mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
910 lines
33 KiB
C++
910 lines
33 KiB
C++
// Created: 2009-01-21
|
|
//
|
|
// Copyright (c) 2009-2013 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of commercial software by OPEN CASCADE SAS,
|
|
// furnished in accordance with the terms and conditions of the contract
|
|
// and with the inclusion of this copyright notice.
|
|
// This file or any part thereof may not be provided or otherwise
|
|
// made available to any third party.
|
|
//
|
|
// No ownership title to the software is transferred hereby.
|
|
//
|
|
// OPEN CASCADE SAS makes no representation or warranties with respect to the
|
|
// performance of this software, and specifically disclaims any responsibility
|
|
// for any damages, special or consequential, connected with its use.
|
|
|
|
#include <Geom2dConvert_ApproxArcsSegments.hxx>
|
|
|
|
#include <Adaptor2d_Curve2d.hxx>
|
|
#include <ElCLib.hxx>
|
|
#include <GCE2d_MakeArcOfCircle.hxx>
|
|
#include <GCE2d_MakeSegment.hxx>
|
|
#include <GCPnts_QuasiUniformDeflection.hxx>
|
|
#include <Geom2d_Circle.hxx>
|
|
#include <Geom2d_Line.hxx>
|
|
#include <Geom2d_TrimmedCurve.hxx>
|
|
#include <NCollection_IncAllocator.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_Version.hxx>
|
|
#include <gp.hxx>
|
|
#include <gp_Ax2d.hxx>
|
|
#include <gp_Lin2d.hxx>
|
|
|
|
static const Standard_Integer MAXPOINTS = 100;
|
|
static const Standard_Real MyCurvatureTolerance = 0.0001;
|
|
|
|
static Standard_Boolean checkContinuity (const Handle(Geom2d_Curve)& theCurve1,
|
|
const Handle(Geom2d_Curve)& theCurve2,
|
|
const Standard_Real theAnglTol);
|
|
|
|
static Geom2dConvert_PPoint getParameter (const gp_XY& theXY1,
|
|
const Standard_Real theFirstPar,
|
|
const Standard_Real theLastPar,
|
|
const Adaptor2d_Curve2d& theCurve);
|
|
|
|
static Standard_Boolean isInflectionPoint (const Standard_Real theParam,
|
|
const Adaptor2d_Curve2d& theCurve);
|
|
|
|
static Standard_Boolean isInflectionPoint (const Standard_Real theParam,
|
|
const Geom2dConvert_PPoint& theFirstInf,
|
|
const Adaptor2d_Curve2d& theCurve,
|
|
const Standard_Real theAnglTol);
|
|
|
|
|
|
//=======================================================================
|
|
//function : Geom2dConvert_ApproxArcsSegments()
|
|
//purpose : Constructor
|
|
//=======================================================================
|
|
|
|
Geom2dConvert_ApproxArcsSegments::Geom2dConvert_ApproxArcsSegments
|
|
(const Adaptor2d_Curve2d& theCurve,
|
|
const Standard_Real theTolerance,
|
|
const Standard_Real theAngleTol)
|
|
: myCurve (theCurve),
|
|
myAlloc (new NCollection_IncAllocator(4000)),
|
|
myTolerance (theTolerance),
|
|
myAngleTolerance (theAngleTol),
|
|
mySeqParams (myAlloc),
|
|
myStatus (StatusNotDone)
|
|
{
|
|
myExt[0] = Geom2dConvert_PPoint(myCurve.FirstParameter(), myCurve);
|
|
myExt[1] = Geom2dConvert_PPoint(myCurve.LastParameter(), myCurve);
|
|
|
|
switch (myCurve.GetType())
|
|
{
|
|
case GeomAbs_Line:
|
|
{
|
|
// Create a single line segment.
|
|
const Standard_Real aDist = myExt[0].Dist(myExt[1]);
|
|
if (aDist > Precision::Confusion()) {
|
|
const gp_Ax2d anAx2d(myExt[0].Point(), gp_Vec2d(myExt[0].Point(),
|
|
myExt[1].Point()));
|
|
const Handle(Geom2d_Line) aLine = new Geom2d_Line(anAx2d);
|
|
mySeqCurves.Append(new Geom2d_TrimmedCurve(aLine, 0., aDist));
|
|
myStatus = StatusOK;
|
|
}
|
|
}
|
|
break;
|
|
case GeomAbs_Circle:
|
|
{
|
|
// Create a couple of arcs of equal size.
