1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-04 18:06:22 +03:00
occt/src/OpenGl/OpenGl_CappingPlaneResource.cxx
isk f8ae360566 0023028: Visualization, TKOpenGl - eliminate global static variables
OpenGl_CappingAlgo - move global variables to OpenGl_Workspace class fields.
OpenGl_View::ShaderSource::Source() - drop static for local variable.
OpenGl_Window - drop redundant global constant THE_DEFAULT_BG_COLOR.
2015-06-25 15:06:24 +03:00

222 lines
7.5 KiB
C++
Executable File

// Created on: 2013-08-15
// Created by: Anton POLETAEV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <NCollection_AlignedAllocator.hxx>
#include <OpenGl_CappingPlaneResource.hxx>
#include <OpenGl_Context.hxx>
#include <OpenGl_Vec.hxx>
#include <Precision.hxx>
namespace
{
//! 12 plane vertices, interleaved:
//! - 4 floats, position
//! - 4 floats, normal
//! - 4 floats, UV texture coordinates
static const GLfloat THE_CAPPING_PLN_VERTS[12 * (4 + 4 + 4)] =
{
0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f,-1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.0f, 0.0f,-1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f
};
static const OpenGl_Matrix OpenGl_IdentityMatrix =
{
// mat[4][4]
{ { 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f } }
};
}
IMPLEMENT_STANDARD_HANDLE (OpenGl_CappingPlaneResource, OpenGl_Resource)
IMPLEMENT_STANDARD_RTTIEXT(OpenGl_CappingPlaneResource, OpenGl_Resource)
// =======================================================================
// function : OpenGl_CappingPlaneResource
// purpose :
// =======================================================================
OpenGl_CappingPlaneResource::OpenGl_CappingPlaneResource (const Handle(Graphic3d_ClipPlane)& thePlane)
: myPrimitives (NULL),
myOrientation (OpenGl_IdentityMatrix),
myAspect (NULL),
myPlaneRoot (thePlane),
myEquationMod ((unsigned int )-1),
myAspectMod ((unsigned int )-1)
{
// Fill primitive array
Handle(NCollection_AlignedAllocator) anAlloc = new NCollection_AlignedAllocator (16);
Handle(Graphic3d_Buffer) anAttribs = new Graphic3d_Buffer (anAlloc);
Graphic3d_Attribute anAttribInfo[] =
{
{ Graphic3d_TOA_POS, Graphic3d_TOD_VEC4 },
{ Graphic3d_TOA_NORM, Graphic3d_TOD_VEC4 },
{ Graphic3d_TOA_UV, Graphic3d_TOD_VEC4 }
};
if (anAttribs->Init (12, anAttribInfo, 3))
{
memcpy (anAttribs->ChangeData(), THE_CAPPING_PLN_VERTS, sizeof(THE_CAPPING_PLN_VERTS));
myPrimitives.InitBuffers (NULL, Graphic3d_TOPA_TRIANGLES, NULL, anAttribs, NULL);
}
}
// =======================================================================
// function : OpenGl_CappingPlaneResource
// purpose :
// =======================================================================
OpenGl_CappingPlaneResource::~OpenGl_CappingPlaneResource()
{
Release (NULL);
}
// =======================================================================
// function : Update
// purpose :
// =======================================================================
void OpenGl_CappingPlaneResource::Update (const Handle(OpenGl_Context)& theContext)
{
UpdateTransform();
UpdateAspect (theContext);
}
// =======================================================================
// function : Release
// purpose :
// =======================================================================
void OpenGl_CappingPlaneResource::Release (OpenGl_Context* theContext)
{
OpenGl_Element::Destroy (theContext, myAspect);
myPrimitives.Release (theContext);
myEquationMod = (unsigned int )-1;
myAspectMod = (unsigned int )-1;
}
// =======================================================================
// function : UpdateAspect
// purpose :
// =======================================================================
void OpenGl_CappingPlaneResource::UpdateAspect (const Handle(OpenGl_Context)& theContext)
{
Handle(Graphic3d_AspectFillArea3d) aCappingAsp = myPlaneRoot->CappingAspect();
if (myAspect != NULL && !aCappingAsp.IsNull())
{
if (myAspectMod == myPlaneRoot->MCountAspect())
return; // noting to update
myAspect->SetAspect (aCappingAsp);
myAspectMod = myPlaneRoot->MCountAspect();
return;
}
// no more used
if (myAspect != NULL && aCappingAsp.IsNull())
{
OpenGl_Element::Destroy (theContext.operator->(), myAspect);
myAspectMod = myPlaneRoot->MCountAspect();
return;
}
// first created
if (myAspect == NULL && !aCappingAsp.IsNull())
{
myAspect = new OpenGl_AspectFace();
myAspect->SetAspect (aCappingAsp);
myAspectMod = myPlaneRoot->MCountAspect();
}
}
// =======================================================================
// function : UpdateTransform
// purpose :
// =======================================================================
void OpenGl_CappingPlaneResource::UpdateTransform()
{
const Graphic3d_ClipPlane::Equation& anEquation = myPlaneRoot->GetEquation();
if (myEquationMod == myPlaneRoot->MCountEquation())
{
return; // nothing to update
}
// re-evaluate infinite plane transformation matrix
Standard_ShortReal N[3] =
{ (Standard_ShortReal)anEquation[0],
(Standard_ShortReal)anEquation[1],
(Standard_ShortReal)anEquation[2] };
Standard_ShortReal T[3] =
{ (Standard_ShortReal)(anEquation[0] * -anEquation[3]),
(Standard_ShortReal)(anEquation[1] * -anEquation[3]),
(Standard_ShortReal)(anEquation[2] * -anEquation[3]) };
Standard_ShortReal L[3] = { 0.0f, 0.0f, 0.0f };
Standard_ShortReal F[3] = { 0.0f, 0.0f, 0.0f };
// project plane normal onto OX to find left vector
Standard_ShortReal aConfusion = (Standard_ShortReal)Precision::Confusion();
Standard_ShortReal aProjLen =
sqrt ( (Standard_ShortReal)(anEquation[0] * anEquation[0])
+ (Standard_ShortReal)(anEquation[2] * anEquation[2]));
if (aProjLen < aConfusion)
{
L[0] = 1.0f;
}
else
{
L[0] = N[2] / aProjLen;
L[2] = -N[0] / aProjLen;
}
// (-aLeft) x aNorm
F[0] = (-L[1])*N[2] - (-L[2])*N[1];
F[1] = (-L[2])*N[0] - (-L[0])*N[2];
F[2] = (-L[0])*N[1] - (-L[1])*N[0];
myOrientation.mat[0][0] = L[0];
myOrientation.mat[0][1] = L[1];
myOrientation.mat[0][2] = L[2];
myOrientation.mat[0][3] = 0.0f;
myOrientation.mat[1][0] = N[0];
myOrientation.mat[1][1] = N[1];
myOrientation.mat[1][2] = N[2];
myOrientation.mat[1][3] = 0.0f;
myOrientation.mat[2][0] = F[0];
myOrientation.mat[2][1] = F[1];
myOrientation.mat[2][2] = F[2];
myOrientation.mat[2][3] = 0.0f;
myOrientation.mat[3][0] = T[0];
myOrientation.mat[3][1] = T[1];
myOrientation.mat[3][2] = T[2];
myOrientation.mat[3][3] = 1.0f;
myEquationMod = myPlaneRoot->MCountEquation();
}