1
0
mirror of https://git.dev.opencascade.org/repos/occt.git synced 2025-04-03 17:56:21 +03:00
occt/src/math/math_BracketMinimum.cxx
aml f79b19a17e 0028175: Bad result of curve-curve extrema
Extrema between curves has been made producing correct result for the cases of solution located near bounds.

- Class math_GlobOptMin has been improved to use lower order methods of local optimization when high-order methods are failed.
- Add support of conditional optimization (in bounds) in the classes math_BFGS and math_BracketMinimum.
- Turn on conditional optimization in the case of usage of math_BFGS in the class math_GlobOptMin.
- Correct mistake in distmini command, which caused incorrect reading of deflection parameter.
- To avoid possible FPE signals, ensure initialization of fields in the class math/math_BracketMinimum.
- In the algorithms math_BFGS, math_Powell and math_FRPR, take into account that the function math_MultipleVarFunction can return failure status (e.g. when computing D0 out of bounds).

New test cases have been added.
Tests cases are updated.

// correct test case
2016-12-15 16:33:12 +03:00

253 lines
6.8 KiB
C++

// Copyright (c) 1997-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#include <math_BracketMinimum.hxx>
#include <math_Function.hxx>
#include <StdFail_NotDone.hxx>
// waiting for NotDone Exception
#define GOLD 1.618034
#define CGOLD 0.3819660
#define GLIMIT 100.0
#define TINY 1.0e-20
#ifdef MAX
#undef MAX
#endif
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define SIGN(a,b) ((b) > 0.0 ? fabs(a) : -fabs(a))
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d)
Standard_Boolean math_BracketMinimum::LimitAndMayBeSwap
(math_Function& F,
const Standard_Real theA,
Standard_Real& theB,
Standard_Real& theFB,
Standard_Real& theC,
Standard_Real& theFC) const
{
theC = Limited(theC);
if (Abs(theB - theC) < Precision::PConfusion())
return Standard_False;
Standard_Boolean OK = F.Value(theC, theFC);
if (!OK)
return Standard_False;
// check that B is between A and C
if ((theA - theB) * (theB - theC) < 0)
{
// swap B and C
Standard_Real dum;
SHFT(dum, theB, theC, dum);
SHFT(dum, theFB, theFC, dum);
}
return Standard_True;
}
void math_BracketMinimum::Perform(math_Function& F)
{
Standard_Boolean OK;
Standard_Real ulim, u, r, q, fu, dum;
Done = Standard_False;
Standard_Real Lambda = GOLD;
if (!myFA) {
OK = F.Value(Ax, FAx);
if(!OK) return;
}
if (!myFB) {
OK = F.Value(Bx, FBx);
if(!OK) return;
}
if(FBx > FAx) {
SHFT(dum, Ax, Bx, dum);
SHFT(dum, FBx, FAx, dum);
}
// get next prob after (A, B)
Cx = Bx + Lambda * (Bx - Ax);
if (myIsLimited)
{
OK = LimitAndMayBeSwap(F, Ax, Bx, FBx, Cx, FCx);
if (!OK)
return;
}
else
{
OK = F.Value(Cx, FCx);
if (!OK)
return;
}
while(FBx > FCx) {
r = (Bx - Ax) * (FBx -FCx);
q = (Bx - Cx) * (FBx -FAx);
u = Bx - ((Bx - Cx) * q - (Bx - Ax) * r) /
(2.0 * SIGN(MAX(fabs(q - r), TINY), q - r));
ulim = Bx + GLIMIT * (Cx - Bx);
if (myIsLimited)
ulim = Limited(ulim);
if ((Bx - u) * (u - Cx) > 0.0) {
// u is between B and C
OK = F.Value(u, fu);
if(!OK) return;
if(fu < FCx) {
// solution is found (B, u, c)
Ax = Bx;
Bx = u;
FAx = FBx;
FBx = fu;
Done = Standard_True;
return;
}
else if(fu > FBx) {
// solution is found (A, B, u)
Cx = u;
FCx = fu;
Done = Standard_True;
return;
}
// get next prob after (B, C)
u = Cx + Lambda * (Cx - Bx);
if (myIsLimited)
{
OK = LimitAndMayBeSwap(F, Bx, Cx, FCx, u, fu);
if (!OK)
return;
}
else
{
OK = F.Value(u, fu);
if (!OK)
return;
}
}
else if((Cx - u) * (u - ulim) > 0.0) {
// u is beyond C but between C and limit
OK = F.Value(u, fu);
if(!OK) return;
}
else if ((u - ulim) * (ulim - Cx) >= 0.0) {
// u is beyond limit
u = ulim;
OK = F.Value(u, fu);
if(!OK) return;
}
else {
// u tends to approach to the side of A,
// so reset it to the next prob after (B, C)
u = Cx + GOLD * (Cx - Bx);
if (myIsLimited)
{
OK = LimitAndMayBeSwap(F, Bx, Cx, FCx, u, fu);
if (!OK)
return;
}
else
{
OK = F.Value(u, fu);
if (!OK)
return;
}
}
SHFT(Ax, Bx, Cx, u);
SHFT(FAx, FBx, FCx, fu);
}
Done = Standard_True;
}
math_BracketMinimum::math_BracketMinimum(math_Function& F,
const Standard_Real A,
const Standard_Real B)
: Done(Standard_False),
Ax(A), Bx(B), Cx(0.),
FAx(0.), FBx(0.), FCx(0.),
myLeft(-Precision::Infinite()),
myRight(Precision::Infinite()),
myIsLimited(Standard_False),
myFA(Standard_False),
myFB (Standard_False)
{
Perform(F);
}
math_BracketMinimum::math_BracketMinimum(math_Function& F,
const Standard_Real A,
const Standard_Real B,
const Standard_Real FA)
: Done(Standard_False),
Ax(A), Bx(B), Cx(0.),
FAx(FA), FBx(0.), FCx(0.),
myLeft(-Precision::Infinite()),
myRight(Precision::Infinite()),
myIsLimited(Standard_False),
myFA(Standard_True),
myFB (Standard_False)
{
Perform(F);
}
math_BracketMinimum::math_BracketMinimum(math_Function& F,
const Standard_Real A,
const Standard_Real B,
const Standard_Real FA,
const Standard_Real FB)
: Done(Standard_False),
Ax(A), Bx(B), Cx(0.),
FAx(FA), FBx(FB), FCx(0.),
myLeft(-Precision::Infinite()),
myRight(Precision::Infinite()),
myIsLimited(Standard_False),
myFA(Standard_True),
myFB(Standard_True)
{
Perform(F);
}
void math_BracketMinimum::Values(Standard_Real& A, Standard_Real& B, Standard_Real& C) const{
StdFail_NotDone_Raise_if(!Done, " ");
A = Ax;
B = Bx;
C = Cx;
}
void math_BracketMinimum::FunctionValues(Standard_Real& FA, Standard_Real& FB, Standard_Real& FC) const{
StdFail_NotDone_Raise_if(!Done, " ");
FA = FAx;
FB = FBx;
FC = FCx;
}
void math_BracketMinimum::Dump(Standard_OStream& o) const {
o << "math_BracketMinimum ";
if(Done) {
o << " Status = Done \n";
o << " The bracketed triplet is: " << endl;
o << Ax << ", " << Bx << ", " << Cx << endl;
o << " The corresponding function values are: "<< endl;
o << FAx << ", " << FBx << ", " << FCx << endl;
}
else {
o << " Status = not Done \n";
}
}