|
|
const Geom2dConvert_PPoint aPP(.5 *(myExt[0].Parameter() +
|
|
myExt[1].Parameter()), myCurve);
|
|
Handle(Geom2d_Curve) aCurve = makeCircle (myExt[0], aPP);
|
|
if (aCurve.IsNull() == Standard_False) {
|
|
mySeqCurves.Append(aCurve);
|
|
aCurve = makeCircle (aPP, myExt[1]);
|
|
if (aCurve.IsNull() == Standard_False)
|
|
mySeqCurves.Append(aCurve);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
makeFreeform();
|
|
}
|
|
|
|
// Check status of the calculation
|
|
if (myStatus == StatusNotDone) {
|
|
if (mySeqCurves.IsEmpty() == Standard_False)
|
|
myStatus = StatusOK;
|
|
else {
|
|
//std::cout << "GeomConv2d_Approx: no geometry converted." << std::endl;
|
|
myStatus = StatusError;
|
|
}
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makeCircle
|
|
//purpose : method for creation of circle
|
|
//=======================================================================
|
|
|
|
Handle(Geom2d_Curve) Geom2dConvert_ApproxArcsSegments::makeCircle
|
|
(const Geom2dConvert_PPoint& theFirst,
|
|
const Geom2dConvert_PPoint& theLast) const
|
|
{
|
|
Handle(Geom2d_Curve) aResult;
|
|
gp_Pnt2d aPointM (0.0,0.0);
|
|
const Standard_Real aParaM = (theFirst.Parameter() + theLast.Parameter()) *.5;
|
|
myCurve.D0(aParaM, aPointM);
|
|
GCE2d_MakeArcOfCircle aMakeArc1(theFirst.Point(), aPointM, theLast.Point());
|
|
|
|
if (aMakeArc1.IsDone())
|
|
aResult = aMakeArc1.Value();
|
|
//else
|
|
//std::cout << "makeCircle(): Circle not built" << std::endl;
|
|
return aResult;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makeArc
|
|
//purpose : creation arcs by two points and derivative in the first point
|
|
/// : parameter isFirst specified direction of the arc.
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeArc
|
|
(const Geom2dConvert_PPoint& theParam1,
|
|
Geom2dConvert_PPoint& theParam2,
|
|
const Standard_Boolean isFirst,
|
|
Handle(Geom2d_TrimmedCurve)& theCurve) const
|
|
{
|
|
const gp_XY aP1 (theParam1.Point());
|
|
const gp_XY aP2 (theParam2.Point());
|
|
const gp_XY aVec (isFirst? theParam1.D1() : -theParam1.D1());
|
|
|
|
// Detect the sense (CCW means positive)
|
|
const gp_XY aDelta = aP2 - aP1;
|
|
Standard_Real aSense = aVec ^ aDelta;
|
|
if (aSense > Precision::Angular())
|
|
aSense = 1.;
|
|
else if (aSense < -Precision::Angular())
|
|
aSense = -1.;
|
|
else {
|
|
//std::cout << "makeArc(): Arc Not Built" << std::endl;
|
|
return Standard_False;
|
|
}
|
|
|
|
// Find the centre of the circle
|
|
const gp_XY aMiddle = (aP2 + aP1) * 0.5;
|
|
const Standard_Real prodP1V = aP1 * aVec;
|
|
const Standard_Real prodDeM = aDelta * aMiddle;
|
|
const Standard_Real vprodVD = aVec ^ aDelta;
|
|
const Standard_Real aResolution = gp::Resolution();
|
|
|
|
if (vprodVD < -aResolution || vprodVD > aResolution) {
|
|
const gp_Pnt2d aCenter((prodP1V * aDelta.Y() - prodDeM * aVec.Y())/vprodVD,
|
|
(prodDeM * aVec.X() - prodP1V * aDelta.X())/vprodVD);
|
|
const Standard_Real aRad =
|
|
(aCenter.Distance(aP1) + aCenter.Distance(aP2)) * 0.5;
|
|
const gp_Ax22d ax22d (aCenter, gp_Dir2d(1., 0.), gp_Dir2d(0., 1.));
|
|
const gp_Circ2d aCir (ax22d, aRad);
|
|
const Handle(Geom2d_Circle) Circ = new Geom2d_Circle(aCir);
|
|
|
|
//calculation parameters first and last points of arc.
|
|
Standard_Real anAlpha1, anAlpha2;
|
|
if (isFirst) {
|
|
anAlpha1 = ElCLib::Parameter(aCir, aP1);
|
|
anAlpha2 = ElCLib::Parameter(aCir, aP2);
|
|
} else {
|
|
anAlpha1 = ElCLib::Parameter(aCir, aP2);
|
|
anAlpha2 = ElCLib::Parameter(aCir, aP1);
|
|
aSense = -aSense;
|
|
}
|
|
|
|
if (fabs (anAlpha1 - anAlpha2) < 1e-100)
|
|
// very small value, just to avoid exact match
|
|
return Standard_False;
|
|
|
|
// Reverse the circle if the sense is negative
|
|
if (aSense < 0.) {
|
|
anAlpha1 = Circ->ReversedParameter(anAlpha1);
|
|
anAlpha2 = Circ->ReversedParameter(anAlpha2);
|
|
Circ->Reverse();
|
|
}
|
|
theCurve = new Geom2d_TrimmedCurve(Circ, anAlpha1, anAlpha2);
|
|
// Correct the direction in the opposite point
|
|
const gp_XY aRadV = theParam2.Point() - aCenter.XY();
|
|
theParam2.SetD1(gp_XY(- aRadV.Y() * aSense, aRadV.X() * aSense));
|
|
return Standard_True;
|
|
}
|
|
|
|
// Algorithm failed, possibly because aVec is normal to the chorde
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makeLine
|
|
//purpose : method for creation of line
|
|
//=======================================================================
|
|
|
|
Handle(Geom2d_TrimmedCurve) Geom2dConvert_ApproxArcsSegments::makeLine
|
|
(Geom2dConvert_PPoint& theFirst,
|
|
Geom2dConvert_PPoint& theLast,
|
|
const Standard_Boolean isCheck) const
|
|
{
|
|
Handle(Geom2d_TrimmedCurve) aResult;
|
|
|
|
gp_XY aSlope = theLast.Point() - theFirst.Point();
|
|
if (fabs(aSlope.SquareModulus()) < gp::Resolution())
|
|
return aResult;
|
|
gp_Dir2d aDirLine(aSlope);
|
|
|
|
if (isCheck) {
|
|
if (theFirst.D1().SquareModulus() < gp::Resolution() ||
|
|
theLast.D1().SquareModulus() < gp::Resolution())
|
|
return aResult;
|
|
|
|
// Angular continuity (G1) is only checked when the end of the line is not
|
|
// on the extremity of the curve
|
|
Standard_Real absAngle[2] = { 0., 0. };
|
|
if (theFirst != myExt[0]) {
|
|
const Standard_Real anAng = aDirLine.Angle(theFirst.D1());
|
|
absAngle[0] = (anAng > 0. ? anAng : -anAng);
|
|
}
|
|
if (theLast != myExt[1]) {
|
|
const Standard_Real anAng = aDirLine.Angle(theLast.D1());
|
|
absAngle[1] = (anAng > 0. ? anAng : -anAng);
|
|
}
|
|
|
|
// if the derivatives in the end points differ from the derivative line
|
|
// more than value of the specified continuity tolerance
|
|
// then a biarc should be built instead of a line.
