr aHypr = aGACurve.Hyperbola();
gp_Hypr PrevHypr = GAprevcurve.Hyperbola();
if (aHypr.Focus1().Distance(PrevHypr.Focus1()) <= LinTol &&
aHypr.Focus2().Distance(PrevHypr.Focus2()) <= LinTol &&
Abs(aHypr.MajorRadius() - PrevHypr.MajorRadius()) <= LinTol &&
Abs(aHypr.MinorRadius() - PrevHypr.MinorRadius()) <= LinTol &&
aHypr.Axis().IsParallel(PrevHypr.Axis(), AngTol)) {
gp_Pnt P1 = ElCLib::Value(fpar, aHypr);
gp_Pnt P2 = ElCLib::Value(lpar, aHypr);
NewFpar = ElCLib::Parameter(PrevHypr, P1);
NewLpar = ElCLib::Parameter(PrevHypr, P2);
isSameCurve = Standard_True;
}
break;
}
case GeomAbs_Parabola:
{
gp_Parab aParab = aGACurve.Parabola();
gp_Parab PrevParab = GAprevcurve.Parabola();
if (aParab.Location().Distance(PrevParab.Location()) <= LinTol &&
aParab.Focus().Distance(PrevParab.Focus()) <= LinTol &&
Abs(aParab.Focal() - PrevParab.Focal()) <= LinTol &&
aParab.Axis().IsParallel(PrevParab.Axis(), AngTol)) {
gp_Pnt P1 = ElCLib::Value(fpar, aParab);
gp_Pnt P2 = ElCLib::Value(lpar, aParab);
NewFpar = ElCLib::Parameter(PrevParab, P1);
NewLpar = ElCLib::Parameter(PrevParab, P2);
isSameCurve = Standard_True;
}
break;
}
default:
break;
} //end of switch
} //end of else
if (isSameCurve) {
const Standard_Boolean isSameDir = (isFwd == IsFwdSeq.Last());
if (aBasisCurve->IsPeriodic()) {
// Treat periodic curves.
const Standard_Real aPeriod = aBasisCurve->Period();
if (isSameDir) {
// Check if first parameter is greater then the last one.
while (NewFpar > NewLpar) {
NewFpar -= aPeriod;
}
} else { // !isSameDir
// Check if last parameter is greater then the first one.
while (NewLpar > NewFpar) {
NewLpar -= aPeriod;
}
// Change parameters
const Standard_Real aTmpPar = NewLpar;
NewLpar = NewFpar;
NewFpar = aTmpPar;
}
// Udjust parameters on periodic curves.
if (IsFwdSeq.Last()) {
// The current curve should be after the previous one.
ElCLib::AdjustPeriodic(LparSeq.Last(), LparSeq.Last() + aPeriod,
Precision::PConfusion(), NewFpar, NewLpar);
} else {
// The current curve should be before the previous one.
ElCLib::AdjustPeriodic(FparSeq.Last() - aPeriod, FparSeq.Last(),
Precision::PConfusion(), NewFpar, NewLpar);
}
} else if (!isSameDir) {
// Not periodic curves. Opposite dirs.
const Standard_Real aTmpPar = NewLpar;
NewLpar = NewFpar;
NewFpar = aTmpPar;
}
if (IsFwdSeq.Last()) {
// Update last parameter
LparSeq(LparSeq.Length()) = NewLpar;
} else {
// Update first parameter
FparSeq(FparSeq.Length()) = NewFpar;
}
} else {
// Add new curve.
