mirror of
https://git.dev.opencascade.org/repos/occt.git
synced 2025-04-03 17:56:21 +03:00
1099 lines
36 KiB
C++
1099 lines
36 KiB
C++
// Created on: 1995-07-18
|
|
// Created by: Modelistation
|
|
// Copyright (c) 1995-1999 Matra Datavision
|
|
// Copyright (c) 1999-2014 OPEN CASCADE SAS
|
|
//
|
|
// This file is part of Open CASCADE Technology software library.
|
|
//
|
|
// This library is free software; you can redistribute it and/or modify it under
|
|
// the terms of the GNU Lesser General Public License version 2.1 as published
|
|
// by the Free Software Foundation, with special exception defined in the file
|
|
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
|
|
// distribution for complete text of the license and disclaimer of any warranty.
|
|
//
|
|
// Alternatively, this file may be used under the terms of Open CASCADE
|
|
// commercial license or contractual agreement.
|
|
|
|
// Modified by skv - Thu Sep 30 15:21:07 2004 OCC593
|
|
|
|
#include <Extrema_GenExtPS.hxx>
|
|
|
|
#include <Bnd_HArray1OfSphere.hxx>
|
|
#include <Bnd_Sphere.hxx>
|
|
#include <Extrema_ExtFlag.hxx>
|
|
#include <Extrema_HUBTreeOfSphere.hxx>
|
|
#include <Extrema_POnSurf.hxx>
|
|
#include <Extrema_POnSurfParams.hxx>
|
|
#include <Geom_BezierCurve.hxx>
|
|
#include <Geom_BezierSurface.hxx>
|
|
#include <Geom_BSplineCurve.hxx>
|
|
#include <Geom_OffsetSurface.hxx>
|
|
#include <gp_Pnt.hxx>
|
|
#include <math_FunctionSetRoot.hxx>
|
|
#include <math_NewtonFunctionSetRoot.hxx>
|
|
#include <math_Vector.hxx>
|
|
#include <Precision.hxx>
|
|
#include <Standard_OutOfRange.hxx>
|
|
#include <StdFail_NotDone.hxx>
|
|
#include <TColStd_Array2OfInteger.hxx>
|
|
|
|
//IMPLEMENT_HARRAY1(Extrema_HArray1OfSphere)
|
|
class Bnd_SphereUBTreeSelector : public Extrema_UBTreeOfSphere::Selector
|
|
{
|
|
public:
|
|
|
|
Bnd_SphereUBTreeSelector (const Handle(Bnd_HArray1OfSphere)& theSphereArray,
|
|
Bnd_Sphere& theSol)
|
|
: myXYZ(0,0,0),
|
|
mySphereArray(theSphereArray),
|
|
mySol(theSol)
|
|
{
|
|
}
|
|
|
|
void DefineCheckPoint( const gp_Pnt& theXYZ )
|
|
{ myXYZ = theXYZ; }
|
|
|
|
Bnd_Sphere& Sphere() const
|
|
{ return mySol; }
|
|
|
|
virtual Standard_Boolean Reject( const Bnd_Sphere &theBnd ) const = 0;
|
|
|
|
virtual Standard_Boolean Accept(const Standard_Integer& theObj) = 0;
|
|
protected:
|
|
gp_Pnt myXYZ;
|
|
const Handle(Bnd_HArray1OfSphere)& mySphereArray;
|
|
Bnd_Sphere& mySol;
|
|
private:
|
|
void operator= (const Bnd_SphereUBTreeSelector&);
|
|
|
|
};
|
|
|
|
class Bnd_SphereUBTreeSelectorMin : public Bnd_SphereUBTreeSelector
|
|
{
|
|
public:
|
|
Bnd_SphereUBTreeSelectorMin (const Handle(Bnd_HArray1OfSphere)& theSphereArray,
|
|
Bnd_Sphere& theSol)
|
|
: Bnd_SphereUBTreeSelector(theSphereArray, theSol),
|
|
myMinDist(RealLast())
|
|
{}
|
|
|
|
void SetMinDist( const Standard_Real theMinDist )
|
|
{ myMinDist = theMinDist; }
|
|
|
|
Standard_Real MinDist() const
|
|
{ return myMinDist; }
|
|
|
|
Standard_Boolean Reject( const Bnd_Sphere &theBnd ) const
|
|
{
|
|
Bnd_SphereUBTreeSelectorMin* me =
|
|
const_cast<Bnd_SphereUBTreeSelectorMin*>(this);
|
|
// myMinDist is decreased each time a nearer object is found
|
|
return theBnd.IsOut( myXYZ.XYZ(), me->myMinDist );
|
|
}
|
|
|
|
Standard_Boolean Accept(const Standard_Integer&);
|
|
|
|
private:
|
|
Standard_Real myMinDist;
|
|
};
|
|
|
|
Standard_Boolean Bnd_SphereUBTreeSelectorMin::Accept(const Standard_Integer& theInd)
|
|
{
|
|
const Bnd_Sphere& aSph = mySphereArray->Value(theInd);
|
|
Standard_Real aCurDist;
|
|
|
|
// if ( (aCurDist = aSph.SquareDistance(myXYZ.XYZ())) < mySol.SquareDistance(myXYZ.XYZ()) )
|
|
if ( (aCurDist = aSph.Distance(myXYZ.XYZ())) < mySol.Distance(myXYZ.XYZ()) )
|
|
{
|
|
mySol = aSph;
|
|
if ( aCurDist < myMinDist )
|
|
myMinDist = aCurDist;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
class Bnd_SphereUBTreeSelectorMax : public Bnd_SphereUBTreeSelector
|
|
{
|
|
public:
|
|
Bnd_SphereUBTreeSelectorMax (const Handle(Bnd_HArray1OfSphere)& theSphereArray,
|
|
Bnd_Sphere& theSol)
|
|
: Bnd_SphereUBTreeSelector(theSphereArray, theSol),
|
|
myMaxDist(0)
|
|
{}
|
|
|
|
void SetMaxDist( const Standard_Real theMaxDist )
|
|
{ myMaxDist = theMaxDist; }
|
|
|
|
Standard_Real MaxDist() const
|
|
{ return myMaxDist; }
|
|
|
|
Standard_Boolean Reject( const Bnd_Sphere &theBnd ) const
|
|
{
|
|
Bnd_SphereUBTreeSelectorMax* me =
|
|
const_cast<Bnd_SphereUBTreeSelectorMax*>(this);
|
|
// myMaxDist is decreased each time a nearer object is found
|
|
return theBnd.IsOut( myXYZ.XYZ(), me->myMaxDist );
|
|
}
|
|
|
|
Standard_Boolean Accept(const Standard_Integer&);
|
|
|
|
private:
|
|
Standard_Real myMaxDist;
|
|
};
|
|
|
|
Standard_Boolean Bnd_SphereUBTreeSelectorMax::Accept(const Standard_Integer& theInd)
|
|
{
|
|
const Bnd_Sphere& aSph = mySphereArray->Value(theInd);
|
|
Standard_Real aCurDist;
|
|
|
|
// if ( (aCurDist = aSph.SquareDistance(myXYZ.XYZ())) > mySol.SquareDistance(myXYZ.XYZ()) )
|
|
if ( (aCurDist = aSph.Distance(myXYZ.XYZ())) > mySol.Distance(myXYZ.XYZ()) )
|
|
{
|
|
mySol = aSph;
|
|
if ( aCurDist > myMaxDist )
|
|
myMaxDist = aCurDist;
|
|
|
|
return Standard_True;
|
|
}
|
|
|
|
return Standard_False;
|
|
}
|
|
|
|
//=============================================================================
|
|
|
|
/*-----------------------------------------------------------------------------
|
|
Function:
|
|
Find all extremum distances between point P and surface
|
|
S using sampling (NbU,NbV).