|
|
const Standard_Real aContTolerance = ::Max(myAngleTolerance, 0.01);
|
|
if (absAngle[0] > aContTolerance || absAngle[1] > aContTolerance) {
|
|
//std::cout << "makeLine(): Line not built" << std::endl;
|
|
return aResult;
|
|
}
|
|
} // end if (isCheck)
|
|
|
|
//building segment of line
|
|
GCE2d_MakeSegment aMakeSeg (theFirst.Point(), theLast.Point());
|
|
if (aMakeSeg.IsDone()) {
|
|
Handle(Geom2d_TrimmedCurve) aCurve = aMakeSeg.Value();
|
|
if (checkCurve (aCurve, theFirst.Parameter(), theLast.Parameter())) {
|
|
aResult = aCurve;
|
|
// correct the derivatives fields in both arguments
|
|
const gp_XY aNewD1 (theLast.Point() - theFirst.Point());
|
|
theFirst.SetD1(aNewD1);
|
|
theLast.SetD1(aNewD1);
|
|
}
|
|
}
|
|
//else
|
|
//std::cout << "makeLine(): Line not built" << std::endl;
|
|
return aResult;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makeFreeform
|
|
//purpose : get a sequence of Geom curves from one curve
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeFreeform()
|
|
{
|
|
Geom2dConvert_SequenceOfPPoint seqParamPoints(myAlloc);
|
|
Geom2dConvert_PPoint* aPrevParam = &myExt[0];
|
|
|
|
//calculation of the inflection points.
|
|
getLinearParts(seqParamPoints);
|
|
const Standard_Boolean isNoInfPoints = seqParamPoints.IsEmpty();
|
|
|
|
TColGeom2d_SequenceOfCurve aSeqLinearParts;
|
|
Standard_Boolean isDone (Standard_True);
|
|
Standard_Integer i;
|
|
for (i = 1; i < seqParamPoints.Length(); i += 2)
|
|
{
|
|
Handle(Geom2d_Curve) aLineCurve;
|
|
Geom2dConvert_PPoint& aParam0 = seqParamPoints.ChangeValue(i);
|
|
Geom2dConvert_PPoint& aParam1 = seqParamPoints.ChangeValue(i+1);
|
|
if (aParam0 != aParam1)
|
|
//linear part of the curve lies between odd and even values of i.
|
|
//parameters from parameter's sequence.