CurveSeq.Append(aCurve);
FparSeq.Append(fpar);
LparSeq.Append(lpar);
IsFwdSeq.Append(isFwd);
TolSeq.Append(BRep_Tool::Tolerance(wexp.CurrentVertex()));
CurType = aType;
}
}
}
LastVertex = wexp.CurrentVertex();
TolSeq.Append(BRep_Tool::Tolerance(LastVertex));
Standard_Boolean isReverse = Standard_False;
if (!IsFwdSeq.IsEmpty()) {
isReverse = !IsFwdSeq(1);
}
TopoDS_Vertex FirstVtx_final, LastVtx_final;
if (isReverse)
{
FirstVtx_final = LastVertex;
LastVtx_final = FirstVertex;
}
else
{
FirstVtx_final = FirstVertex;
LastVtx_final = LastVertex;
}
FirstVtx_final.Orientation(TopAbs_FORWARD);
LastVtx_final.Orientation(TopAbs_REVERSED);
if (CurveSeq.IsEmpty())
return ResEdge;
Standard_Integer nb_curve = CurveSeq.Length(); //number of curves
TColGeom_Array1OfBSplineCurve tab(0,nb_curve-1); //array of the curves
TColStd_Array1OfReal tabtolvertex(0,nb_curve-1); //(0,nb_curve-2); //array of the tolerances
Standard_Integer i;
if (nb_curve > 1)
{
for (i = 1; i <= nb_curve; i++)
{
if (CurveSeq(i)->IsInstance(STANDARD_TYPE(Geom_TrimmedCurve)))
CurveSeq(i) = (*((Handle(Geom_TrimmedCurve)*)&(CurveSeq(i))))->BasisCurve();
Handle(Geom_TrimmedCurve) aTrCurve = new Geom_TrimmedCurve(CurveSeq(i), FparSeq(i), LparSeq(i));
tab(i-1) = GeomConvert::CurveToBSplineCurve(aTrCurve);
GeomConvert::C0BSplineToC1BSplineCurve(tab(i-1), Precision::Confusion());
if (!IsFwdSeq(i)) {
tab(i-1)->Reverse();
}
//Temporary
//char* name = new char[100];
//sprintf(name, "c%d", i);
//DrawTrSurf::Set(name, tab(i-1));
if (i > 1)
tabtolvertex(i-2) = TolSeq(i-1) * 5.;
}
tabtolvertex(nb_curve-1) = TolSeq(TolSeq.Length()) * 5.;
Standard_Boolean closed_flag = Standard_False;
Standard_Real closed_tolerance = 0.;
if (FirstVertex.IsSame(LastVertex) &&
GeomLProp::Continuity(tab(0), tab(nb_curve-1),
tab(0)->FirstParameter(),
tab(nb_curve-1)->LastParameter(),
Standard_False, Standard_False, LinTol, AngTol) >= GeomAbs_G1)
{
closed_flag = Standard_True ;
closed_tolerance = BRep_Tool::Tolerance(FirstVertex);
}
Handle(TColGeom_HArray1OfBSplineCurve) concatcurve; //array of the concatenated curves
Handle(TColStd_HArray1OfInteger) ArrayOfIndices; //array of the remaining Vertex
GeomConvert::ConcatC1(tab,
tabtolvertex,
ArrayOfIndices,
concatcurve,
closed_flag,
closed_tolerance); //C1 concatenation
if (concatcurve->Length() > 1)
{
Standard_Real MaxTolVer = LinTol;
for (i = 1; i <= TolSeq.Length(); i++)
if (TolSeq(i) > MaxTolVer)
MaxTolVer = TolSeq(i);
MaxTolVer *= 5.;
GeomConvert_CompCurveToBSplineCurve Concat(concatcurve->Value(concatcurve->Lower()));
for (i = concatcurve->Lower()+1; i <= concatcurve->Upper(); i++)
Concat.Add( concatcurve->Value(i), MaxTolVer, Standard_True );
concatcurve->SetValue(concatcurve->Lower(), Concat.BSplineCurve());
}
if (isReverse) {
concatcurve->ChangeValue(concatcurve->Lower())->Reverse();
}
ResEdge = BRepLib_MakeEdge(concatcurve->Value(concatcurve->Lower()),
FirstVtx_final, LastVtx_final,
concatcurve->Value(concatcurve->Lower())->FirstParameter(),
concatcurve->Value(concatcurve->Lower())->LastParameter());
}
else
{
if (CurveSeq(1)->IsInstance(STANDARD_TYPE(Geom_TrimmedCurve)))
CurveSeq(1) = (*((Handle(Geom_TrimmedCurve)*)&(CurveSeq(1))))->BasisCurve();
Handle(Geom_Curve) aCopyCurve =
Handle(Geom_Curve)::DownCast(CurveSeq(1)->Copy());
ResEdge = BRepLib_MakeEdge(aCopyCurve,
FirstVtx_final, LastVtx_final,
FparSeq(1), LparSeq(1));
}
if (isReverse)
ResEdge.Reverse();
return ResEdge;
}