|
|
|
|
Method:
|
|
The algorithm bases on the hypothesis that sampling is precise enough,
|
|
if there exist N extreme distances between the point and the surface,
|
|
so there also exist N extrema between the point and the grid.
|
|
So, the algorithm consists in starting from extrema of the grid to find the
|
|
extrema of the surface.
|
|
The extrema are calculated by the algorithm math_FunctionSetRoot with the
|
|
following arguments:
|
|
- F: Extrema_FuncExtPS created from P and S,
|
|
- UV: math_Vector the components which of are parameters of the extremum on the
|
|
grid,
|
|
- Tol: Min(TolU,TolV), (Prov.:math_FunctionSetRoot does not autorize a vector)
|
|
- UVinf: math_Vector the components which of are lower limits of u and v,
|
|
- UVsup: math_Vector the components which of are upper limits of u and v.
|
|
|
|
Processing:
|
|
a- Creation of the table of distances (TbDist(0,NbU+1,0,NbV+1)):
|
|
The table is expanded at will; lines 0 and NbU+1 and
|
|
columns 0 and NbV+1 are initialized at RealFirst() or RealLast()
|
|
to simplify the tests carried out at stage b
|
|
(there is no need to test if the point is on border of the grid).
|
|
b- Calculation of extrema:
|
|
First the minimums and then the maximums are found. These 2 procedured
|
|
pass in a similar way:
|
|
b.a- Initialization:
|
|
- 'borders' of table TbDist (RealLast() in case of minimums
|
|
and RealLast() in case of maximums),
|
|
- table TbSel(0,NbU+1,0,NbV+1) of selection of points for
|
|
calculation of local extremum (0). When a point will selected,
|
|
it will not be selectable, as well as the adjacent points
|
|
(8 at least). The corresponding addresses will be set to 1.
|
|
b.b- Calculation of minimums (or maximums):
|
|
All distances from table TbDist are parsed in a loop:
|
|
- search minimum (or maximum) in the grid,
|
|
- calculate extremum on the surface,
|
|
- update table TbSel.
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
Extrema_GenExtPS::Extrema_GenExtPS()
|
|
: myumin(0.0),
|
|
myusup(0.0),
|
|
myvmin(0.0),
|
|
myvsup(0.0),
|
|
myusample(0),
|
|
myvsample(0),
|
|
mytolu(0.0),
|
|
mytolv(0.0),
|
|
myS(NULL)
|
|
{
|
|
myDone = Standard_False;
|
|
myInit = Standard_False;
|
|
myFlag = Extrema_ExtFlag_MINMAX;
|
|
myAlgo = Extrema_ExtAlgo_Grad;
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : ~Extrema_GenExtPS
|
|
// purpose :
|
|
// =======================================================================
|
|
Extrema_GenExtPS::~Extrema_GenExtPS()
|
|
{
|
|
//
|
|
}
|
|
|
|
// =======================================================================
|
|
// function : Extrema_GenExtPS
|
|
// purpose :
|
|
// =======================================================================
|
|
Extrema_GenExtPS::Extrema_GenExtPS (const gp_Pnt& P,
|
|
const Adaptor3d_Surface& S,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Extrema_ExtFlag F,
|
|
const Extrema_ExtAlgo A)
|
|
: myF (P,S),
|
|
myFlag(F),
|
|
myAlgo(A)
|
|
{
|
|
Initialize(S, NbU, NbV, TolU, TolV);
|
|
Perform(P);
|
|
}
|
|
|
|
Extrema_GenExtPS::Extrema_GenExtPS (const gp_Pnt& P,
|
|
const Adaptor3d_Surface& S,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real Umin,
|
|
const Standard_Real Usup,
|
|
const Standard_Real Vmin,
|
|
const Standard_Real Vsup,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV,
|
|
const Extrema_ExtFlag F,
|
|
const Extrema_ExtAlgo A)
|
|
: myF (P,S),
|
|
myFlag(F),
|
|
myAlgo(A)
|
|
{
|
|
Initialize(S, NbU, NbV, Umin, Usup, Vmin, Vsup, TolU, TolV);
|
|
Perform(P);
|
|
}
|
|
|
|
|
|
void Extrema_GenExtPS::Initialize(const Adaptor3d_Surface& S,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV)
|
|
{
|
|
myumin = S.FirstUParameter();
|
|
myusup = S.LastUParameter();
|
|
myvmin = S.FirstVParameter();
|
|
myvsup = S.LastVParameter();
|
|
Initialize(S,NbU,NbV,myumin,myusup,myvmin,myvsup,TolU,TolV);
|
|
}
|
|
|
|
|
|
void Extrema_GenExtPS::Initialize(const Adaptor3d_Surface& S,
|
|
const Standard_Integer NbU,
|
|
const Standard_Integer NbV,
|
|
const Standard_Real Umin,
|
|
const Standard_Real Usup,
|
|
const Standard_Real Vmin,
|
|
const Standard_Real Vsup,
|
|
const Standard_Real TolU,
|
|
const Standard_Real TolV)
|
|
{
|
|
myS = &S;
|
|
myusample = NbU;
|
|
myvsample = NbV;
|
|
mytolu = TolU;
|
|
mytolv = TolV;
|
|
myumin = Umin;
|
|
myusup = Usup;
|
|
myvmin = Vmin;
|
|
myvsup = Vsup;
|
|
|
|
if ((myusample < 2) ||
|
|
(myvsample < 2)) { throw Standard_OutOfRange(); }
|
|
|
|
myF.Initialize(S);