|
|
aLineCurve = makeLine (aParam0, aParam1, Standard_False);
|
|
aSeqLinearParts.Append(aLineCurve);
|
|
}
|
|
|
|
for (i = 1; i < seqParamPoints.Length(); i += 2)
|
|
{
|
|
//approximation for non-linear part preceding the linear part
|
|
if (seqParamPoints(i) != * aPrevParam) {
|
|
const Standard_Integer aLastInd = mySeqCurves.Length();
|
|
isDone = makeApproximation (* aPrevParam, seqParamPoints(i));
|
|
if (isDone && aLastInd && mySeqCurves.Length() > aLastInd)
|
|
isDone = checkContinuity(mySeqCurves.Value(aLastInd),
|
|
mySeqCurves.Value(aLastInd+1),
|
|
myAngleTolerance);
|
|
if (!isDone) {
|
|
myStatus = StatusError;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const Handle(Geom2d_Curve)& aCurve = aSeqLinearParts.Value((i+1)/2);
|
|
if (aCurve.IsNull() == Standard_False)
|
|
mySeqCurves.Append(aCurve);
|
|
else {
|
|
Geom2dConvert_PPoint& aParam0 = seqParamPoints.ChangeValue(i);
|
|
Geom2dConvert_PPoint& aParam1 = seqParamPoints.ChangeValue(i+1);
|
|
const Standard_Integer aLastInd = mySeqCurves.Length();
|
|
isDone = makeApproximation (aParam0, aParam1);
|
|
if (isDone && aLastInd && mySeqCurves.Length() > aLastInd)
|
|
isDone = checkContinuity(mySeqCurves.Value(aLastInd),
|
|
mySeqCurves.Value(aLastInd+1),
|
|
myAngleTolerance);
|
|
|
|
if (!isDone) {
|
|
myStatus = StatusError;
|
|
//std::cout << "makeOther: Line not built" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
aPrevParam = &seqParamPoints(i+1);
|
|
}
|
|
|
|
//approximation for non-linear part following the last linear part
|
|
if (isDone && (* aPrevParam != myExt[1]))
|
|
{
|
|
// Case of a closed edge like an ellipse
|
|
if (isNoInfPoints &&
|
|
(myExt[0].Point() - myExt[1].Point()).Modulus() < myTolerance)
|
|
{
|
|
Geom2dConvert_PPoint aPPoint(0.5 * (myExt[0].Parameter() +
|
|
myExt[1].Parameter()), myCurve);
|
|
isDone = makeApproximation (myExt[0], aPPoint);
|
|
if (isDone)
|
|
isDone = makeApproximation (aPPoint, myExt[1]);
|
|
} else {
|
|
isDone = makeApproximation (* aPrevParam, myExt[1]);
|
|
}
|
|
if (!isDone) {
|
|
myStatus = StatusError;
|
|
//std::cout << "makeOther: Line not built" << std::endl;
|
|
}
|
|
}
|
|
|
|
return (mySeqCurves.Length() && myStatus != StatusError);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getLinearParts
|
|
//purpose : method for getting inflection points
|
|
//=======================================================================
|
|
|
|
void Geom2dConvert_ApproxArcsSegments::getLinearParts (Geom2dConvert_SequenceOfPPoint& theSeqPar)
|
|
{
|
|
Standard_Integer i;
|
|
// Fill the sequences with values along the curve
|
|
mySeqParams.Clear();
|
|
Adaptor2d_Curve2d& myCurveMut = const_cast<Adaptor2d_Curve2d&>(myCurve);
|
|
GCPnts_QuasiUniformDeflection aQUDefAlgo (myCurveMut, myTolerance * 0.5);
|
|
Standard_Boolean isUniformDone = aQUDefAlgo.IsDone();
|
|
|
|
gp_XY aLastPnt(myExt[0].Point());
|
|
if (isUniformDone) {
|
|
for (i = 1; i <= aQUDefAlgo.NbPoints(); i++) {
|
|
const Geom2dConvert_PPoint aPP (aQUDefAlgo.Parameter(i), myCurve);
|
|
mySeqParams.Append(aPP);
|
|
aLastPnt = aPP.Point();
|
|
}
|
|
} else {
|
|
const Standard_Real aParamStep =
|
|
(myExt[1].Parameter() - myExt[0].Parameter()) / MAXPOINTS;
|
|
for (i = 1; i <= MAXPOINTS; i++) {
|
|
const Standard_Real aParam = myExt[0].Parameter() + aParamStep * i;
|
|
const Geom2dConvert_PPoint aPP (aParam, myCurve);
|
|
mySeqParams.Append(aPP);
|
|
aLastPnt = aPP.Point();
|
|
}
|
|
}
|
|
|
|
//check if the curve may be linearised
|
|
gp_XY aDir = myExt[1].Point() - myExt[0].Point();
|
|
const Standard_Real aMod2 = aDir.SquareModulus();
|
|
if (aMod2 > Precision::Confusion())
|
|
{
|
|
Standard_Boolean isLinear = Standard_True;
|
|
aDir /= sqrt(aMod2);
|
|
for (i = 1; i <= mySeqParams.Length(); i++) {
|
|
// Distance from point "i" to the segment between two extremities
|
|
const Standard_Real aDist = aDir ^ (mySeqParams(i).Point() -
|
|
myExt[0].Point());
|
|
if (aDist > myTolerance * 0.5 || aDist < -myTolerance * 0.5) {
|
|
isLinear = Standard_False;
|
|
break;
|
|
}
|
|
}
|
|
if (isLinear) {
|
|
theSeqPar.Append(myExt[0]);
|
|
theSeqPar.Append(myExt[1]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
//check if point for First Parameter is inflection point.
|
|
Standard_Integer indStartLinear (0);
|
|
Geom2dConvert_PPoint aLastInflParam = myExt[0];
|
|
Geom2dConvert_PPoint aFirstInflParam = myExt[0];
|
|
|
|
// Getting further inflection points with step by parameter.
|
|
// The point with index 1 is the same as myExt[0]
|
|
for (i = 1; i <= mySeqParams.Length(); i++)
|
|
{
|
|
const Geom2dConvert_PPoint& aCurParam = mySeqParams(i);
|
|
if (indStartLinear) {
|
|
Standard_Boolean isStillInflectionFirst =
|
|
isInflectionPoint (aFirstInflParam.Parameter(), aCurParam,
|
|
myCurve, myAngleTolerance);
|
|
if (isInflectionPoint (aCurParam.Parameter(), aFirstInflParam,
|
|
myCurve, myAngleTolerance))
|
|
{
|
|
aLastInflParam = mySeqParams(i);
|
|
while (isStillInflectionFirst == Standard_False) {
|
|
if (++indStartLinear >= i) {
|
|
indStartLinear = 0;
|
|
break;
|
|
}
|
|
aFirstInflParam = mySeqParams(indStartLinear);
|
|
isStillInflectionFirst =
|
|
isInflectionPoint (aFirstInflParam.Parameter(), aCurParam,
|
|
myCurve, myAngleTolerance);
|
|
}
|
|
} else {
|
|
// Add the interval in the output sequence
|
|
// The interval is added only if it is more than 10 times the tolerance
|
|
aLastInflParam = findInflection (aLastInflParam, aCurParam);
|
|
if (!isInflectionPoint (aFirstInflParam.Parameter(), aLastInflParam,
|
|
myCurve, myAngleTolerance))
|
|
{
|
|
aFirstInflParam = findInflection (aLastInflParam, aFirstInflParam);
|
|
}
|
|
const Standard_Real aDist((aFirstInflParam.Point() -
|
|
aLastInflParam.Point()).Modulus());
|
|
if (aFirstInflParam.Parameter() < aLastInflParam.Parameter() &&
|
|
aDist > 10 * myTolerance)
|
|
{
|
|
theSeqPar.Append(aFirstInflParam);
|
|
theSeqPar.Append(aLastInflParam);
|
|
}
|
|
indStartLinear = 0;
|
|
}
|
|
} else
|
|
if (isInflectionPoint (aCurParam.Parameter(), myCurve)) {
|
|
aLastInflParam = aCurParam;
|
|
if (i > 1)
|
|
aFirstInflParam = findInflection (aCurParam, mySeqParams(i-1));
|
|
indStartLinear = i;
|
|
}
|
|
}
|
|
|
|
const Standard_Real aDist((aFirstInflParam.Point() -
|
|
myExt[1].Point()).Modulus());
|
|
if (indStartLinear && aDist > 10 * myTolerance)
|
|
{
|
|
theSeqPar.Append(aFirstInflParam);
|
|
theSeqPar.Append(myExt[1]);
|
|
}
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : findInflection
|
|
//purpose : Dichotomic search of the boundary of inflection interval, between
|
|
// two parameters on the Curve
|
|
//=======================================================================
|
|
|
|
Geom2dConvert_PPoint Geom2dConvert_ApproxArcsSegments::findInflection
|
|
(const Geom2dConvert_PPoint& theParamIsInfl,
|
|
const Geom2dConvert_PPoint& theParamNoInfl) const
|
|
{
|
|
Standard_Real aLower (theParamIsInfl.Parameter());
|
|
Standard_Real anUpper (theParamNoInfl.Parameter());
|
|
Standard_Real aTest(0.);
|
|
for (Standard_Integer i = 0; i < 3; i++) { // 3 iterations
|
|
aTest = (aLower + anUpper) * 0.5;
|
|
if (isInflectionPoint (aTest, theParamIsInfl, myCurve, myAngleTolerance))
|
|
aLower = aTest;
|
|
else
|
|
anUpper = aTest;
|
|
}
|
|
return Geom2dConvert_PPoint(aTest, myCurve);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : makeApproximation
|
|
//purpose : make approximation non-linear part of the other curve
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::makeApproximation
|
|
(Geom2dConvert_PPoint& theFirstParam,
|
|
Geom2dConvert_PPoint& theLastParam)
|
|
{
|
|
// if difference between parameters is less than Precision::PConfusion
|
|
//approximation was not made.
|
|
Standard_Boolean isDone = Standard_False;
|
|
if (theLastParam != theFirstParam) {
|
|
const Standard_Real aDistance =
|
|
(theFirstParam.Point() - theLastParam.Point()).Modulus();
|
|
if (aDistance < myTolerance)
|
|
{
|
|
const Handle(Geom2d_Curve) aCurve = makeLine(theFirstParam, theLastParam,
|
|
Standard_True);
|
|
isDone = !aCurve.IsNull();
|
|
if (isDone && mySeqCurves.Length())
|
|
isDone = checkContinuity(mySeqCurves.Last(), aCurve, myAngleTolerance);
|
|
if (isDone || aDistance < Precision::Confusion()) {
|
|
mySeqCurves.Append(aCurve);
|
|
return isDone;
|
|
}
|
|
}
|
|
//calculate biarc
|
|
isDone = calculateBiArcs (theFirstParam, theLastParam);
|
|
|
|
// if biarc was not calculated calculation is repeated on half the interval.
|
|
if (!isDone)
|
|
{
|
|
Geom2dConvert_PPoint aParaM
|
|
(theFirstParam.Parameter() +
|
|
(theLastParam.Parameter() - theFirstParam.Parameter()) * 0.55,
|
|
myCurve);
|
|
isDone = makeApproximation (theFirstParam, aParaM);
|
|
if (isDone)
|
|
isDone = makeApproximation (aParaM, theLastParam);
|
|
}
|
|
}
|
|
return isDone;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : calculateBiArcs
|
|
//purpose : method for calculation of the biarcs.