|
|
|
|
mySphereUBTree.Nullify();
|
|
myUParams.Nullify();
|
|
myVParams.Nullify();
|
|
myInit = Standard_False;
|
|
}
|
|
|
|
inline static void fillParams(const TColStd_Array1OfReal& theKnots,
|
|
Standard_Integer theDegree,
|
|
Standard_Real theParMin,
|
|
Standard_Real theParMax,
|
|
Handle(TColStd_HArray1OfReal)& theParams,
|
|
Standard_Integer theSample)
|
|
{
|
|
NCollection_Vector<Standard_Real> aParams;
|
|
Standard_Integer i = 1;
|
|
Standard_Real aPrevPar = theParMin;
|
|
aParams.Append(aPrevPar);
|
|
//calculation the array of parametric points depending on the knots array variation and degree of given surface
|
|
for ( ; i < theKnots.Length() && theKnots(i) < (theParMax - Precision::PConfusion()); i++ )
|
|
{
|
|
if ( theKnots(i+1) < theParMin + Precision::PConfusion())
|
|
continue;
|
|
|
|
Standard_Real aStep = (theKnots(i+1) - theKnots(i))/Max(theDegree,2);
|
|
Standard_Integer k =1;
|
|
for( ; k <= theDegree ; k++)
|
|
{
|
|
Standard_Real aPar = theKnots(i) + k * aStep;
|
|
if(aPar > theParMax - Precision::PConfusion())
|
|
break;
|
|
if(aPar > aPrevPar + Precision::PConfusion() )
|
|
{
|
|
aParams.Append(aPar);
|
|
aPrevPar = aPar;
|
|
}
|
|
}
|
|
|
|
}
|
|
aParams.Append(theParMax);
|
|
Standard_Integer nbPar = aParams.Length();
|
|
//in case of an insufficient number of points the grid will be built later
|
|
if (nbPar < theSample)
|
|
return;
|
|
theParams = new TColStd_HArray1OfReal(1, nbPar );
|
|
for( i = 0; i < nbPar; i++)
|
|
theParams->SetValue(i+1,aParams(i));
|
|
}
|
|
|
|
void Extrema_GenExtPS::GetGridPoints( const Adaptor3d_Surface& theSurf)
|
|
{
|
|
//creation parametric points for BSpline and Bezier surfaces
|
|
//with taking into account of Degree and NbKnots of BSpline or Bezier geometry
|
|
if (theSurf.GetType() == GeomAbs_OffsetSurface)
|
|
{
|
|
GetGridPoints (*theSurf.BasisSurface());
|
|
}
|
|
//parametric points for BSpline surfaces
|
|
else if( theSurf.GetType() == GeomAbs_BSplineSurface)
|
|
{
|
|
Handle(Geom_BSplineSurface) aBspl = theSurf.BSpline();
|
|
if(!aBspl.IsNull())
|
|
{
|
|
TColStd_Array1OfReal aUKnots(1, aBspl->NbUKnots());
|
|
aBspl->UKnots( aUKnots);
|
|
TColStd_Array1OfReal aVKnots(1, aBspl->NbVKnots());
|
|
aBspl->VKnots( aVKnots);
|
|
fillParams(aUKnots,aBspl->UDegree(),myumin, myusup, myUParams, myusample);
|
|
fillParams(aVKnots,aBspl->VDegree(),myvmin, myvsup, myVParams, myvsample);
|
|
}
|
|
}
|
|
//calculation parametric points for Bezier surfaces
|
|
else if(theSurf.GetType() == GeomAbs_BezierSurface)
|
|
{
|
|
Handle(Geom_BezierSurface) aBezier = theSurf.Bezier();
|
|
if(aBezier.IsNull())
|
|
return;
|
|
|
|
TColStd_Array1OfReal aUKnots(1,2);
|
|
TColStd_Array1OfReal aVKnots(1,2);
|
|
aBezier->Bounds(aUKnots(1), aUKnots(2), aVKnots(1), aVKnots(2));
|
|
fillParams(aUKnots, aBezier->UDegree(), myumin, myusup, myUParams, myusample);
|
|
fillParams(aVKnots, aBezier->VDegree(), myvmin, myvsup, myVParams, myvsample);
|
|
|
|
}
|
|
//creation points for surfaces based on BSpline or Bezier curves
|
|
else if(theSurf.GetType() == GeomAbs_SurfaceOfRevolution ||
|
|
theSurf.GetType() == GeomAbs_SurfaceOfExtrusion)
|
|
{
|
|
Handle(TColStd_HArray1OfReal) anArrKnots;
|
|
Standard_Integer aDegree = 0;
|
|
if(theSurf.BasisCurve()->GetType() == GeomAbs_BSplineCurve)
|
|
{
|
|
Handle(Geom_BSplineCurve) aBspl = theSurf.BasisCurve()->BSpline();
|
|
if(!aBspl.IsNull())
|
|
{
|
|
anArrKnots = new TColStd_HArray1OfReal(1,aBspl->NbKnots());
|
|
aBspl->Knots( anArrKnots->ChangeArray1() );
|
|
aDegree = aBspl->Degree();
|
|
|
|
}
|
|
|
|
}
|
|
if(theSurf.BasisCurve()->GetType() == GeomAbs_BezierCurve)
|
|
{
|
|
Handle(Geom_BezierCurve) aBez = theSurf.BasisCurve()->Bezier();
|
|
if(!aBez.IsNull())
|
|
{
|
|
anArrKnots = new TColStd_HArray1OfReal(1,2);
|
|
anArrKnots->SetValue(1, aBez->FirstParameter());
|
|
anArrKnots->SetValue(2, aBez->LastParameter());
|
|
aDegree = aBez->Degree();
|
|
|
|
}
|
|
}
|
|
if(anArrKnots.IsNull())
|
|
return;
|
|
if( theSurf.GetType() == GeomAbs_SurfaceOfRevolution )
|
|
fillParams( anArrKnots->Array1(), aDegree, myvmin, myvsup, myVParams, myvsample);
|
|
else
|
|
fillParams( anArrKnots->Array1(), aDegree, myumin, myusup, myUParams, myusample);
|
|
}
|
|
//update the number of points in sample
|
|
if(!myUParams.IsNull())
|
|
myusample = myUParams->Length();
|
|
if( !myVParams.IsNull())
|
|
myvsample = myVParams->Length();
|
|
|
|
}
|
|
|
|
/*
|
|
* This function computes the point on surface parameters on edge.