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::calculateBiArcs
|
|
(Geom2dConvert_PPoint& theFirstParam,
|
|
Geom2dConvert_PPoint& theLastParam)
|
|
{
|
|
const Standard_Real aResolution = gp::Resolution();
|
|
|
|
if (theFirstParam.D1().SquareModulus() < aResolution ||
|
|
theLastParam.D1().SquareModulus() < aResolution)
|
|
{
|
|
//std::cout << "calculateBiArcs(): bad initial data" << std::endl;
|
|
return Standard_False;
|
|
}
|
|
const gp_XY aPnt[2] = {
|
|
theFirstParam.Point(),
|
|
theLastParam.Point()
|
|
};
|
|
gp_Dir2d aDir[2] = {
|
|
theFirstParam.D1(),
|
|
theLastParam.D1()
|
|
};
|
|
|
|
// Try to approximate the curve by a single arc. The criterion for that is
|
|
// more rigid if the curve is the entire input curve
|
|
// (possible pb. connecting with other boundaries)
|
|
const gp_Vec2d aDelta (aPnt[1] - aPnt[0]);
|
|
Standard_Real anAngle1 = aDelta.Angle(gp_Vec2d(aDir[0]));
|
|
if (anAngle1 < 0.)
|
|
anAngle1 = -anAngle1;
|
|
Standard_Real anAngle2 = aDelta.Angle(gp_Vec2d(aDir[1]));
|
|
if (anAngle2 < 0.)
|
|
anAngle2 = -anAngle2;
|
|
|
|
//in the case when two angles are equal one arc can be built.
|
|
Standard_Real anAngleThreshold (Precision::Angular() * 10.);
|
|
if (theFirstParam != myExt[0] || theLastParam != myExt[1])
|
|
anAngleThreshold = myAngleTolerance * 0.1;
|
|
if (fabs(anAngle1 - anAngle2) < anAngleThreshold)
|
|
{
|
|
Handle(Geom2d_TrimmedCurve) aCurve;
|
|
// protect the theLastParam from modification of D1, when
|
|
// the created arc is rejected.
|
|
Geom2dConvert_PPoint aLastParam (theLastParam);
|
|
if (!makeArc (theFirstParam, aLastParam, Standard_True, aCurve))
|
|
return Standard_False;
|
|
if (checkCurve(aCurve, theFirstParam.Parameter(), aLastParam.Parameter()))
|
|
{
|
|
theLastParam = aLastParam;
|
|
mySeqCurves.Append(aCurve);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
|
|
// if one arc was not built or for other cases biarc will be built
|
|
// method for building biarc was taken from article Ahmad H. Nasri et al.
|
|
// "A Recursive Subdivision Algorithm for Piecewise Circular Spline",
|
|
// Computer Graphics Forum, 2001.
|
|
|
|
// definition of point of intersection two tangent directions in the points
|
|
// corresponding FirstParameter and LastParameter.
|
|
aDir[1].Reverse();
|
|
|
|
// Direct calculation of intersection point, replaces a class call below
|
|
const Standard_Real aProd [3] = {
|
|
aPnt[0] ^ aDir[0].XY(),
|
|
aPnt[1] ^ aDir[1].XY(),
|
|
aDir[1] ^ aDir[0].XY()
|
|
};
|
|
gp_XY aIntPoint((aProd[0] * aDir[1].X() - aProd[1] * aDir[0].X()) / aProd[2],
|
|
(aProd[0] * aDir[1].Y() - aProd[1] * aDir[0].Y()) / aProd[2]);
|
|
const gp_XY aDiff[2] = {
|
|
aIntPoint - aPnt[0],
|
|
aIntPoint - aPnt[1]
|
|
};
|
|
if (aDiff[0] * aDir[0].XY() < 0. || aDiff[1] * aDir[1].XY() < 0.)
|
|
{
|
|
return Standard_False;
|
|
}
|
|
|
|
//calculation middle point for building biarc.
|
|
const Standard_Real ad1 = aDiff[0].Modulus();
|
|
const Standard_Real ad2 = aDiff[1].Modulus();
|
|
const Standard_Real ad12 = aDelta.Magnitude();
|
|
|
|
const Standard_Real aB1 = ad1 / (ad1 + ad2);
|
|
if (fabs(aB1 - 0.5) < 0.0001)
|
|
return Standard_False;
|
|
|
|
gp_XY aXY[2] = {
|
|
aPnt[0] + aDir[0].XY() * ad12 * ad1 / (ad12 + ad1 + ad2),
|
|
aPnt[1] + aDir[1].XY() * ad12 * ad2 / (ad12 + ad1 + ad2)
|
|
};
|
|
|
|
const gp_XY aXYmidArc (aXY[0] + aB1*(aXY[1] - aXY[0]));
|
|
Geom2dConvert_PPoint aParamMidArc =
|
|
getParameter (aXYmidArc, theFirstParam.Parameter(),
|
|
theLastParam.Parameter(), myCurve);
|
|
|
|
//building first arc from biarc.
|
|
Handle(Geom2d_TrimmedCurve) aCurve1, aCurve2;
|
|
if (!makeArc (theFirstParam, aParamMidArc, Standard_True, aCurve1))
|
|
return Standard_False;
|
|
|
|
if (!checkCurve (aCurve1, theFirstParam.Parameter(),
|
|
aParamMidArc.Parameter()))
|
|
return Standard_False;
|
|
|
|
//building second arc from biarc.
|
|
if (makeArc (theLastParam, aParamMidArc, Standard_False, aCurve2)) {
|
|
if (checkCurve (aCurve2, aParamMidArc.Parameter(),
|
|
theLastParam.Parameter())) {
|
|
mySeqCurves.Append(aCurve1);
|
|
mySeqCurves.Append(aCurve2);
|
|
return Standard_True;
|
|
}
|
|
}
|
|
return Standard_False;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : calculateLines
|
|
//purpose : method for calculation of the linear interpolation.