|
|
* if it coincides with theParam0 or theParam1, it is returned.
|
|
*/
|
|
const Extrema_POnSurfParams& Extrema_GenExtPS::ComputeEdgeParameters
|
|
(const Standard_Boolean IsUEdge,
|
|
const Extrema_POnSurfParams &theParam0,
|
|
const Extrema_POnSurfParams &theParam1,
|
|
const gp_Pnt &thePoint,
|
|
const Standard_Real theDiffTol)
|
|
{
|
|
const Standard_Real aSqrDist01 =
|
|
theParam0.Value().SquareDistance(theParam1.Value());
|
|
|
|
if (aSqrDist01 <= theDiffTol)
|
|
{
|
|
// The points are confused. Get the first point and change its type.
|
|
return theParam0;
|
|
}
|
|
else
|
|
{
|
|
const Standard_Real aDiffDist =
|
|
Abs(theParam0.GetSqrDistance() - theParam1.GetSqrDistance());
|
|
|
|
if (aDiffDist >= aSqrDist01 - theDiffTol)
|
|
{
|
|
// The shortest distance is one of the nodes.
|
|
if (theParam0.GetSqrDistance() > theParam1.GetSqrDistance())
|
|
{
|
|
// The shortest distance is the point 1.
|
|
return theParam1;
|
|
}
|
|
else
|
|
{
|
|
// The shortest distance is the point 0.
|
|
return theParam0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// The shortest distance is inside the edge.
|
|
gp_XYZ aPoP(thePoint.XYZ().Subtracted(theParam0.Value().XYZ()));
|
|
gp_XYZ aPoP1(theParam1.Value().XYZ().Subtracted(theParam0.Value().XYZ()));
|
|
Standard_Real aRatio = aPoP.Dot(aPoP1)/aSqrDist01;
|
|
Standard_Real aU[2];
|
|
Standard_Real aV[2];
|
|
|
|
theParam0.Parameter(aU[0], aV[0]);
|
|
theParam1.Parameter(aU[1], aV[1]);
|
|
|
|
Standard_Real aUPar = aU[0];
|
|
Standard_Real aVPar = aV[0];
|
|
|
|
if (IsUEdge)
|
|
{
|
|
aUPar += aRatio*(aU[1] - aU[0]);
|
|
}
|
|
else
|
|
{
|
|
aVPar += aRatio*(aV[1] - aV[0]);
|
|
}
|
|
|
|
myGridParam.SetParameters(aUPar, aVPar, myS->Value(aUPar, aVPar));
|
|
Standard_Integer anIndices[2];
|
|
|
|
theParam0.GetIndices(anIndices[0], anIndices[1]);
|
|
myGridParam.SetElementType(IsUEdge ? Extrema_UIsoEdge : Extrema_VIsoEdge);
|
|
myGridParam.SetSqrDistance(thePoint.SquareDistance(myGridParam.Value()));
|
|
myGridParam.SetIndices(anIndices[0], anIndices[1]);
|
|
return myGridParam;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Extrema_GenExtPS::BuildGrid(const gp_Pnt &thePoint)
|
|
{
|
|
//if grid was already built skip its creation
|
|
if (!myInit) {
|
|
//build parametric grid in case of a complex surface geometry (BSpline and Bezier surfaces)
|
|
GetGridPoints(*myS);
|
|
|
|
//build grid in other cases
|
|
if( myUParams.IsNull() )
|
|
{
|
|
Standard_Real PasU = myusup - myumin;
|
|
Standard_Real U0 = PasU / myusample / 100.;
|
|
PasU = (PasU - U0) / (myusample - 1);
|
|
U0 = U0/2. + myumin;
|
|
myUParams = new TColStd_HArray1OfReal(1,myusample );
|
|
Standard_Real U = U0;
|
|
for (Standard_Integer NoU = 1; NoU <= myusample; NoU++, U += PasU)
|
|
myUParams->SetValue(NoU, U);
|
|
}
|
|
|
|
if( myVParams.IsNull())
|
|
{
|
|
Standard_Real PasV = myvsup - myvmin;
|
|
Standard_Real V0 = PasV / myvsample / 100.;
|
|
PasV = (PasV - V0) / (myvsample - 1);
|
|
V0 = V0/2. + myvmin;
|
|
|
|
myVParams = new TColStd_HArray1OfReal(1,myvsample );
|
|
Standard_Real V = V0;
|
|
for (Standard_Integer NoV = 1; NoV <= myvsample; NoV++, V += PasV)
|
|
myVParams->SetValue(NoV, V);
|
|
}
|
|
|
|
//If flag was changed and extrema not reinitialized Extrema would fail
|
|
myPoints.Resize (0, myusample + 1, 0, myvsample + 1, false);
|
|
// Calculation of distances
|
|
|
|
for (Standard_Integer NoU = 1 ; NoU <= myusample; NoU++ ) {
|
|
for (Standard_Integer NoV = 1 ; NoV <= myvsample; NoV++) {
|
|
gp_Pnt aP1 = myS->Value(myUParams->Value(NoU), myVParams->Value(NoV));
|
|
Extrema_POnSurfParams aParam
|
|
(myUParams->Value(NoU), myVParams->Value(NoV), aP1);
|
|
|
|
aParam.SetElementType(Extrema_Node);
|
|
aParam.SetIndices(NoU, NoV);
|
|
myPoints.SetValue(NoU, NoV, aParam);
|
|
}
|
|
}
|
|
|
|
myFacePntParams .Resize (0, myusample, 0, myvsample, false);
|
|
myUEdgePntParams.Resize (1, myusample - 1, 1, myvsample, false);
|
|
myVEdgePntParams.Resize (1, myusample, 1, myvsample - 1, false);
|
|
|
|
// Fill boundary with negative square distance.
|
|
// It is used for computation of Maximum.