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::calculateLines
|
|
(Geom2dConvert_PPoint& theFirstParam,
|
|
Geom2dConvert_PPoint& theLastParam)
|
|
{
|
|
Geom2dConvert_PPoint* aPrevParam = &theFirstParam;
|
|
for (int i = 1; i <= mySeqParams.Length(); i++)
|
|
{
|
|
Geom2dConvert_PPoint& aCurParam = mySeqParams.ChangeValue(i);
|
|
if (aCurParam.Parameter() < (*aPrevParam).Parameter()) {
|
|
continue;
|
|
}
|
|
if (aCurParam.Parameter() > theLastParam.Parameter()) {
|
|
break;
|
|
}
|
|
|
|
// build line segment
|
|
if (aCurParam != *aPrevParam)
|
|
{
|
|
const Standard_Real aDistance =
|
|
(aCurParam.Point() - (*aPrevParam).Point()).Modulus();
|
|
if (aDistance > myTolerance)
|
|
{
|
|
const Handle(Geom2d_Curve) aCurve =
|
|
makeLine(*aPrevParam, aCurParam, Standard_False);
|
|
if (aCurve.IsNull()) {
|
|
return Standard_False;
|
|
}
|
|
|
|
mySeqCurves.Append(aCurve);
|
|
aPrevParam = &mySeqParams(i);
|
|
}
|
|
}
|
|
}
|
|
return Standard_True;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : checkCurve
|
|
//purpose : method for checking max deflection Geom curve from Adaptor Curve
|
|
//=======================================================================
|
|
|
|
Standard_Boolean Geom2dConvert_ApproxArcsSegments::checkCurve
|
|
(const Handle(Geom2d_Curve)& aCurve,
|
|
const Standard_Real theFirstParam,
|
|
const Standard_Real theLastParam) const
|
|
{
|
|
if (aCurve.IsNull())
|
|
return Standard_False; // check fails on empty input
|
|
Standard_Boolean isUniformDone = !mySeqParams.IsEmpty();
|
|
//calculation sequence of the parameters or step by parameter.
|
|
Standard_Integer aNbPnts = (isUniformDone ? mySeqParams.Length() :MAXPOINTS);
|
|
Standard_Real aParamStep = (theLastParam - theFirstParam)/MAXPOINTS;
|
|
|
|
Handle(Geom2d_Curve) aCurve1 = aCurve;
|
|
Handle(Geom2d_TrimmedCurve) aTrCurve =
|
|
Handle(Geom2d_TrimmedCurve)::DownCast(aCurve);
|
|
if (!aTrCurve.IsNull())
|
|
aCurve1 = aTrCurve->BasisCurve();
|
|
gp_Lin2d aLin2d;
|
|
gp_Circ2d aCirc2d;
|
|
Handle(Geom2d_Line) aGeomLine = Handle(Geom2d_Line)::DownCast(aCurve1);
|
|
Standard_Boolean isLine = (!aGeomLine.IsNull());
|
|
Standard_Boolean isCircle = (!isLine);
|
|
if (isLine)
|
|
aLin2d = aGeomLine->Lin2d();
|
|
else {
|
|
Handle(Geom2d_Circle) aGeomCircle =
|
|
Handle(Geom2d_Circle)::DownCast(aCurve1);
|
|
isCircle = (!aGeomCircle.IsNull());
|
|
if (isCircle)
|
|
aCirc2d = aGeomCircle->Circ2d();
|
|
else
|
|
return Standard_False;
|
|
}
|
|
|
|
//calculation of the max deflection points from CurveAdaptor from Geom curve.
|
|
Standard_Boolean isLess = Standard_True;
|
|
Standard_Integer i = 1;
|
|
for (; i <= aNbPnts && isLess; i++)
|
|
{
|
|
|
|
Standard_Real aParam = (isUniformDone ? mySeqParams.Value(i).Parameter() :
|
|
(theFirstParam + i*aParamStep));
|
|
if (aParam < (theFirstParam - Precision::PConfusion()) ||
|
|
aParam > (theLastParam + Precision::PConfusion())) continue;
|
|
|
|
//getting point from adaptor curve by specified parameter.
|
|
gp_Pnt2d aPointAdaptor(0., 0.);
|
|
gp_Pnt2d aProjPoint(0., 0.);
|
|
myCurve.D0(aParam, aPointAdaptor);
|
|
Standard_Real aParameterCurve = 0.0;
|
|
|
|
//getting point from geom curve by specified parameter.