|
|
for (Standard_Integer NoV = 0; NoV <= myvsample + 1; NoV++) {
|
|
myPoints.ChangeValue(0, NoV).SetSqrDistance(-1.);
|
|
myPoints.ChangeValue(myusample + 1, NoV).SetSqrDistance(-1.);
|
|
}
|
|
|
|
for (Standard_Integer NoU = 1; NoU <= myusample; NoU++) {
|
|
myPoints.ChangeValue(NoU, 0).SetSqrDistance(-1.);
|
|
myPoints.ChangeValue(NoU, myvsample + 1).SetSqrDistance(-1.);
|
|
}
|
|
|
|
myInit = Standard_True;
|
|
}
|
|
|
|
// Compute distances to mesh.
|
|
// Step 1. Compute distances to nodes.
|
|
for (Standard_Integer NoU = 1 ; NoU <= myusample; NoU++ ) {
|
|
for (Standard_Integer NoV = 1 ; NoV <= myvsample; NoV++) {
|
|
Extrema_POnSurfParams &aParam = myPoints.ChangeValue(NoU, NoV);
|
|
|
|
aParam.SetSqrDistance(thePoint.SquareDistance(aParam.Value()));
|
|
}
|
|
}
|
|
|
|
// For search of minimum compute distances to mesh.
|
|
if(myFlag == Extrema_ExtFlag_MIN || myFlag == Extrema_ExtFlag_MINMAX)
|
|
{
|
|
// This is the tolerance of difference of squared values.
|
|
// No need to set it too small.
|
|
const Standard_Real aDiffTol = mytolu + mytolv;
|
|
|
|
// Step 2. Compute distances to edges.
|
|
// Assume UEdge(i, j) = { Point(i, j); Point(i + 1, j ) }
|
|
// Assume VEdge(i, j) = { Point(i, j); Point(i, j + 1) }
|
|
for (Standard_Integer NoU = 1 ; NoU <= myusample; NoU++ )
|
|
{
|
|
for (Standard_Integer NoV = 1 ; NoV <= myvsample; NoV++)
|
|
{
|
|
const Extrema_POnSurfParams &aParam0 = myPoints.Value(NoU, NoV);
|
|
|
|
if (NoU < myusample)
|
|
{
|
|
// Compute parameters to UEdge.
|
|
const Extrema_POnSurfParams &aParam1 = myPoints.Value(NoU + 1, NoV);
|
|
const Extrema_POnSurfParams &anEdgeParam = ComputeEdgeParameters(Standard_True, aParam0, aParam1, thePoint, aDiffTol);
|
|
|
|
myUEdgePntParams.SetValue(NoU, NoV, anEdgeParam);
|
|
}
|
|
|
|
if (NoV < myvsample)
|
|
{
|
|
// Compute parameters to VEdge.
|
|
const Extrema_POnSurfParams &aParam1 = myPoints.Value(NoU, NoV + 1);
|
|
const Extrema_POnSurfParams &anEdgeParam = ComputeEdgeParameters(Standard_False, aParam0, aParam1, thePoint, aDiffTol);
|
|
|
|
myVEdgePntParams.SetValue(NoU, NoV, anEdgeParam);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Step 3. Compute distances to faces.
|
|
// Assume myFacePntParams(i, j) =
|
|
// { Point(i, j); Point(i + 1, j); Point(i + 1, j + 1); Point(i, j + 1) }
|
|
// Or
|
|
// { UEdge(i, j); VEdge(i + 1, j); UEdge(i, j + 1); VEdge(i, j) }
|
|
Standard_Real aSqrDist01;
|
|
Standard_Real aDiffDist;
|
|
Standard_Boolean isOut;
|
|
|
|
for (Standard_Integer NoU = 1 ; NoU < myusample; NoU++ ) {
|
|
for (Standard_Integer NoV = 1 ; NoV < myvsample; NoV++) {
|
|
const Extrema_POnSurfParams &aUE0 = myUEdgePntParams.Value(NoU, NoV);
|
|
const Extrema_POnSurfParams &aUE1 = myUEdgePntParams.Value(NoU, NoV+1);
|
|
const Extrema_POnSurfParams &aVE0 = myVEdgePntParams.Value(NoU, NoV);
|
|
const Extrema_POnSurfParams &aVE1 = myVEdgePntParams.Value(NoU+1, NoV);
|
|
|
|
aSqrDist01 = aUE0.Value().SquareDistance(aUE1.Value());
|
|
aDiffDist = Abs(aUE0.GetSqrDistance() - aUE1.GetSqrDistance());
|
|
isOut = Standard_False;
|
|
|
|
if (aDiffDist >= aSqrDist01 - aDiffTol) {
|
|
// The projection is outside the face.
|
|
isOut = Standard_True;
|
|
} else {
|
|
aSqrDist01 = aVE0.Value().SquareDistance(aVE1.Value());
|
|
aDiffDist = Abs(aVE0.GetSqrDistance() - aVE1.GetSqrDistance());
|
|
|
|
if (aDiffDist >= aSqrDist01 - aDiffTol) {
|
|
// The projection is outside the face.
|
|
isOut = Standard_True;
|
|
}
|
|
}
|
|
|
|
if (isOut) {
|
|
// Get the closest point on an edge.
|
|
const Extrema_POnSurfParams &aUEMin =
|
|
aUE0.GetSqrDistance() < aUE1.GetSqrDistance() ? aUE0 : aUE1;
|
|
const Extrema_POnSurfParams &aVEMin =
|
|
aVE0.GetSqrDistance() < aVE1.GetSqrDistance() ? aVE0 : aVE1;
|
|
const Extrema_POnSurfParams &aEMin =
|
|
aUEMin.GetSqrDistance() < aVEMin.GetSqrDistance() ? aUEMin : aVEMin;
|
|
|
|
myFacePntParams.SetValue(NoU, NoV, aEMin);
|
|
} else {
|
|
// Find closest point inside the face.
|
|
Standard_Real aU[2];
|
|
Standard_Real aV[2];
|
|
Standard_Real aUPar;
|
|
Standard_Real aVPar;
|
|
|
|
// Compute U parameter.
|
|
aUE0.Parameter(aU[0], aV[0]);
|
|
aUE1.Parameter(aU[1], aV[1]);
|
|
aUPar = 0.5*(aU[0] + aU[1]);
|
|
// Compute V parameter.
|
|
aVE0.Parameter(aU[0], aV[0]);
|
|
aVE1.Parameter(aU[1], aV[1]);
|
|
aVPar = 0.5*(aV[0] + aV[1]);
|
|
|
|
Extrema_POnSurfParams aParam(aUPar, aVPar, myS->Value(aUPar, aVPar));
|
|
|
|
aParam.SetElementType(Extrema_Face);
|
|
aParam.SetSqrDistance(thePoint.SquareDistance(aParam.Value()));
|
|
aParam.SetIndices(NoU, NoV);
|
|
myFacePntParams.SetValue(NoU, NoV, aParam);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill boundary with RealLast square distance.
|
|
for (Standard_Integer NoV = 0; NoV <= myvsample; NoV++) {
|
|
myFacePntParams.ChangeValue(0, NoV).SetSqrDistance(RealLast());
|
|
myFacePntParams.ChangeValue(myusample, NoV).SetSqrDistance(RealLast());
|
|
}
|
|
|
|
for (Standard_Integer NoU = 1; NoU < myusample; NoU++) {
|
|
myFacePntParams.ChangeValue(NoU, 0).SetSqrDistance(RealLast());
|
|
myFacePntParams.ChangeValue(NoU, myvsample).SetSqrDistance(RealLast());
|
|
}
|
|
}
|
|
}
|
|
|
|
static Standard_Real LengthOfIso(const Adaptor3d_Surface& theS, const GeomAbs_IsoType theIso,
|
|
const Standard_Real thePar1, const Standard_Real thePar2,
|
|
const Standard_Integer theNbPnts, const Standard_Real thePar)
|
|
{
|
|
Standard_Real aLen = 0.;
|
|
Standard_Integer i;
|
|
Standard_Real dPar = (thePar2 - thePar1) / (theNbPnts - 1);
|
|
gp_Pnt aP1, aP2;
|
|
Standard_Real aPar = thePar1 + dPar;
|
|
if(theIso == GeomAbs_IsoU)
|
|
{
|
|
aP1 = theS.Value(thePar, thePar1);
|
|
}
|
|
else
|
|
{
|
|
aP1 = theS.Value(thePar1, thePar);
|
|
}
|
|
|
|
for (i = 2; i <= theNbPnts; ++i)
|
|
{
|
|
if (theIso == GeomAbs_IsoU)
|
|
{
|
|
aP2 = theS.Value(thePar, aPar);
|
|
}
|
|
else
|
|
{
|
|
aP2 = theS.Value(aPar, thePar);
|
|
}
|
|
aLen += aP1.Distance(aP2);
|
|
aP1 = aP2;
|
|
aPar += dPar;
|
|
}
|
|
return aLen;
|
|
}
|
|
static void CorrectNbSamples(const Adaptor3d_Surface& theS,
|
|
const Standard_Real theU1, const Standard_Real theU2, Standard_Integer& theNbU,
|
|
const Standard_Real theV1, const Standard_Real theV2, Standard_Integer& theNbV)
|
|
{
|
|
Standard_Real aMinLen = 1.e-3;
|
|
Standard_Integer nbp = Min(23, theNbV);
|
|
Standard_Real aLenU1 = LengthOfIso(theS, GeomAbs_IsoU, theV1, theV2, nbp, theU1);
|
|
if (aLenU1 <= aMinLen)
|
|
{
|
|
Standard_Real aL = LengthOfIso(theS, GeomAbs_IsoU, theV1, theV2, nbp, .7*theU1 + 0.3*theU2);
|
|
aLenU1 = Max(aL, aLenU1);
|
|
}
|
|
Standard_Real aLenU2 = LengthOfIso(theS, GeomAbs_IsoU, theV1, theV2, nbp, theU2);
|
|
if (aLenU2 <= aMinLen)
|
|
{
|
|
Standard_Real aL = LengthOfIso(theS, GeomAbs_IsoU, theV1, theV2, nbp, .3*theU1 + 0.7*theU2);
|
|
aLenU2 = Max(aL, aLenU2);
|
|
}
|
|
nbp = Min(23, theNbV);
|
|
Standard_Real aLenV1 = LengthOfIso(theS, GeomAbs_IsoV, theU1, theU2, nbp, theV1);
|
|
if (aLenV1 <= aMinLen)
|
|
{
|
|
Standard_Real aL = LengthOfIso(theS, GeomAbs_IsoV, theU1, theU2, nbp, .7*theV1 + 0.3*theV2);
|
|
aLenV1 = Max(aL, aLenV1);
|
|
}
|
|
Standard_Real aLenV2 = LengthOfIso(theS, GeomAbs_IsoV, theU1, theU2, nbp, theV2);
|
|
if (aLenV2 <= aMinLen)
|
|
{
|
|
Standard_Real aL = LengthOfIso(theS, GeomAbs_IsoV, theU1, theU2, nbp, .3*theV1 + 0.7*theV2);
|
|
aLenV2 = Max(aL, aLenV2);
|
|
}
|
|
//
|
|
Standard_Real aStepV1 = aLenU1 / theNbV;
|
|
Standard_Real aStepV2 = aLenU2 / theNbV;
|
|
Standard_Real aStepU1 = aLenV1 / theNbU;
|
|
Standard_Real aStepU2 = aLenV2 / theNbU;
|
|
|
|
Standard_Real aMaxStepV = Max(aStepV1, aStepV2);
|
|
Standard_Real aMaxStepU = Max(aStepU1, aStepU2);
|
|
//
|
|
Standard_Real aRatio = aMaxStepV / aMaxStepU;
|
|
if (aRatio > 10.)
|
|
{
|
|
Standard_Integer aMult = RealToInt(Log(aRatio) );
|
|
if(aMult > 1)
|
|
theNbV *= aMult;
|
|
}
|
|
else if (aRatio < 0.1)
|
|
{
|
|
Standard_Integer aMult = RealToInt( - Log(aRatio));
|
|
if(aMult > 1)
|
|
theNbV *= aMult;
|
|
}
|
|
|
|
}
|
|
void Extrema_GenExtPS::BuildTree()
|
|
{
|
|
// if tree already exists, assume it is already correctly filled
|
|
if (!mySphereUBTree.IsNull())
|
|
return;
|
|
|
|
if (myS->GetType() == GeomAbs_BSplineSurface) {
|
|
Handle(Geom_BSplineSurface) aBspl = myS->BSpline();
|
|
Standard_Integer aUValue = aBspl->UDegree() * aBspl->NbUKnots();
|
|
Standard_Integer aVValue = aBspl->VDegree() * aBspl->NbVKnots();
|
|
// 300 is value, which is used for singular points (see Extrema_ExtPS.cxx::Initialize(...))