|
|
if (isLine)
|
|
{
|
|
aParameterCurve = ElCLib::Parameter(aLin2d, aPointAdaptor);
|
|
aProjPoint = ElCLib::Value(aParameterCurve, aLin2d);
|
|
}
|
|
else if (isCircle)
|
|
{
|
|
|
|
aParameterCurve = ElCLib::Parameter(aCirc2d, aPointAdaptor);
|
|
aProjPoint = ElCLib::Value(aParameterCurve, aCirc2d);
|
|
}
|
|
|
|
isLess = (aProjPoint.Distance(aPointAdaptor) <
|
|
myTolerance + Precision::PConfusion());
|
|
}
|
|
return isLess;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : checkContinuity
|
|
//purpose : check continuty first derivative between two curves.
|
|
//=======================================================================
|
|
|
|
Standard_Boolean checkContinuity (const Handle(Geom2d_Curve)& theCurve1,
|
|
const Handle(Geom2d_Curve)& theCurve2,
|
|
const Standard_Real theAngleTol)
|
|
{
|
|
gp_Vec2d v11,v21;
|
|
gp_Pnt2d p1, p2;
|
|
theCurve1->D1(theCurve1->LastParameter(), p1, v11);
|
|
theCurve2->D1(theCurve2->FirstParameter(), p2, v21);
|
|
|
|
//check continuity with the specified tolerance.
|
|
return (v11.IsParallel(v21, theAngleTol));
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : getParameter
|
|
//purpose : getting the nearest point on AdaptorCurve to the specified point.
|
|
//=======================================================================
|
|
|
|
Geom2dConvert_PPoint getParameter (const gp_XY& theXY1,
|
|
const Standard_Real theFirstParam,
|
|
const Standard_Real theLastParam,
|
|
const Adaptor2d_Curve2d& theCurve)
|
|
{
|
|
Geom2dConvert_PPoint aResult;
|
|
Standard_Real prevParam = theFirstParam;
|
|
Standard_Real af1 = theFirstParam;
|
|
Standard_Real af2 = theLastParam;
|
|
|
|
// for finding nearest point use method half division.
|
|
Standard_Real aMinDist = RealLast();
|
|
Standard_Integer i = 1;
|
|
for (; i <= MAXPOINTS; i++)
|
|
{
|
|
aResult = Geom2dConvert_PPoint(af1, theCurve);
|
|
Standard_Real adist1 = (theXY1 - aResult.Point()).Modulus();
|
|
if (adist1 < Precision::Confusion())
|
|
{
|
|
return aResult;
|
|
}
|
|
|
|
aResult = Geom2dConvert_PPoint(af2, theCurve);
|
|
Standard_Real adist2 = (theXY1 - aResult.Point()).Modulus();
|
|
if (adist2 < Precision::Confusion())
|
|
{
|
|
return aResult;
|
|
}
|
|
|
|
if (aMinDist <= adist2 -Precision::Confusion() &&
|
|
aMinDist <= adist1 -Precision::Confusion())
|
|
{
|
|
break;
|
|
}
|
|
|
|
if (adist1 < adist2 -Precision::Confusion())
|
|
{
|
|
prevParam = af1;
|
|
aMinDist = adist1;
|
|
af2 = (af1 + af2) * 0.5;
|
|
}
|
|
else
|
|
{
|
|
prevParam = af2;
|
|
aMinDist = adist2;
|
|
af1 = (af1 + af2) * 0.5;
|
|
}
|
|
}
|
|
aResult = Geom2dConvert_PPoint(prevParam, theCurve);
|
|
return aResult;
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : isInflectionPoint
|
|
//purpose : method calculating that point specified by parameter
|
|
// is inflection point
|
|
//=======================================================================
|
|
|
|
Standard_Boolean isInflectionPoint (const Standard_Real theParam,
|
|
const Adaptor2d_Curve2d& theCurve)
|
|
{
|
|
gp_Pnt2d aP1;
|
|
gp_Vec2d aD1, aD2;
|
|
theCurve.D2(theParam, aP1, aD1, aD2);
|
|
const Standard_Real aSqMod = aD1.XY().SquareModulus();
|
|
const Standard_Real aCurvature =
|
|
fabs (aD1.XY() ^ aD2.XY()) / (aSqMod * sqrt(aSqMod));
|
|
return (aCurvature < MyCurvatureTolerance);
|
|
}
|
|
|
|
//=======================================================================
|
|
//function : isInflectionPoint
|
|
//purpose : method calculating that point specified by parameter
|
|
// is inflection point
|
|
//=======================================================================
|
|
|
|
Standard_Boolean isInflectionPoint (const Standard_Real theParam,
|
|
const Geom2dConvert_PPoint& theFirstInfl,
|
|
const Adaptor2d_Curve2d& theCurve,
|
|
const Standard_Real theAngleTol)
|
|
{
|
|
gp_Pnt2d aP1;
|
|
gp_Vec2d aD1, aD2;
|
|
theCurve.D2(theParam, aP1, aD1, aD2);
|
|
const Standard_Real aSqMod = aD1.XY().SquareModulus();
|
|
const Standard_Real aCurvature =
|
|
fabs (aD1.XY() ^ aD2.XY()) / (aSqMod * sqrt(aSqMod));
|
|
Standard_Real aContAngle =
|
|
fabs(gp_Vec2d(aP1.XY() - theFirstInfl.Point()).Angle(aD1));
|
|
aContAngle = ::Min(aContAngle, fabs(M_PI - aContAngle));
|
|
return (aCurvature < MyCurvatureTolerance && aContAngle < theAngleTol);
|
|
}
|