|
|
if (aUValue > myusample)
|
|
myusample = Min(aUValue, 300);
|
|
if (aVValue > myvsample)
|
|
myvsample = Min(aVValue, 300);
|
|
}
|
|
//
|
|
CorrectNbSamples(*myS, myumin, myusup, myusample, myvmin, myvsup, myvsample);
|
|
//
|
|
Standard_Real PasU = myusup - myumin;
|
|
Standard_Real PasV = myvsup - myvmin;
|
|
Standard_Real U0 = PasU / myusample / 100.;
|
|
Standard_Real V0 = PasV / myvsample / 100.;
|
|
gp_Pnt P1;
|
|
PasU = (PasU - U0) / (myusample - 1);
|
|
PasV = (PasV - V0) / (myvsample - 1);
|
|
U0 = U0/2. + myumin;
|
|
V0 = V0/2. + myvmin;
|
|
|
|
//build grid of parametric points
|
|
myUParams = new TColStd_HArray1OfReal(1,myusample );
|
|
myVParams = new TColStd_HArray1OfReal(1,myvsample );
|
|
Standard_Integer NoU, NoV;
|
|
Standard_Real U = U0, V = V0;
|
|
for ( NoU = 1 ; NoU <= myusample; NoU++, U += PasU)
|
|
myUParams->SetValue(NoU, U);
|
|
for ( NoV = 1 ; NoV <= myvsample; NoV++, V += PasV)
|
|
myVParams->SetValue(NoV, V);
|
|
|
|
// Calculation of distances
|
|
mySphereUBTree = new Extrema_UBTreeOfSphere;
|
|
Extrema_UBTreeFillerOfSphere aFiller(*mySphereUBTree);
|
|
Standard_Integer i = 0;
|
|
|
|
mySphereArray = new Bnd_HArray1OfSphere(0, myusample * myvsample);
|
|
|
|
for ( NoU = 1; NoU <= myusample; NoU++ ) {
|
|
for ( NoV = 1; NoV <= myvsample; NoV++) {
|
|
P1 = myS->Value(myUParams->Value(NoU), myVParams->Value(NoV));
|
|
Bnd_Sphere aSph(P1.XYZ(), 0/*mytolu < mytolv ? mytolu : mytolv*/, NoU, NoV);
|
|
aFiller.Add(i, aSph);
|
|
mySphereArray->SetValue( i, aSph );
|
|
i++;
|
|
}
|
|
}
|
|
aFiller.Fill();
|
|
}
|
|
|
|
void Extrema_GenExtPS::FindSolution(const gp_Pnt& /*P*/,
|
|
const Extrema_POnSurfParams &theParams)
|
|
{
|
|
math_Vector Tol(1,2);
|
|
Tol(1) = mytolu;
|
|
Tol(2) = mytolv;
|
|
|
|
math_Vector UV(1, 2);
|
|
theParams.Parameter(UV(1), UV(2));
|
|
|
|
math_Vector UVinf(1,2), UVsup(1,2);
|
|
UVinf(1) = myumin;
|
|
UVinf(2) = myvmin;
|
|
UVsup(1) = myusup;
|
|
UVsup(2) = myvsup;
|
|
|
|
math_FunctionSetRoot S(myF, Tol);
|
|
S.Perform(myF, UV, UVinf, UVsup);
|
|
|
|
myDone = Standard_True;
|
|
}
|
|
|
|
void Extrema_GenExtPS::SetFlag(const Extrema_ExtFlag F)
|
|
{
|
|
myFlag = F;
|
|
}
|
|
|
|
void Extrema_GenExtPS::SetAlgo(const Extrema_ExtAlgo A)
|
|
{
|
|
if(myAlgo != A)
|
|
myInit = Standard_False;
|
|
myAlgo = A;
|
|
|
|
}
|
|
|
|
void Extrema_GenExtPS::Perform(const gp_Pnt& P)
|
|
{
|
|
myDone = Standard_False;
|
|
myF.SetPoint(P);
|
|
|
|
if(myAlgo == Extrema_ExtAlgo_Grad)
|
|
{
|
|
BuildGrid(P);
|
|
Standard_Integer NoU,NoV;
|
|
|
|
if(myFlag == Extrema_ExtFlag_MIN || myFlag == Extrema_ExtFlag_MINMAX)
|
|
{
|
|
Extrema_ElementType anElemType;
|
|
Standard_Integer iU;
|
|
Standard_Integer iV;
|
|
Standard_Integer iU2;
|
|
Standard_Integer iV2;
|
|
Standard_Boolean isMin;
|
|
Standard_Integer i;
|
|
|
|
for (NoU = 1; NoU < myusample; NoU++) {
|
|
for (NoV = 1; NoV < myvsample; NoV++) {
|
|
const Extrema_POnSurfParams &aParam =
|
|
myFacePntParams.Value(NoU, NoV);
|
|
|
|
isMin = Standard_False;
|
|
anElemType = aParam.GetElementType();
|
|
|
|
if (anElemType == Extrema_Face) {
|
|
isMin = Standard_True;
|
|
} else {
|
|
// Check if it is a boundary edge or corner vertex.
|
|
aParam.GetIndices(iU, iV);
|
|
|
|
if (anElemType == Extrema_UIsoEdge) {
|
|
isMin = (iV == 1 || iV == myvsample);
|
|
} else if (anElemType == Extrema_VIsoEdge) {
|
|
isMin = (iU == 1 || iU == myusample);
|
|
} else if (anElemType == Extrema_Node) {
|
|
isMin = (iU == 1 || iU == myusample) &&
|
|
(iV == 1 || iV == myvsample);
|
|
}
|
|
|
|
if (!isMin) {
|
|
// This is a middle element.
|
|
if (anElemType == Extrema_UIsoEdge ||
|
|
(anElemType == Extrema_Node && (iU == 1 || iU == myusample))) {
|
|
// Check the down face.
|
|
const Extrema_POnSurfParams &aDownParam =
|
|
myFacePntParams.Value(NoU, NoV - 1);
|
|
|
|
if (aDownParam.GetElementType() == anElemType) {
|
|
aDownParam.GetIndices(iU2, iV2);
|
|
isMin = (iU == iU2 && iV == iV2);
|
|
}
|
|
} else if (anElemType == Extrema_VIsoEdge ||
|
|
(anElemType == Extrema_Node && (iV == 1 || iV == myvsample))) {
|
|
// Check the right face.
|
|
const Extrema_POnSurfParams &aRightParam =
|
|
myFacePntParams.Value(NoU - 1, NoV);
|
|
|
|
if (aRightParam.GetElementType() == anElemType) {
|
|
aRightParam.GetIndices(iU2, iV2);
|
|
isMin = (iU == iU2 && iV == iV2);
|
|
}
|
|
} else if (iU == NoU && iV == NoV) {
|
|
// Check the lower-left node. For this purpose it is necessary
|
|
// to check lower-left, lower and left faces.
|
|
isMin = Standard_True;
|
|
|
|
const Extrema_POnSurfParams *anOtherParam[3] =
|
|
{ &myFacePntParams.Value(NoU, NoV - 1), // Down
|
|
&myFacePntParams.Value(NoU - 1, NoV - 1), // Lower-left
|
|
&myFacePntParams.Value(NoU - 1, NoV) }; // Left
|
|
|
|
for (i = 0; i < 3 && isMin; i++) {
|
|
if (anOtherParam[i]->GetElementType() == Extrema_Node) {
|
|
anOtherParam[i]->GetIndices(iU2, iV2);
|
|
isMin = (iU == iU2 && iV == iV2);
|
|
} else {
|
|
isMin = Standard_False;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isMin) {
|
|
FindSolution(P, aParam);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(myFlag == Extrema_ExtFlag_MAX || myFlag == Extrema_ExtFlag_MINMAX)
|
|
{
|
|
Standard_Real Dist;
|
|
|
|
for (NoU = 1; NoU <= myusample; NoU++)
|
|
{
|
|
for (NoV = 1; NoV <= myvsample; NoV++)
|
|
{
|
|
const Extrema_POnSurfParams &aParamMain = myPoints.Value(NoU, NoV);
|
|
const Extrema_POnSurfParams &aParam1 = myPoints.Value(NoU - 1, NoV - 1);
|
|
const Extrema_POnSurfParams &aParam2 = myPoints.Value(NoU - 1, NoV);
|
|
const Extrema_POnSurfParams &aParam3 = myPoints.Value(NoU - 1, NoV + 1);
|
|
const Extrema_POnSurfParams &aParam4 = myPoints.Value(NoU, NoV - 1);
|
|
const Extrema_POnSurfParams &aParam5 = myPoints.Value(NoU, NoV + 1);
|
|
const Extrema_POnSurfParams &aParam6 = myPoints.Value(NoU + 1, NoV - 1);
|
|
const Extrema_POnSurfParams &aParam7 = myPoints.Value(NoU + 1, NoV);
|
|
const Extrema_POnSurfParams &aParam8 = myPoints.Value(NoU + 1, NoV + 1);
|
|
|
|
Dist = aParamMain.GetSqrDistance();
|
|
|
|
if ((aParam1.GetSqrDistance() <= Dist) &&
|
|
(aParam2.GetSqrDistance() <= Dist) &&
|
|
(aParam3.GetSqrDistance() <= Dist) &&
|
|
(aParam4.GetSqrDistance() <= Dist) &&
|
|
(aParam5.GetSqrDistance() <= Dist) &&
|
|
(aParam6.GetSqrDistance() <= Dist) &&
|
|
(aParam7.GetSqrDistance() <= Dist) &&
|
|
(aParam8.GetSqrDistance() <= Dist))
|
|
{
|
|
// Find maximum.
|
|
FindSolution(P, myPoints.Value(NoU, NoV));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
BuildTree();
|
|
if(myFlag == Extrema_ExtFlag_MIN || myFlag == Extrema_ExtFlag_MINMAX)
|
|
{
|
|
Bnd_Sphere aSol = mySphereArray->Value(0);
|
|
Bnd_SphereUBTreeSelectorMin aSelector(mySphereArray, aSol);
|
|
//aSelector.SetMaxDist( RealLast() );
|
|
aSelector.DefineCheckPoint( P );
|
|
mySphereUBTree->Select( aSelector );
|
|
//TODO: check if no solution in binary tree
|
|
Bnd_Sphere& aSph = aSelector.Sphere();
|
|
Standard_Real aU = myUParams->Value(aSph.U());
|
|
Standard_Real aV = myVParams->Value(aSph.V());
|
|
Extrema_POnSurfParams aParams(aU, aV, myS->Value(aU, aV));
|
|
|
|
aParams.SetSqrDistance(P.SquareDistance(aParams.Value()));
|
|
aParams.SetIndices(aSph.U(), aSph.V());
|
|
FindSolution(P, aParams);
|
|
}
|
|
if(myFlag == Extrema_ExtFlag_MAX || myFlag == Extrema_ExtFlag_MINMAX)
|
|
{
|
|
Bnd_Sphere aSol = mySphereArray->Value(0);
|
|
Bnd_SphereUBTreeSelectorMax aSelector(mySphereArray, aSol);
|
|
//aSelector.SetMaxDist( RealLast() );
|
|
aSelector.DefineCheckPoint( P );
|
|
mySphereUBTree->Select( aSelector );
|
|
//TODO: check if no solution in binary tree
|
|
Bnd_Sphere& aSph = aSelector.Sphere();
|
|
Standard_Real aU = myUParams->Value(aSph.U());
|
|
Standard_Real aV = myVParams->Value(aSph.V());
|
|
Extrema_POnSurfParams aParams(aU, aV, myS->Value(aU, aV));
|
|
aParams.SetSqrDistance(P.SquareDistance(aParams.Value()));
|
|
aParams.SetIndices(aSph.U(), aSph.V());
|
|
|
|
FindSolution(P, aParams);
|
|
}
|
|
}
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Boolean Extrema_GenExtPS::IsDone () const { return myDone; }
|
|
//=============================================================================
|
|
|
|
Standard_Integer Extrema_GenExtPS::NbExt () const
|
|
{
|
|
if (!IsDone()) { throw StdFail_NotDone(); }
|
|
return myF.NbExt();
|
|
}
|
|
//=============================================================================
|
|
|
|
Standard_Real Extrema_GenExtPS::SquareDistance (const Standard_Integer N) const
|
|
{
|
|
if ((N < 1) || (N > NbExt()))
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
|
|
return myF.SquareDistance(N);
|
|
}
|
|
//=============================================================================
|
|
|
|
const Extrema_POnSurf& Extrema_GenExtPS::Point (const Standard_Integer N) const
|
|
{
|
|
if ((N < 1) || (N > NbExt()))
|
|
{
|
|
throw Standard_OutOfRange();
|
|
}
|
|
|
|
return myF.Point(N);
|
|
}
|
|
//=============================================================================
|